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Analysis of a longitudinal ordinal response 
clinical trial using dynamic models. 

P .. l. Lindsey! 

.l. Kaufmann! 

May 8,2002 

Abstract: In many areas of pharmaceutical research, thpxe has been increasing use of categorical 

data and more specifically ordinal responses. In many cases, complex models are required to 

account for different types of dependencies present among the responses. 

The clinical trial considered hpIe involved patients who were required to remain in a particular 

state in ordpI to enable the doctors to pxamine their heart. The aim of this trial was to study 

the relationship between the dose of the drug administered and the time spent by the patient in 

the state pPImitting pxamination. The patient's state was measured every second by a continuous 

DopplPI signal which was categorised by the doctors into one of four ordpxed categories. Hence, 

the response consisted of repeated ordinal series of different lengths because the drug effect did 

not last the same length of time for all patients. 

A general method for genPIating new ordinal distributions is presented, which is fif.:'xible enough 

to handle unbalanced ordinal repeated mf.:'asurements. It consists in obtaining a cumulative mix­

ture distribution from a Laplace transform and introducing into it the integrated intensity of a 

binary logistic, continuation-ratio, or proportional odds model. Then, a multivariate distribution 

is constructed by a procedure similar to the updating process of the Kalman filter. Several types 

of history dependencies are proposed. 

Keywords: Categorical data, compartment models, gamma distribution, history dependencies, Laplace 

transform, likelihood, logistic distribution, mixture distribution, non-linear regression models, re­

peated measurements. 
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1 Introduction 

To a cPItain extent, collecting observations always Ip,ads to discretisation. In most cases, a mea­

surement scale must be detpImined to be able to collect data. This may be arbitrarily chosen 

or detpImined by the precision of the instrument used to ppxform the mpa.8urement. The lack of 

precision during the recording process is usually disregarded if the discretisation leads to many 

ordpIed categories. 

Often, eithpI a response vMiable is assumed to be continuous or the numbpI of categories is 

reduced to two, leading to a binary response. But until recently, it has been rare to analyse series of 

ordinal responses, with more than two categories (Lang and Agn'Bti, 1994; G lonek and McCullagh, 

1995). 

During the 1970's, the introduction of generalised linear models by NeIder and Wedderburn 

(1972) led to a wider range of models for continuous as well as discrete responses. But these models 

wpxe not meant to take into account the dependence among related obsPIvations. Thus, many 

pxtensions have since been proposed to introduce different types of dependencies corresponding to 

vMious relationships among obsPIvations. 

Recent resPMch has lpa.d to various othpI methods of introducing dependencies among related 

obsPIvations, for pxample, dynamic models for time series (Harvey, 1989), mixture distributions in 

survival analysis (Hougaard, 1986; Vue and Chan, 1997) to introduce a frailty dependence, copulas 

(.Joe, 1997; Nelsen, 1999), and so on. 

McCullagh and NeIder (1983) showed how independent ordinal responses could be modelled 

using standard genPIalised linPM model software. This was possible by specific re-parameterisations 

of the logistic distribution such as the continuation-ratio and proportional odds models. A few 

binary dependency models have been extended to allow more than two categories. For pxample, 

the binary model of Conaway (1990) has been extend by Crouchley (1995) and Ten Have (1996) 

to allow modelling of ordinal response; the Hasch model has been generalised to ordinal responses 

by Conaway (1989) and Agresti and Lang (1993). 

This particular case of dependencies among ordinal responses will be considpIed hpIe. A genPIal 

family of dynamic models is dPIived by adapting methods for continuous non-normal responses, 

especially survival techniques. This enables unbalanced repeated measurements to be modelled 

with a wide range of possible dependenciffi. 

Sedion 2 describes a large longitudinal ordinal clinical trial. Sedion 3 develops a general 

method to obtain new categorical distributions and wu"ious types of dependencies. Section 4 

illustrates the use of one particular new distribution with several diffpIent types of dependencies 

through the analysis of this longitudinal ordinal clinical trial. Finally, Section 5 discusses this new 

method and its use in practice. 
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2 The clinical trial 

The clinical trial considpIed hpIe involved patients who required a heart pxamination. Doctors 

had to be able to assess the left ventricular volume and ejection fraction for each patient by 

intermittent harmonic colour DopplpI. This is only possible if an enhancement of colour DopplPI 

images in the heart of each patient is induced by a drug administpxed continuously over time 

(intravenous infusion). For confidentiality reasons, the drug under study in this clinical trial and 

any revealing charactpxistics cannot be mentioned. 

