N
N

N

HAL

open science

Analysis of a Local Hydrodynamics Model with
Marangoni effect

Jerome Monnier, Patrick Witomski

» To cite this version:

Jerome Monnier, Patrick Witomski. Analysis of a Local Hydrodynamics Model with Marangoni effect.
Journal of Scientific Computing, Springer Verlag, 2004, 21 (3), pp.369-403. 10.1007/s10915-004-4095-

y . inria-00256567

HAL Id: inria-00256567
https://hal.inria.fr /inria-00256567
Submitted on 15 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.inria.fr/inria-00256567
https://hal.archives-ouvertes.fr

Analysis of a Local Hydrodynamic Model with
Marangoni Effect

J. Monnier & P. Witomski

Laboratoire de Modelisation et Calcul (LMC-IMAG), BP 53, F-38041
Grenoble Cedex 9, France.
Projet IDOPT (CNRS-INPG-INRIA-UJF)

Abstract

We study a mathematical model treating of the dynamic contact
line problem, supposed to describe the main features of the advanc-
ing triple line (rolling motion and variable contact angle) and to
remove the singularity. The model is composed by a macroscopic
hydrodynamic free surface flow model (Navier-Stokes) coupled with
a mesoscopic local surface model. Detailed mathematical and nu-
merical analysis of the 1D steady-state local surface model are done:
existence and uniqueness of the exact and numerical solutions, ex-
tra properties of the derivatives, and convergence of finite element
schemes. Some numerical results of the two models treated sepa-
rately are presented for a 2D plunging tape configuration.

1 Introduction

We study a mathematical model treating of the dynamic contact line prob-
lem: the motion of an advancing liquid on a solid surface and displacing
a gas. Our final goal is to simulate numerically the motion of a such flow.
The present paper is the first part of our study.

The physical phenomena of dynamical contact line appears in many
industrial processes such as coating of solids by liquids.
Two main features of such viscous and slow flows revealed by experiments
are the following:
i) the liquid front advances following a rolling motion, similar to a cater-
pillar vehicle, see [5]: the particles of the liquid-gas interface arrive at the
solid-liquid interface.
ii) the dynamical contact angle derives from its static value -determined



by the classical Young equation-, and depends on the fluid velocity in the
bulk. In addition, it seems that its value cannot be prescribed explicitly in
a general way, see [1] and the references cited therein for a more complete
review.

The contact angle and the triple line velocity are ones of the most impor-
tant parameter to describe the motion of such flows.

The mathematical modeling of the moving contact line is delicate. A no-
slip boundary condition at the solid-liquid interface implies a non-physical
singularity: the fluid exerts an infinite force on the solid surface, [5].
Then, most of the theories and most of models have been based on a slip-
page description, see e.g. [8], [6], [3], see also [4], [9] for a more complete
review.

A slip condition removes the singularity, however, it replaces the rolling
motion by a sliding one, [6], [10]. For a normal liquid flowing over a smooth
solid, slippage is usually negligible, [4].

The mathematical model studied in the present paper is the Shikhmurzaev’s

model established and presented in [9], [10], [11], [1]. This model is sup-
posed to describe the main features of the advancing contact line and to
remove the singularity.
The main idea of this model is the following. The rolling motion induces
a local variation of the surface tension. This variation would be due to
fluid particles going from the liquid-gas interface to the liquid-solid one.
The surface tension gradient induced, influences the motion and the force
near the contact line, and implies a Marangoni effect. In this model, the
(dynamic) wetting angle is not imposed but is a response of the model.

In a mathematical point of view, the Shikhmurzaev’s model is composed
by a macroscopic Hydrodynamic Free Surface Model -HFSM- (Navier-
Stokes incompressible) fully coupled with a mesoscopic Local Surface Model
-LSM- (non linear degenerated time-dependent equation).

The paper is organized as follows. In section 2, we present the Shikhmurzaev’s
model established in [9], [10], [11], [1] and we reformulate its equations. In
section 3, we study mathematically the 1D steady-state version of the LSM.

In Section 3.1, the existence and uniqueness of the solution is proved, and
extra properties on its derivatives are stated. In section 3.2, we discretize
the LSM using the finite element method, and we prove the existence, the
local uniqueness and the convergence of the finite element solution. In
section 4, numerical results are presented. First, we consider the 1D LSM
and present some numerical tests. Then, we consider independently a sim-



plified version of the HFSM with the local Marangoni term given. Some
simulations corresponding to a plunging tape configuration are performed.
The complete model will be studied in the second part of the present ar-
ticle. The numerical schemes, algorithms and numerical results obtained
will be presented therein.

2 The Mathematical Model

The model studied in the present paper and presented below derives from

[9], [10], [11] and [1}.

Let Q be a liquid drop (L) wetting a solid (S). We denote by T'sy the
solid-liquid contact surface, by T'sg the solid-gas contact surface, by T'pg
the free surface liquid-gas and by v the contact line liquid-gas-solid (the
triple line).

When the liquid is at rest, the (static) contact angle , satisfies the classical
Young equation:

o1 cos(fs) = 56— oy (1)
where o7%. o} and o, are the equilibrium surface tensions of the liquid-
gas, solid-liquid and solid-gas interfaces respectively.

The interface fluid-gas is considered at a macroscopic length scale and
the solid surface 1s supposed to be perfectly smooth.

When the drop is moving, for example when sliding on an inclined

plane, the contact angle and the drop shape are variable. The aim of
the present study is to simulate numerically a such phenomena using the
Shikhmurzaev’s model, [9, 1].
A macroscopic Hydrodynamic Free Surface Model -HFSM-, for the fluid
motion is coupled to a mesoscopic Local Surface Model -L.SM- describ-
ing the surface tension distribution and the contact line motion. The
HFSM consists to the Navier-Stokes equations with free surface and orig-
inal boundary conditions. The coupling with the LSM is done through
these boundary conditions imposed on a small vicinity of the triple line.
The LSM describes the dependence between the surface tension parameters
and the fluid motion.

Let us give the equations of the full model in two dimensions of space.
Figures 2 and 2 illustrate the model for the advancing angle of a droplet
wetting partially a solid.
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Figure 1: Liquid droplet wetting a solid surface. The advancing angle.