2.1 Design 

The trial involved 85 patients randomised into three groups: 17, 30, and 38 patients respectively 

receiving a 2.5, 4, and 8 gram dose OVPI time of the same drug all at the same constant concentration 

of 300 mg per m!. 

The intravenous infusion started at time ZPIO with rate of 1ml PPI minute. Depending on the 

patient '8 response to the drug, this infusion rate could eithpI be decrpa,sed to O.5ml per minute, 

or increased to 2 or 4ml PPI minute at prespecified times. This was necessary for ten patients 

(considered below) in order to reach an appropriate Doppler signal and maintain them at it. 

Because the infusion rate is endogenous, an appropriate method would be to specify a bivariate 

model for this rate and the Doppler signal but this is not considered here. 

Although the Doppler signal could have been recorded as a continuous variable, the dodors 

discretized it into one of four ordpIed categories: no signal, an insufficient signal, an appropriate 

signal, and an pxcess signal. 

The signal was observed frequently and regularly over time resulting in a total of 19690 ob­

servations being collected. Patients have sPIies of different lengths due to the diffpIent rates of 

drug intake and the pjfects wearing off diffpIently among the patients. The sPIies have a maximum 

length of 781, 2089, and 1643 seconds (ie. about 13, 35, and 27 minutes) respectively for the 2.5, 

4, and 8 grams dose groups. 

The responses are also unbalanced with respect to the chosen obsPIvation time points. These 

were chosen very close together in time (a few seconds apart) at the start of the trial, slightly further 

apart (up to thirty seconds) during the period where an appropriate signal level was observed, and 

finally far apart (up to sixty seconds or more) when the drug effect started to wear off. 

2.2 Aim 

The purpose of the trial was to investigate the relationship between the dose of the drug adminis­

tPIed and the amount of time the patients spent within the required signal range. 

It had already been established that the drug under investigation provides at least 2.5 minutes of 

usable signal enhancement for an intravenous intake dose of 2.5 grams. For larger doses of the drug, 

the duration of diagnostically usable signal enhancement was assumed to behave proportionally 
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to the dose administpIed. In other words, the doctors WPIe hoping that the amount of time spent 

by patients in the appropriate range of Doppler signal would be greater than 4 and 8 minutes for 

respedive doses of 4 and 8 grams. 

Hence, this led to at least the following three questions. 

• Is thpIe a diffpIence between the dose groups? 

• Is the difference between the dose groups proportional to the time spent in the appropriate 

range of Doppler signal? 

• Is thpIe an interaction between dose group and time (or are the three dose groups parallel 

OVPI time)? 

Each of these points is investigated and answered during the analysis presented in Section 4. 

2.3 Visualisation 

In contrast to continuous longitudinal responses, an individual profile plot of longitudinal ordinal 

data is not VPIY informative. Indeed, due to the small number of diffpIent possible levels of outcome, 

most profiles overlap as can be seen in Figure la. Hence, a diffpIent type of graph such as a plot 

of the cumulative probabilities OVPI time can be more informative. The data are shown in this 

way in the remaining plots of Figure 1. Such plots are quite different from individual profile plots 

because they do not represent the data at an individual level. Indeed, the outcomes of a particular 

individual cannot be followed over time. On the other hand, they give a general idea of the patients' 

distribution OVPI the possible outcomes. 

Figure 1 b represents the change over time of the probability of being in a particular category. 

Most patients have no Doppler signal during the first 50 seconds of the trial. Then, patients have a 

rapid increase in signal level. During the npxt 50 seconds patients have an insufficient signal level. 

After 100 seconds, the majority of the patients remain at an appropriate signal level for almost 13 

minutes. From then on, a patient's signal level slowly disappears. 

The cumulative probabilities over time are also plotted separately for the three dose groups. 

Patients who had a larger dose of the drug administered (Figures Id and Ie) have longer observed 

series and also spend a longer time at the appropriate signal level compared to the rpiPIence dose 

group of 2.5g (Figure lc). 

Finally, it can also be seen that more vdIiability appears in the two smaller dose groups (2.5g 

and 4g) once the drug effect starts wearing off (roughly between 500 and 1200 seconds after study 

initiation). This can most cPItainly be attributed to the constant unit drug infusion rate imposed 

in the 2.5 grams dose group and the reduced number of patients who had their drug infusion rate 

changed over time in the 4 grams dose group compared to the 8 grams dose group. Indeed, it is 

sensible to think that tuning the infusion rate would be more often necessary when greatpI doses 

of a drug are administered because patients are pxpected to react faster and for longPI periods of 
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Figure 1: a) Observed profiles for all patients. Cumulative probability plots for b) all patients, c) 

the 2.5g dose group, d) the 4g dose group, and e) the 8g dose group. The area below the solid line 

indicates no signal, that between the solid and the dashed line, an insufficient signal, between the 

dashed and dotted line, an appropriate signal, and above the dotted line, an excess signal. 
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time. Out of the 85 patients, only ten (two and eight respectively in the 4g and 8g dose groups) 

had a non-unit or non-constant drug infusion rate OV£:'I time as shown in Figure 2. 

3 Model concepts 

3.1 A gamma mixture distribution 

IVlixture distributions have been used in many areas (such as survival analysis, times to event, 

repeated measurements) for continuous responses or count data. This method has proved to be 

a fif.:'xible way to introduce frailty, especially in the case of non-Gaussian distributions. However, 

with the f:'xception of the fPiPIences cited above, little has been done in the case of ordinal data. 

A mixture distribution, fm(Y), can be obtained by integration of the product of a density and 

a conditional density. 

fm (y) = f' f(yl)..)f()")d)" (1 ) 

The density f()..) is called the mixing distribution and the density f(yl)..) is conditional on the 

random parametpI of this mixing distribution. This can be interpreted as the parameter>" of 

f(yl)..) varying randomly in a population according to f()..). 

In the case of discrete data, the densities do not always have a closed form. This can be 

OVPIcome by considering instead the cumulative distribution function. 

Under reguhU"ity conditions, Equation (1) can be rewritten in tpIms of the conditional cumula­

tive distribution, F(yl)..), and cumulative mixing distribution, F()"), which will yield the mixture 

cumulative distribution function, Fm(Y). 

Fm(Y) = [' F(yl)..)dF()..) (2) 

A tractable form arises if a further step is made by using the relationship between a cumulative 

distribution function and its survival function, 

F(yl)..) 1 S(yl)..) 

1 _ e-H(yIA) 

where S(yl)..) is the conditional survival function and H(yl)..) is the conditional integrated hazard 

function. Suppose that the parameter acts multiplicatively on the integrated hazard 

H(yl)..) = )..H(y) (3) 

as in Hougaard (1984), where H (y) is the population integrated hazard. 

Now, Equation (2) can be written in terms of the conditional survival function which produces 

the mixture survival function, 

Sm(Y) f'S(YI)")dF()") 
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Figure 2: Drug infusion rate profiles for the ten patients who eithpI required changes OVPI time or 

received the drug at a diffpIent infusion rate than 1ml PPI minute. 
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10''' e->.I1(Y)dF()") 

q,[H(y)] 

where q,[H(y)] is a Laplace transform (Hougaard, 1984; Joe, 1997, pp. 85-86). 

(4) 

Equation (4) is a useful alternative method to obtain a mixture for categorical as well as for 

continuous responses because the integrated intensity can be obtained by 

H(y) = -log[l - F(y)] 

The gamma Laplace transform or gamma mixture surviv"l function corresponding to the two 

parameter gamma distribution function, J(z) = r-1 (a);3QyQ-le-Y~, is 

(5) 

This corresponds to the survival function of the Pareto distribution (Cox and Oakes, 1984, p. 20) 

for the transformation H(y). This relationship as well as additional details in the case of continuous 

responses are described in Lindsey (2000). 

Finally, Equation (5) can be written in terms of the cumulative distribution function, 

(6) 

where F(y) will be chosen for this paper to be an ordinal parameterisation of the logistic cumula­

tive distribution function, the proportional odds model which contrasts lower to higher categories 

around various cut points. 