State equation:
s s
o=y(p,~P)

Triplejunction:
i) Young relation (ef 0)
S
ii) Surface flux continuity

€
9

Surface continuity equation

Figure 2: Vicinity of the triple junction -the mesoscopic area-.



The 2D macroscopic Hydrodynamic Free Surface

2.1
Model
We denote by @ the fluid velocity, p its pressure, X the stress tensor,
iy = —pbij+ p(diuy + Ojui)  1<4,j<2 (2)

where p is the dynamic viscosity.
We denote by (7, ) the unit tangential and external normal vectors such

that it 1s direct. We set:
(3)

Yo = YA€ R N, =Yni4 8,7

The fluid motion is governed by the incompressible Navier-Stokes equa-

tions:
P (div(X)); + p(@V)u; = pgi in (0,T)xQ 1<i<2 )
0 in (0,7) x Q

div(d) =
where p is the fluid density, § the gravity, 7' the final time and

2
(div(%))i = > 0,55
j=1

To describe the boundary conditions, we decompose T'gy, (respectively

['1¢) in two parts T3, and I'%, (respectively I'*, and T'7",). The notation
™) refers to the macroscopic (respectively mesoscopic)

M (respectively
boundary -see Fig. 2-.

The boundary conditions on the free surface (liquid-gas) are

where k is the mean curvature and p.,; is the external pressure.

(—Pewst + 012 ﬁ)ﬁ in (0,7) x F%JG (5)
in (0,7) x TP, ’

S
f: (_pext + ora I{)ﬁ + (VO-LG.F)F

7

The liquid-solid contact is described by
i = Us in (0,7) x T¥, (6)

where _‘5 is the solid velocity, and

{

in (0,7) x T, -
in (0,7) x T'g;

31
1

— (B = Us) - 3

1 St
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where 8 > 0 is a sliding type coefficient. We have 8 & £ where h is the
layer thickness, see [9] and Fig. 2.

Let us point out that in the Shikhmurzaev’s model, there is no actual
slip between the fluid and the solid surface, [9]. The boundary condition
(7) models an apparent slip, where the surface velocity v} introduced below
-see relations (15), (16) and Fig. 2- models a mean velocity in the layer of
thickness h.

In other respect, the boundary condition (7) removes the shear-stress sin-
gularity.

Surface tension gradients appear in (5) and (7). It is a particularity of the
present model. Let us recall that surface tension gradients imply a flow
towards the region of higher surface tension (the Marangoni effect). In the
present model, it is a self-induced Marangoni effect. As a matter of fact,
the Shikhmurzaev’s model is based on the assumption that the rolling mo-
tion, described in [5], implies a mechanical and local change of the surface
tension coefficients, see [9].

Remark 2.1 Far enough from the triple point i.e. in the so-called macro-
scopic area, one had assumed that the fluid sticks to the solid (no-slip

boundary conditions) and that the surface tension gradient Vorg van-
ishes. In others words, the surface tension gradients are supposed to be
non null only in the so-called mesoscopic area I'?; and T'7.

Remark 2.2 1f 60‘5L = 60’14@ = 0 then the boundary conditions are more
classical. In that case, the boundary condition (7) is a Navier slip type
boundary condition.

The free surface dynamic We define the free surface I'r, as the graph
of a function ¢(t, z1),

e = {22, za=9(t, 1), 21 €L, t €(0,T)} (8)
Then, the free surface motion is described by the following equation:

Oy 0p .
E+U18'—l‘1 = —us in (0,7) x I )

with initial conditions given. The boundary conditions is:

o(t,Z) given (10)

if the extremity point Z of the surface is an inflow extremity.



Using the representation (8) of I' g, we have the expression of the mean
curvature:

Kol e
Kt 1) = —(—=2(t,x1) in (0,T) x I,
/ 8.7}1 1+ |§‘P |2 /

Remark 2.3 Let us point out an important feature of the model. The
dynamic wetting angle #4 is not imposed. Tt is a response of the model. Tt
can be computed using the relation:
Oy .
cotan(fg) = — 6—(t, Pc)in (0,7) (11)
L1

where P¢ is the triple point liquid-solid-gas.

If O'Lg,ﬁo'LG and 60'5L are given in the mesoscopic areas [}, and
I'Pe, then the system (4)-(10) models a free surface Navier-Stokes flow
with surface tension, with a local sliding type boundary condition taking
account a Marangoni effect. With initial conditions, this system is closed.
In all the sequel, we omit the ™ on the vectorial quantities.

2.2 The mesoscopic Local Surface Model

In the Shikhmurzaev’s model [9], the Young equation is supposed to remain
valid when the contact line is moving;:

oLG COS(gd) = 008G —O0SL (12)

Since the dynamic angle 64 is different from its static value 6; when the
contact line is moving, this assumption implies that at least one surface
tension coefficient ¢ changes from its equilibrium value o°9.

The Shikhmurzaev’s model is based on the assumption that the rolling

motion [5] implies a local change of the surface tension coefficients from its
equilibrium value to a different value, in a finite time 7* called the relax-
ation time, see [9].
In others respects, it follows from the experiments presented in [1] that the
surface tension coefficients depend locally on the contact line velocity and
on the fluid flow in the bulk. So, the macroscopic HFSM and the meso-
scopic LSM are fully coupled.

Now, let us present the so-called mesoscopic LSM as it is established in

[9].



Roughly, the interfaces are described by surface densities p®. These sur-
face densities are solution of surface continuity equations. A state equation
gives the relation between p® and the surface tension coefficients o.

We denote by pj, i = 1,2, the surface density on I' ¢ (i=1) and on
T'sy (i=2). The surface tension is related to the excess density through a
linear state equation

o = vy —pj) i=1,2 (13)

where v and p{ are given constants.

We have the surface continuity equation:

9pi
ot

+odiv(pil) + =i —p) =0 i=12  (14)

ey
where 7* is the relaxation time relative to the rolling motion, v} is a

mean velocity inside the layer and p;? is its density at equilibrium, [9]:
oi(pi!)=0oi, i=1,2.

The velocity v§ (respectively v3) is related to p§ (respectively p3) and
to the fluid velocity u (respectively the solid velocity Us). We have the
following Darcy laws type, [9]:

(14+4a12)Vorg = 4as(v] —u) (15)

1
v§ = a1Vosr + §(U-I-U5) (16)

where a;, 1 = 1,2, are given constants characterizing the viscous properties
of the interface.

Remark 2.4 The macroscopic parts T'Y, and T, it follows from (15)(16)
and (6) that:
v =u in (0,T) x T,

vy=u="Us in(0,T)x ¥
In addition, one has:
vin=un in (0,7) xTTq

At the triple junction, the surface flux continuity is imposed:

(Pioi)es = (pava)eg (17)



where ey and eg4 are unit vectors normal to the contact line and tangential
to the gas-liquid and gas-solid interface respectively, Fig. 2.
Let us notice that: cos(f4) = —ey.e,.

The system (4)-(17) with given initial conditions is closed.

Reformulation of the LSM

We set: &€ = « %. It follows from (13) with ¢ = 1 and (15)
that:

v] = u — ¢Vp] (18)
Then, the mesoscopic LSM on the liquid-gas interface becomes:
dp3 ; ] £ ; ] ] _ 1 € : m
g — Ediv(piVp}) + div(piu) + Fpi = :_;qu in (0,7) x I'fg
o = pi? on (0,7) x Jra (19)
(p;(u—EVp])) given on (0,7) x Pc

where J1 is the junction point of '}, and '}, and Pc is the triple point.

With initial conditions, the LSM on the free surface liquid-gas (19) is
closed.

Let us treat the case ¢ = 2. We set A = a3y and:

U= -(u+Us) (20)

N | —

Using (13) with ¢ = 1 and (16), we obtain:
vy = U — AVp; (21)

Then, we obtain the mesoscopic LSM on the solid-liquid interface:

% — Niv(pyVps) + div(psU) + Lps = Lp i (0,T)x T,
s = p5! on (0,T) x Jrng (22
(p5(=AVp5 +U)) given on (0,7) x Pe

where Jgr, is the junction point of I'F; and FQ/I,

With initial conditions, the LSM on the solid-liquid surface (22) is
closed.



The two models (19) and (22) are very similar. In a mathematical point
of view, it is non linear degenerated unsteady equations.

The numerical simulation of the complete model (HFSM fully coupled
with LSF) will be treated in an other article (part IT).

The purpose of next section is to give mathematical and numerical
analysis of the 1D mesoscopic LSM. Then, we present some 1D and 2D
numerical results as applied to a plunging tape configuration. The goal
being to understand the LSM contribution to the bulk fluid motion.

3 The 1D Local Surface Model

We study the 1D steady-state version of the Local Surface Model -LSM-.
First, we detail the mathematical analysis. Under some physical assump-
tions, we prove the existence, the uniqueness of the weak solution and some
useful estimates of the solution, the first and second derivatives.

Then, we consider a IPj finite element discretization and we prove the ex-
istence, uniqueness and the convergence of the discrete solution.

Finally, we present some numerical results illustrating the mathematical
properties proved and the solution behavior.

The 1D steady-state LSM

Let us consider the LSM (22), the model (19) being similar.
We assume that the boundary T', is straight and parallel to a z;-axis,
1=1,2.

We set f = T%p;q, p* = p3? the characteristic surface density, U* =
|Us| the characteristic velocity and let { be the characteristic length of the
mesoscopic length [T .

We set the dimensionless variable p = £ and we immediately omit the ~
on the dimensionless variables.

The 1D steady-state and dimensionless LSM is the following:

—(pp') + 01 Up" + dap = d&o forye(0,1)
p(O) = 1 (23)
(=pp" + 0 Up)(1) = ¢
where l 2
U* 2
0 = dd, = 24
! Ap* and o Ap*T* (24)

10



are dimensionless numbers,
6 = B RU() +1) (25)

is the flux at the contact point, and U is defined by (20).

* *\2
Let us notice that if we set [ = 7*U*, then d; = d5 = T /(\U*)
p
3.1 Mathematical analysis
We consider the mathematical model:
—(pp') + 61 Up" + d2p = [fin]0, 1]

(#) )
(—=pp" + 61 Up)(1)
where 6; > 0, i = 1,2, and f is given in L%(0,1).

po
¢

Under some physical assumptions, we prove the existence of the weak
solution of (P) using the Leray-Schauder fixed point theorem, the unique-
ness using the Gronwall’s Lemma and we prove some extra properties of
the first and second derivatives of the solution.

We make the following assumption on the velocity U.

Assumption 3.1
) U e Wl,oo(o, 1) and U < 0 in [0,1].
i) U > 0 ae. and [|U/]|oo < 5. 0

We will prove the existence and uniqueness of solution of (P) using the
Leray-Schauder fixed point theorem. To this end, we first prove the exis-
tence, uniqueness and some extra regularity of the solution of the following
linearized and regularized problem.

Let ¢ > 0, let 8. € C*(IR), Lipschitz, increasing and such that:

{e if <0

Pe(w) = r if x> 2 (26)

Let 6 : [0,1] — IR be given, the linearized and regularized problem is:

—(B:(0)0") + 61 Uy + o9 = f in]0,1]
(@) ¥(0) po
(=B:(0)y" + 61 Uy)(1) = ¢

11



We set:
Vo= {ve H(0,1), (0) = 0) (27)

o = {0 € HI(0,1), 0(0) = po) (28)
91/), / B:(0) ¢ V' da
mww—&JUwvm—mwmmn (29)

0
1
aog(,v) = 52/0 Y v de (30)
a®(O;4,0) = ab(B;,v) + ai(¥,v) + ao(¢,v)

and
l(v) = /0 fvde—¢u(l) (31)

With the notations above, the weak formulation is:

(07) Find ¢ € V,,, such that
a?(0;4,v) = l(v) Yv €V

Proposition 3.1 Let # € H'(0,1) be given and let Assumption 3.1 be sat-
isfied.

i) There exists an unique solution ¢ to (Q7).
i) ¥ € H%(0,1).