The cumulative probabilities corresponding to outcome i are 

e,, +..(9,,") 

Pik = -:---:::--:-;a::;-
. 1 + e,,+..(9,,") 

where "Ik is the intercept coefficient oflevel k, g(.) is some linear or non-linear regression function as 

in Subsection 4.1, and the vectors (} and x respectively correspond to the coefficients and covariates 

for this regression equation. 

The probability of observation i being in the response category k is then 

Pik - Pi,k-l if l<k<K 

7riK 1 - Pi,K-1 

for the proportional odds model, where K indicates t he last response category. 

As already stated, the mixture density does not have a closed form in the case of categorical 

responses. Therefore, the probabilities corresponding to the cut-off point of each category must be 

obtained by taking the appropriate differences among the mixture cumulative probabilities. For 

example, in the proportional odds case, if an individual's response i is observed at level k, then 
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the original cumulative distribution function corresponds to 

k 

F(Yik) = L "it = Pik 
l = l 

The mixture cumulative probabilities can then be written as 

Fm(Yik) = 1 ( f ])a /3 - log 1 - Pik 

Finally, the mixture probability of obsPIvation i being in the response category k is 

1- (/3 
B 

PiJ

a 
log[l 

[1 (/3 
B pJa] [1 (/3 

B 
Pi,k-d) a] log[l log[l 

(/3 B r (/3 
B 

Pik]) a if l<k<K 
log[l Pi,k-d log [1 

(/3 B r 
log[l Pi,K-d 

In Gaussian theory, the mixing distribution has an additive effect and its location is held to 

ZPIO. In the present case, from Equation (3), the mixing distribution has a multiplicative p1fect 

which requires its location to be held to unity (~= 1). 

Thus, Equation (6) can be re-parameterised, by letting a = /3 = t, 

Fm(Y) = 1 
1 )t 

Jlog[l-F(y)] 
(7) 

This yields the original cumulative distribution fundion F(y) as J tends to zero. 

Equation (7) can now be used to model independent observations. The parameter J introduced 

by the gamma mixing distribution will act as an over-dispPIsion parametpI. 

3.2 History dependencies 

Dependence among succeeding observations of an individual can be introduced to obtain a mul­

tivariate distribution. DiffpIent types of history or auto-regression dependencies are available 

(Harvey, 1989, pp. 350-358; Lindsey, 1999, pp. 69-72). A particular strudure can therefore be 

chosen to allow the individual variability to be taken into account in the model in a desired way. 

\Ve shall require indices for the two parametpIs, a and /3, of the gamma mixing distribution of 

Equation (6): 

whpIe i indicates a particular observation of individual j at level k. \Ve can now dynamically­

update the process, with the parametpI aij counting the numbpI of obsPIvations and /3ij summing 

up the amount of information brought to the likelihood by eVPIY new obsPIvation on an individual. 
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Three of these dependencies are presented. The first will be called a cumulative update and is 

obtained by 

13ij 13i-1,j - log[l - F(Yijk)] 

The initial state of aij and 13ij is also required. It is defined as ao = 130 = ~ to ensure that the 

mean of the mixing distribution is held to unity in the initial state. 

1\1ore complex dependencies among successive observations can be achieved by allowing the two 

parametpIs, Q: and /3, to depend on previous obSPIvation with a fading pjfect as distance increases 

between following obSPIvation. 

Hence, a serial update cau be obtained by 

whpIe w can be called the discount parameter because it reduces the influence of previous obser­

vations, Zij represents the elapsed time between obSPIvation i and i-I of individual j, and J is 

the initiation parameter (ao = 130 = ~). 

Similar ly, a Markov update cau be obtained by 

13ij 6 - WZ'i log[l - F(Yi-1,jk)]- log[l - F(Yijk)] 

In this case, the parametpI /3 depends only on its previous value discounted as a function of the 

distance between the two obSPIvations, rather than an accumulation of all the individual's previous 

values. 

Independence is obtained for both of these dependencies by setting w = O. The cumulative 

dependence is obtained for the serial update when w --; 1. 