Proof. i) We have 6 € H'(0,1), B.(0)(z) € [&,B:(||0]|«)] and U €
W12 (0, 1), then the continuity of a’(.,.) and I(.) are straightforward.
The bilinear form a?(8; .,.) is Vo-coercive: Yv € Vg,

aﬁ(ﬁ;v,v) = /0 B:(6) (v')? dx + %[/0 U (v?) dz — 20(1)v*(1)]

1
+ 52/ v? dx
/ /BE dI - (51U / [(52

Under Assumption 3.1,

a’(B;v,0) > e |[v]l} YveVa (32)

12

dx



where c¢. is a constant independent of 6.
Then, the result follows from the Lax-Milgram theorem.

ii) We have:
—(B(O)') + 61 UY' + 82 = f inD'(0,1)

with U € W1(0,1) and B. ()¢’ € L>=(0,1). Hence . ()¢’ € H(0,1)
and one can deduce that ¢’ € H'(0, 1). Hence the result. O

Now, we consider the non linear regularized problem:

Find p satisfying

(P?) —(B(p)p)) + 6 Up + &op = [ in]0,1]
P(O) = Po
(=B (p)p + 61 Up)(1) = ¢

Proposition 3.2 Under Assumption 3.1, Problem (P?) has at least one
weak solution in H'(0,1) and this solution belongs to H?(0, 1).

Proof. We use the Leray-Schauder fixed point theorem. To this end, we
define the operator T' as follows:

T: HY(0,1) = H'(0,1); 6 — 2 (33)

where 1t is the unique solution of (QF).
Any fixed point of T is solution of (P#).

Using the continuity and the coercivity of the bilinear form a”(.,.) -see

(32)-, we obtain: V8 € H'(0, 1),

Il = IT@h < e

where ¢, is a constant independent of 6.
In others respects, as ¢ = T(f) € H?(0,1) (Proposition 3.1), we obtain
from the first equation of (Q#):

=B (0" — BLOW + 6 Uy + &0 = f

Let us suppose that 6 belongs to a ball B(0,7) in H'(0,1). Then we deduce
that

ell¥ll: < (r+alUlleo)[¥'ll0 + dalléllo + [IF]lo

So T(B(0,r)) is bounded in H?(0,1). It follows from the compactness of
the injection from H2(0,1) into H(0,1), that 7" is compact from H(0,1)

13



into itself.

Let o in [0,1] be given and p be a fixed point of 6T: p = oT(p).
We set g = (p — po), p € Vo. As previously, we prove that there exists a
constant ¢, independent of o such that:

Al < e

It follows from the Leray-Schauder theorem (see e.g. [7]) that 7" has at
least one fixed point p in H'(0, 1) and the result follows. d

Let us assume

Assumption 3.2 We have: pg > 0, ¢ <0 and (ionf)f > 0.

Let n be a real satisfying: po > 1 > 0, néz <inf 1)(f) and ndU(1) >

@.
For example for U(1) < 0, we set:

n = min{po, — inf (f) } (34)

dy (0,10 77 61U(1)

Lemma 3.1 Under assumptions 3.1 and 3.2, the unique solution ¥ of (QF)
satisfies ¢ > 1 > 01in [0,1].

Proof. We choose v = (¢ — 1)~ = max(—v¢ + 1,0) as test function. We
have v in Vo, v > 0, v=(—¢ +n)if n >y and v = 0if n < .
Under Assumption 3.2 and using the equality v = (n — v)v, we obtain:

1 1
—/0 B:(0) (v)? de + %U(l)vQ(l) — /0 [0 — %U’] v? dz

1
= [ = e ds 4 U0) 6] o)
>0

Under Assumption 3.1, we have U(1) < 0 and (dy — %U') > 0, hence

/01,35(9) (W) de = 0

It follows that v = (¥ —n)~ =0 and ¥ > 7. O

14



Theorem 3.1 Under assumptions 3.1 and 3.2, Problem (P) has at least one
weak solution p in H'(0,1). This solution satisfies p(z) > n > 0 in [0,1]
and belongs to H%(0, 1).

Proof. Tt is straightforward. Let us choose ¢ = 1 -see (26) and (34)-. Let

T be the operator defined by (33), for all € H'(0,1), ¢ = T(0) >n > 0
-Lemma 3.1-. Also, p = T'(p) > 2¢ and f.(p) = p. Hence the result.

a

Theorem 3.2 Under assumptions 3.1 and 3.2, and if ||U’]| < g—f, Problem
(P) has an unique solution p.

Proof. We denote by p; and py two solutions of (P).
a) First, we prove that p{ (0) = p4(0).
Let us suppose that p}(0) > p5(0). Let 0, &o] the largest interval such that

pi(x) > pa(x), x €]0,&l.
Let us suppose £g = 1. We integrate the first equation of (P) on [0, 1] with
p1 and py. By differentiating we obtain:

—p1pi(1) + paps(1) + po(pi(0) — p5(0)) + &i[U(p1 — p2)lo

1
+ [ =80 - pr)de = 0
0

Using the boundary conditions of (P), we obtain:

1
polth(0) = 4(0) + [ (G = 810" — pa)ie = 0
0
hence )
[ = 610701~ pa)ie < 0
0
which is impossible.

Therefore & €]0,1[ and p1(€o) = p2(€o). As previously, we integrate on
[0,&o] and we obtain:

—p1(€0) (1 (§0) — p2(&0)) + polph(0) — p5(0))
1
[ =80 = )iz = 0
hence (p1 — p2)'(€0) > 0. It is impossible. Therefore, pf (0) = p5(0).

b) Second, we write the first equation of (P) as a first order differential
equation of the form:

W' (z) = G(W)(z), = €]0,1]

15



with W = (u,v)” and

GW)(s) = (wv(s), %[—1}2(5) + 61U (s)v(s) + dau(s) — f(s)] )T
We consider G : C'([0,1]; R) n F+ x C°([0,1]; R) — C°([0,1]; R) x

([0, 1J; R) with #+ = {u, u € CO([0, 1]: R), u > 0 in [0, 1]}
One can easily verify that G(W) is of class C".

Then, we set Wi = (pi, p1)7, i = 1,2. We have W/ (z) = G(Wi)(z), = €
10, 1[, and W7 (0) = W>(0). Hence,

(Wh = Wa)(z) = /OZ(G(Wl) — G(W2))(s) ds (35)

Since p; € C([0,1]; R) N F+ and G(W;) is of class C1, there exists a

constant k such that:
I(G(W1) = G(Wa))(s)l| < K [[(Wr—W2)(s)|l (36)

Then, it follows from (35) that:
(W1 = Wa)(2)]] < k /0 [(W1 = Wa)(s)|| ds (37)

Setting I(z) = fox [|(W1—W2)(s)|| ds, we obtain: %([(z) exp(—kz)) < 0.
Also, I(0) =0, therefore I(z) <0 Yz € [0, 1].
Then, we conclude that Wy = W in [0, 1]. O

Now, we make

Assumption 3.3 We have f = dsp9 and (U, ¢) such that: U(0) > 2U(1),
10" |loo < $ and ¢ = 615(2U (1) — U(0)) < 0 with 5 > 0.

Under Assumption 3.3, 5 defined by (34) becomes:

n = min{PO;(slU(b(l)} (38)

Under these assumptions, we prove that the solution is monotone and
we prove some extra properties on p’ and p’’.
Theses properties are useful for the numerical analysis presented in next
section too.
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Proposition 3.3 Let the assumptions 3.1, 3.2 and 3.3 be satisfied and let p
be the unique solution of (P).

1) If ¢ = 01U (1) pg then p = pg.

176 < 010 (Do then ) > o and 2) > 0 in (01

iil) If ¢ > 51U (1) po then p(z) < pg and p(z) < 0 in [0,1].

Proof.

i) It is straightforward to verify that p = pg is solution and the solution
is unique.

ii) We have ¢ < 61U (1)pg. Since ¢ > nin [0,1] (Lemma 3.1), we obtain
p > po in [0,1]. Let us prove that p’(x) > 0.
If there exists & €]0, 1] such that p’(€o) < 0, then

—(pp") (&) + 81U (&)p' (&) = dalpo — p(éo)) < O

hence )
—(pr) (&) = —5(p") (&) <

We deduce that (p?)/(¢) > 0 in a neighborhood V(&p).

Therefore p is increasing in V(&o) and p/(§) > 0 in V(&), which is a con-
tradiction with p (&) < 0.

Then, we deduce that p'(2) > 0 in ]0,1[ hence in [0,1] since it is continue.

iil) We have ¢ > d1U(1)po. Let us prove that p < pg in [0,1]. To this
end, we suppose that maxo 11p(§) = p(&m) > po.
We have &, # 0 since p(0) = po. Let us suppose &n €]0, 1].
We write the equation in &,:

—(pp") (Em) + U (Em)P (€m) + d2p(€m) = d2po

hence
—pp" (&m) = d2(po — p(ém))

since p' (&) = 0. We deduce —pp” (€,,) < 0 and p"(&y) > 0. Tt is a con-
tradiction with the definition of &,,.

Let us suppose &, = 1. We have p/({,) > 0. Using the boundary
condition in z = 1, we obtain: ¢ < §;U(1)p(1). In others respects,
6> 80 (1)po > 5U(1p(1).

It leads to a contradiction. Therefore, p < pg in [0,1].

The proof of p’ < 0 in [0,1] is similar to the previous case ii). O
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Lemma 3.2 Let the assumptions 3.1, 3.2 and 3.3 be satisfied and let p be
the unique solution of (P). We have: (p' —d:U)(2) > 0in [0,1].

Proof. Since U < 0 in [0,1], the inequality is obvious if p > 0 in [0,1].
Let p/ <0 in [0,1]. We have:

(=pp' +6:Up) — 61 U'p = d2(po—p) > 0
and the function 7 — (—pp’ + 6, Up)(7) is increasing. Therefore,
Ve e[0,1],  —p(x) [p(x) —01U(2)] < ¢ <0

hence the result. O

Lemma 3.3 Let the assumptions 3.1, 3.2 and 3.3 be satisfied and let p be
the unique solution of (P).
i) If ¢ < 01U (1)pg then p''(z)

S (52 in [0,1]
i) If ¢ > 61U(1)po and U2(0) <4

g—% o then p"(z) < 42 in [0,1].

Proof.

i) We have p(x) > po and p'(z) > 0 Vo € [0,1] (Lemma 3.2). We deduce
from the first equation of (P):

p()[6a — p"(2)] = p*(x) — 61U (2)p' () + d2p0 (39)

The right hand side is positive and the result follows.

ii) We have p/(z) <0 and p(z) > 0 in [0,1].

We have to control the sign of the right hand side of (39). The tri-
nom X2 — 01U (2)X + dapo is positive for all 2 in [0,1] if and only if
A(T) = (51U(T))2 — 4(52p0 S 0

Therefore under Assumption 3.1 and if (51U(0)2 < 4d2p0, the result follows.
g

Proposition 3.4 Let the assumptions 3.1, 3.2 and 3.3 be satisfied. Let A be
the operator defined by: A : R — H'(0,1); ¢ +— p, where p is the unique
solution of (P). Then, the operator A is monotone.

Namely, let ¢2 < ¢1 < 0, let p1 and pa be the unique corresponding
solutions, then we have: ps > p1 in [0, 1].

Proof.

Case 1. We have: ¢2 < 61U (1)pg < ¢1 < 0.
In vertu of Proposition 3.3, p1 < po < p2 and the property holds.
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Case 2. We have: §1U(1)po < ¢2 < ¢1.