Now, the cumulative probabilities corresponding to outcome i from individual j are 

e"l,+g(6,x) 

Pijk = 1 + e"l,+g(6,x) 
(8) 

whpIe fk is the intpIcept coefficient of level k, g(.) is some linear or non-linear regression function as 

in Subsection 4.1, and the vectors () and x respectively correspond to the coefficients and covariates 

for this regression equation. 

Hence for a proportional odds model, if response i from individual j is observed at level k then 

the original cumulative distribution function corresponds to 

k 

F(Yijk) = L "ijl = Pijk 
l=l 
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Then the multivariate probability of observation i from individual j being in response category k 

can be obtained by taking the appropriate difiPIences, as for the cumulative mixture. 

'7rMij l 

if l<k<K 

'7rMijK 

Finally, the likelihood is obtained by multiplying together the appropriate multivariate proba­

bilities where P i jk is given by Equation (8) which contains the (non-)linear regression equation. 

4 Analysis 

Because the modelling process is pxploratory, the infpIence critpxion used for comparing the models 

under consideration is their ability to fit the observed data, that is how probable they make the 

data. In other words, models are compared diredly through their minimised minus log likelihood. 

When the numbers of parameters in models differ, they are penalised by adding the number of 

ffitimated parameters, a form of the Akalke information criterion (Ale, see Akalke, 1973; Lindsey 

and .Jones, 1998). Smaller values indicate more preferable models. This criterion allows direct 

comparisons among models, that are not required to be nested. 

4.1 Model building 

To begin, an independent multinomial regression was fitted. This null model just contains the 

three intercept parameters and has an Ale of 19720. This provides us with a reference point for 

comparison with further fitted models. 

From the plots in Figure 1, it is clear that the cumulative probabilities have a somewhat 

parabolic shape over time. To start, a reasonable regression curve might therefore be a second­

degree polynomial in time. This five-parameter proportional odds model, still with independence 

among observations, lowers the Ale to 1659l. 

HowevPI, it is also clear from Figure 1 that the curve is not symmetric. Hence, non-linear 

regression models must now be considered. Among several regression equations fitted, a sum of 

pxponentials 

g(O,x) 81 xe 2+e a ( '-.. ) 
fits bettpI than the second-degree polynomial, whpIe X' refers to whatevpI covariates are in the 

model. Indeed, this six parameter model lowers the Ale to 14811. This regrffision curve is similar 

to a first-ordpI one-compartment model used in pharmacokinetics whpIe 81 would correspond to 
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a volume parameter, O2 to the absorption rate, and 03 to the elimination rate. (All non-linear 

regression curves are presented without the intercepts; the appropriate intercept for each given 

ordinal category must be added.) 

A model where the current infusion rate is linearly added to the regression equation has seven 

parameters and an Ale of 14669. This model is further improved by also linearly adding the dose 

groups, lowering the Ale to 14620 with nine parameters. 

Next, the various dose groups can be allowed to evolve differently over time. This is introduced 

into the model by creating interactions between the dose groups and time. Each dose group requires 

a different curve. This fourteen-parameter model further lowers the Ale to 14448: 

+07 x dose4 x e ---",-- + e--"'-- + 010 X dose8 x e -....,,-;-
( 

1 time time) 1 time 

where 01 to 03 describes the change over time for the reference (2.5g) dose group, 04 is the infusion 

rate parameter, 00 is the 4g dose group, 06 is the 8g dose group, parameters 07 to O. describe the 

change over time for the 4g dose group, and 010 and Oll describe the change over time for the 8g 

dose group. Note that for patients in the 8g dose group, the drug wears off no differently than for 

patients in the 2.5g dose group. 

All these models assumed independence among the response observations. An over-dispersion 

model introduces an additional parameter, but on the other hand, the interaction involving the 

4g dose group can now be simplified. Indeed, it appears that the drug actually wears off at a 

same speed for all patients regardless of the dose group they were randomised to. This results in 

a thirteen-parameter model with a slightly lower Ale of 14441: 

g(O,x) = 01 X (e1-~ +e~) +04 x rate+Oo x dose4+06 x dose8 

O d 4 1-~ 0 d 8 1-~ + 7 X ose x e 9 2 + 8 X ose x e 9 9 (9) 

Now, we introduce different types of dependencies among successive observations. In each case, 

the regression is identical to that of Equation (9), the over-dispersion model. The cumulative 

model yields an Ale of 12858 with thirteen parameters, the serial dependence yields an Ale of 

lO618 with fourteen parameters, and the Markov dependence yields an Ale of 13426 with fourteen 

parameters, as can be seen in Table 1. 