A. Let us prove that p}(0) < p5(0).
In vertu of Proposition 3.3, we have p;(z) < po and pj(z) <0,i=1, 2,in
[0,1].

Let us suppose that p{(0) > p5(0). Then, there exists { such that
p1 > p2 in J0,E[. Let &nqp be the largest value of € such that p; > ps in

10,¢[.

a) Case &mar = 1.
Following the same idea of proof than in Theorem 3.2, we integrate the first
equation of (P) on [0, 1] with p1 and ps, we differentiate the two equations

and we obtain:

1
(61 =62) + polp )= () + [ G2 =8:0")(pr = pa)iz =
0
which leads to a contradiction. Hence the case &4, = 1 is impossible.

b) Case &ae €]0, 1]
We have: P1 (gma:c) = pZ(Ema:c) =A>0.
We integrate the first equation of (P) in ]0, &4, and we proceed as pre-
viously. We obtain:

Emar
=A(P1 = £5) (Emac)] + polph — p5)(0) + /0 (02 = 81U")(p1 — pa)dz = 0

Then, we deduce: (p) — ph)(Emaz) > 0. Hence, (p1 — p2) is increasing in a
neighborhood of &mae, which is in contradiction with (p1 — p2)(Emas) = 0
and (p1 — p2)(2) > 0 1n 10, Emas.

It follows that: p}(0) < p4(0).

B. Following the proof of Theorem 3.2, we have: p}(0) = p4(0) implies
p1 = p2 in [0,1]. Since ¢1 not equal to ¢2, necessarily, p (0) < p5(0).
Hence, there exists 7 such that py > py in |0, 7[. Let 7,4, be the largest
value of 7 such that py > py in ]0, 7.

I(Let l)ls SUppose Tmay < 1. Then, p1(Tmaz) = p2(Tmas) and pi (Tmaez) >
P2\Tmax )

Let us consider the case p}(Tmaz) = p5(Tmaz). Theorem 3.2 as applied

to the interval [7maz, 1] gives p1 = ps and ¢1 = ¢9; which is impossible.
Therefore, pi(Tmaz) > p4(Tmaz). We follow the same idea of proof than

19



previously. There exists an interval |Tmaz,&[ such that p1 > p2. Let
1Tmaz, Emas| be the largest interval such that the property holds. We con-
sider separately the two cases &, = 1 and &, < 1 and by integrating
the first equation of Problem (P), we conclude to a contradiction. Finally,
we obtain that 7,,,,, = 1 and py > py in ]0, 1].

Case 3. For this case, we have: ¢3 < ¢1 < 51U (1)po.
The proof 1s similar to case 2. Hence, the result.

3.2 Finite element numerical analysis

We discretize the 1D steady-state LSM using the Lagrange finite element
method. The numerical analysis is done using the framework and results for
non-linear problems presented in [2]. We obtain a local existence, unique-
ness and convergence of the finite element solution.

Setting p = (f + po), the weak formulation of Problem (P) is written
as follows:

(P) Find 8 € Vj such that:
b(6;60,v) = m(v) VeV

where Vj is defined by (27),

b(B;9,v) = as(0 4 po; ¥, v) + ai1(y,v) + ao(,v)
with )
as(p;¢,v) = [} p Y v dx

with a1(.,.) and ag(.,.) defined by (29) and (30) respectively,
1
m(v) = Il(v) — 52/)0/ v dz
0

and [(.) defined by (31).

Let us recall that under assumptions 3.1, 3.2 and 3.3, there exists an
unique solution to (P). Furthermore, this solution belongs to H?(0, 1) and

satisfies: p(z) = 6(x) 4+ po > n > 0in [0, 1] (Theorems 3.1 and 3.2).

We define the operator

F:Vo = Viby: <F(f),v> = b#;8,v) — m(v) Yve
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where < .,.> denotes the duality product V{ x Vq.
Problem (P) is equivalent to:

Find 6 € V; such that:
<F@),v> =0 YveW

We discretize Problem (P) using a P Lagrange finite element method
(ke N, k>1).
To this end, we set: [0, 1] = Uii=o..(N=1))[%i, Tix1] and b = mingy (241 — 7).
We define the finite element spaces:

Von = {t € C°([0,1]); Vi, ¢

[wi,@it1] € Pg; t(O) = 0};
The discrete model is:

(Pon) Find 8, € Vjp, such that:
rh <Fh(6),vh> =0 Vv, €V

In order to apply the results for non-linear problems presented in [2],
we first study the linearized problem.

The operator F(.) is of class C! from Vg into V{.
Let 6 be the unique solution of (P), we study the following linearized
problem:

Given f € V{, find k € V4 such that:
<DF()kv> = < fiv> YveW

Lemma 3.4 Let the assumptions 3.1, 3.2, 3.3 be satisfied and U?(0) <
43_%/)0

Let # be the unique solution of (P), the operator DF(f) satisfies the fol-
lowing properties:

i) it is an isomorphism from Vj into V{,

ii) it is Lispchitzian at 6, that is there exists L > 0 such that for all k € Vj,
IDE#) — DF ()|l cvoxvy) < L6 — &1

Proof.
i) We claim that the bilinear form < DF(f).,. > is Vy-coercitive. We have:

< DF(0).k,v> = b(0;k,v) + aa(k;0,v)

Using the same calculus as in Proposition 3.1, we obtain: Vv € Vj,

1 1
< DF(@).v,v> = / (@ + po) (v')2 dr + / Won v2 dz + Zg/’()Q(l)
0 0
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with: Wen () = (02 — 2U' — 36”)(z) and Zg = (36" — 5,:U)(1).

Under assumptions 3.1, 3.2, 3.3, since lemmas 3.2 and 3.3 hold, we have:
Wau > 0 and Zg > 0. Therefore: Vv € V),

<DF(@)v,v> > al|i > el

with ¢; > 0, ¢ = 1,2, independent of v. Then, the linearized problem is
well posed in vertu of the Lax-Milgram theorem.

ii) The estimate is straightforward. We have: Vk € V;, V(w,2) €
Vo % Vﬁ,

| < DF(0)w,z > — < DF(&)w,z>| = |a2(0 — k;w,2) + as(w; 0 — &, 2)|
< L)l = sl lfwlh Izl
and the property follows. d
We have

Theorem 3.3 Let the assumptions 3.1, 3.2, 3.3 be satisfied and U?(0) <
4%%PW

There exists two constants hg > 0, ag > 0, and for h < hg, there exists an
unique solution @ to problem (P,;) in the closed ball B(#, a).
Moreover, there exists a constant ¢ independent of h such that:

10 = Onlls < ¢ inf || —wn|y < ch ||| (40)
vhEVR

Proof. The result follows straightforwardly from the application of ([2],
Theorem 7.1.). As a matter of fact, since Theorem 3.1, Theorem 3.2 and
Lemma 3.4 hold, since the bilinear form < DF(#).,. > is Vy-coercitive, the
estimates proved in ([2], Theorem 7.1.) hold with the constant g, = 1.

Then, (40) holds since 6 belongs to H?(0, 1). O

3.3 Numerical results

We compute the solution of the mesoscopic model (P) using a finite differ-
ence method. We present two tests visualizing and confirming numerically
the properties proved in the mathematical analysis section. The goal of
these numerical results being a better understanding of the behavior of the
solution p. As a matter of fact, in view to adjust the LSM parameters and
to proceed to the full model fitting, one needs to perfectly understand the
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behavior of the LSM solution.

The numerical solution of (P) is computed as the steady-state of the
unsteady system. The time scheme is the Crank-Nicholson scheme and the
non-linear term (—pp’) is linearized using the Newton-Raphson method.
The code has been fully tested with explicit time-dependent solutions.

Let us summarize assumptions 3.1, 3.2 and 3.3. Data are such that:

. U(x) <0, U'(x) >0, U'(x) < 2 in [0,1] and U(0) > 2U(1).

. [ =d2p0 and ¢ = 8,5(2U(1) — U(0)) <0,

with d1, d2, po and p strictly positives.

We set U
n = min( po, p( _W))
and we set
pN = a X po
U0
(2 - U(]))
with a > 0.

The condition ¢ = §;U(1)pg (resp. > and <) is equivalent to a@ = 1
(resp. < and >), see Proposition 3.3.
Let us recall that for @ = 1, the unique solution is p(z) = pg Va.

We have tested the two test cases a. and b. presented in Table 1, with
Ux) = (%Tz —1). All the assumptions are satisfied for both cases.

|TestNo|(51 |52 |p0 |Coef.a|
a. 5 1 1 10
b. 11101 1 0.1

Table 1: Parameters for tests a. and b.

In Test a., we have @ > 1 and in Test b., @ < 1. The numerical results
of Test a. (resp. Test b.) are presented in Fig. 3.3 (resp. Fig. 3.3).

In both cases, we obtained numerically the properties proved previously,
namely:
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Figure 4: Test b.: p, p/, (p' — 61U) and p” plotted
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. p(x) > n Ve, (n =1 for Test a. and 0.1 for Test b.) -Theorem 3.1-,

. ¢ —8U(1)po > 0 (resp. < 0) implies p(x) > po (resp. < 0) and
p'(x) > 0 Vo (resp. <0) -Proposition 3.3-,

. (P =61U)(x) >0 V& - Lemma 3.2-
. (p"(x) — d2) <0 Va -Lemma 3.3-.

The sign of p”” is not constant.

4 Numerical Results: Plunging Tape Case
Test

We consider a 2D plunging tape configuration, and we solve numerically
and separately the 1D mesoscopic LSM and the 2D macroscopic HFSM.
In Section 4.1, the computation of the 1D mesoscopic LSM provides a pro-
file of Voy: the local Marangoni source term in the Navier-Stokes boundary
conditions.

In Section 4.2, we solve numerically a simplified version of the HFSM,
namely a 2D Stokes model with the free surface I'r,¢ given and fixed. Then,
we can observe the influence of Vo (the previous local Marangoni term)
on the fluid motion in the bulk.

The 2D plunging tape configuration

The plunging tape case test is schematized in Figure 4. A tape plunges
vertically into a pool of liquid at speed Us. We consider an air-water-glass
system.

We simplify the mesoscopic LSM as follows: we set op¢ = o7%. It
follows from (15) that v = u on T'pg. Then, the LSM is reduced to a 1D
differential equation in an interval of the y-axis (on I'g, ).

4.1 1D LSM: local surface tension gradient
The LSM considered is the following;:

—(pp") + G Up 4+ dap = 62 forye(0,1)
0(0) - (a1)
(=pp + 0 Up(1) = ¢
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Figure 5: Plunging tape. The static and dynamic configurations (with
o016 > 0s1)
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with d1, d» and ¢ defined by (24) and (25) respectively.

We set: 074, =70, o¢f =20 and o5k, = 50 mN/m.

eq _ _eq
In the static case, we have: cos(f;) = Us‘ge# ~ 0.429 hence 8, ~
LG
64.6°. In the dynamic case, the Young equation is supposed to remain
valid and the case f4 > 90° corresponds to: ¢¢l, =50 < o5, < o7%L = 70.

We set 7* = 1073s and U* = 5.1072ms~! -see [1]-. Hence, | & 7*U* =
5.107°% m.
We set Us = —1 = Uspokes (0) (the no slip boundary condition value for the
bulk flow) and U(z) = %(US + Ustores(2)) = (2 =1).

), 7 )
It remains to set the following two parameters: the product X.p* and
i’
For the present computation we set: X.p* = 107% and p{? = 1/5.

We obtain ¢ = —2.5. In others respects, for obvious computational
reasons, we set [ = 107*U™* and we obtain §; = 25 and §5 = 250.

Let us notice that the state equation o; = v(p§ — pi), 1 = 1,2, implies
that p{? < p3? = 1. (Recall: the indice » is relative to the solid-liquid
interface, o9 = os1).

Let us point out that all the assumptions on data presented in the
mathematical analysis section are satisfied.

The functions p, p', ogr and o', obtained are presented in Fig. 4.1
and Table 2.

ost(Pc) | o (Pe) | 0a (°) p(Pc) | 1Al
66.8 1.01 10% | 103.9 || 2.51 10~* | 175.6

Table 2: Computed values for Test c.

Let us precise that the surface tension ogy, and its gradient U%Lare
deduced from the values of p, p' and using the state equation o; = v(p§ —
pi), i = 1,2. As a matter of fact, since o7% = v(p§ — pi?) and o5} =
¥(ph — p*), one can deduce the values of the constants v and p§. Then,
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Figure 6: Test c.: p, p’, osr, and % plotted

using the state equation:

asr.(y) = v(po — p(y))

we obtain the value of the surface tension coefficient ogr. Finally, we have:

eq )
8, = (:05_1(—05(; z‘jL( C))

i xel

where Pc denotes the triple point liquid-solid-gas.

Qualitatively, this numerical result presents a variation of the surface
tension og7, and a computed dynamical wetting angle #; mechanically ad-
missible. In other respect, let us notice that in the vicinity of the triple
point Pg, the gradient oy, is very large (a maximum amplitude of 10).

The choice of the two parameters values of Ap* and pi? is the main
uncertainty of the model. The present choice leads to an admissible surface
tension ogr. Only few set of parameters we have tested, lead to a such
admissible solution.
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4.2 2D bulk flow: local Marangoni effect

Let 04, 051, UISlgmd 'L be given, we compute the solution of a simplified
HFSM: a Stokes model with the free surface given and fixed. Then, we can
observe numerically the influence of the Marangoni source term o, on the
bulk fluid motion.

The 2D bulk flow model Let us write the steady-state HFSM consid-
ered.

Gravitational forces g and external pressure pe,: are neglected. The
geometry 2 considered is presented in Fig. 4.2.
Also, we neglect the curvature effect, we set kK = 0.

r
Y, LG
0.001
f 0.0008
m 0.0007
r
SL 0 out
M
r
SL
0 r ooor X
out

Figure 7: Geometry of the 2D case test.

The test model is the following. Given 6y, (qu,‘and T'Lg, find (u,p)
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satisfying:

01851 — 32X = 0 in Q i=1,2
div(u) =0 mn
En = ET =0 on FLG )
u = Usg on FJSVIL (42)
un=0 and X :—ﬂ(U—US)-l-%O"SL on T

Y, =X =0 on Tout

with Eij = —p(sl’j + /J(al"u]' + 5jui), 1<4,j<2 gy = FSML U F?L and

0 =Tsr UTl'Lg Ul sut.

The slip coefficient § > 0 is given. Typically,  ~ 5 =
the layer thickness).

&
==
oo
11
o w
I
[
o
ot
—
=
i
w

The only source terms of the model are Ug and (r’SL And, for U.ISL =0,
the unique solution of (42) is (u,p) = (Us,0) (the pressure being defined
up to a constant).

Therefore, in the numerical experiments presented below, we observe and

measure directly the influence of o' ,on the fluid motion in the bulk. In
others words, we observe the influence of the local Marangoni term on the
macroscopic bulk flow.

Weak formulation For u € (H'(Q))? satisfying (42) and for all v €
(H(Q))? we have:

2 2
ZZ /Eij Ojv; de = / X, v.n + X, v.7] ds
Q a6

i=1j=1

We set:
Wo={u, u€ (H'(Q))?, un=00onT%,, u=0o0nT¥}

Wi ={u, u€ (H'(Q))?, un=00nT7,, u="Us on ¥}
The weak formulation of the test model is

Find ((u1,us),p) € Wy x L?()/IR such that:

2
Z / El] 8j’01 de = 0 V(v1,0) c WO
j=1 7%

(Pst)§ &
Z / Yo Ojva dz + B ug vo dx = / gstip v2 ds  V(0,v2) € W
j=1 2 rsy r

m
SL

/div(u)q dr = 0 VYqe L*(Q)/R
Q
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with Yslip = (/BUS + %OJS“I)

We solve (Psr) using the Hood-Taylor finite element method (2nd order
method). The pressure equation is solved using the augmented Lagrangian
method and the Uzawa’s algorithm. The program has been developed us-
ing Rheolef, a C4+ finite element environment!, and has been fully tested
with explicit solutions.

Numerical results We set Us = (0,—107%)7 and L = 1073 (in LS.
units). We set 7* = 1072 hence | & 7*U* = 107° and ¢ & § ® 1072,
We have the Capillary number Ca = % ~ 107% and the Reynolds num-

ber Re = ﬁU;L* ~ 50.

It remains to set the two following parameters: the slip coefficient g
and the given surface tension gradient o .
For both tests, we set 8 = 10, and

Opar X €xp(2E- — 1) x ((222=)  if oy <y < yep

! mar — —
o (y) = Yep—Ym Yep—Ym )
sy { 0 if not

where y,, = 0.00075 is the middle point of the boundary part I'}; and
Yep = 0.0008 is the contact point y-coordinate.

Therefore, the present given function o%; (y) behaves qualitatively like the
computed one in Test c. (Fig. 4.1).

We present two examples. The first example with o7,,, = 103 (Test d.)
and the second one with o7,,, = 5.10% (Test e.).

The computations have been performed on a coarse mesh and on a fine
one. The fine mesh comprises 6082 elements and 3184 vertices. No partic-
ular mesh sensitivity has been noticed.

In the first example (Test d.), we observe a simple flow. The given
source term gg;p 1s strictly negative in I'g; . The computed y-coordinate
velocity us is strictly negative and slowed down. See figures 4.2, 4.2, 4.2,
4.2,

In the second example (Test e.), we observe a more complex flow. The
given source term gy, changes of sign in the vicinity of 7.8 107*. The

'P. Saramito and N. Roquet, Rheolef C++ finite element environment, http://www-
Imc.imag.fr/lmc-edp/Pierre.Saramito/rheolef
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Figure 8: Test d. The local source term gy, on gy

computed y-coordinate velocity us changes of sign too, in the same area.
Thus, we observe a local recirculation: the Marangoni term induces a re-
circulation in the vicinity of the contact line. See figures 4.2, 4.2, 4.2.

Let us recall that the model is too simplified in order to interpret these
numerical results in a mechanical point of view. To this end, one must take
into account the free surface dynamic, the capillary forces and eventually
consider the local slip boundary conditions in the upper part of the vicinity
of the triple line i.e. on 'y . Nevertheless, these numerical results show
clearly the effects of the local slip boundary condition on the fluid motion

in the bulk.

These numerical results are a first step for the simulation of the rolling
motion and the dynamic of the contact angle using the Shikhmurzaev’s
model. The development of the full model (4)-(17) is under progress. The
numerical schemes, algorithms and numerical results obtained will be pub-
lished in an other article.
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Figure 13: Test e. The velocity u near the contact point
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