4.2 Results 

The lowest Ale is obtained using the serial update to introduce dependence among the succeed­

ing observations. The dependence parameter is estimated to be 0.95, indicating a very strong 

dependence on the previous responses. Unfortunately, this dependence close to 1 combined with a 

particular feature of this trial creates an undesirable effect. 
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Table 1: Ales for the different steps of the model building. 

Ale Parameters 

Multinomial 19720 3 

Prop. Odds 14448 14 

OVPI-dispPIsion 14441 13 

Serial 10618 14 

Markov 13426 14 

Cumulative 12858 13 

Prop. Odds; proportional odds with cO'Ymiates. 

Looking closely at the individual spxies, we notice that, due to the high frequency of obSPIvation, 

the series consist of long sequences of values at a particular signal level with very few changes. 

Due to this lack of variability, the high dependence is enough to predict the outcome at a given 

time point from the previous obSPIvation without any regression model. Because the model is 

dynamic, a wrong prediction is rapidly OVPIcome by automatically readjusting the model at the 

following prediction. Hence, the undpIlying population mean curve is unnecessary and can simply 

be described by an intercept model. 

Due to the presence of a strong dependence and the lack of variability among the responses 

in this particular trial, we decided that the sPIial update is not suitable to anSWPI the doctors' 

questions. Among the remaining models, the cumulative model has the lowest Ale (12858). 

The parameter estimates from this model, and their standard PIrors, are presented in Table 

2. The infusion rate coefficient (0,) is positive implying that an increased rate leads to higher 

response levels. The sum of pxponentials used to induce non-linear regression curves has the time 

covariate measured in seconds explaining the relatively large values for coefficients 82 , 8a, and 8g 

which involve times up to 2089 seconds. The coefficients for the 4g (05 ) and 8g (06 ) dose groups 

main effects are negative but the intpIaction coefficients are positive. This implies that the two 

higher dose groups will have intercepts slightly lower than the reference (2.5g) dose group. But 

they will also increase faster to an appropriate signal level. Finally, the dependence introduced by 

the cumulative update is estimated to be 0.17. No standard errors are presented in Table 2 for this 

dependence parameter because a transformation was actually estimated, along with corresponding 

standard errors, in ordpI to ensure that this parametpI would remain in the unit interval. 

Because a dynamic dependence has been created among the repeated obsPIvation, two types of 

curves can be obtained: individual or recursive fitted values and population or aVPIage predictions. 

Indeed, a recursive curve is fundamentally diffpIent from an aVPIage curve because it is not repre­

sentative of the entire population but of a particular patient. This is due to the dynamic part of the 

model which readjusts the recursive curve at each time point accordingly to the previous response 

of the patient under considpIation. Hence, recursive curves are necessarily individual specific. 
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Table 2: Estimates for the proportional-odds model with cumulative dependence and non-linear 

regression specified by Equation (9). 
~~~~~--------------------

Main effeds (Intercepts) 

Levell 

Level 2 

Level 3 

Regression 

Dependence 

Estimates Standard Errors 

-12.88 

-10.00 

-5.50 

3.94 

87.55 

1626.00 

1.25 

-0.90 

-1.56 

0.51 

0.91 

443.87 

0.17 

0.161 

0.149 

0.152 

0.059 

1.363 

31.331 

0.054 

0.070 

0.132 

0.062 

0.049 

51.003 

Both types of curves can be represented by cumulative probabilities or by the highest probability 

categories. A recursive mean curve can also be computed by taking the mpa.n of the numbpxed 

ordinal categories, but care must be taken with such curves. Indeed, they assume that the ordinal 

response is following an underlying continuous variable. Hence, the range of this undpIlying scale 

corresponding to each of the response categories must be known in ordpI to obtain a recursive mean 

curve which is not distorted. Unfortunately, this is in most cases unknown and hard to determine. 

Recursive fitted response levels are presented in Figure 3 for three individuals in each dose 

group who remained at an infusion rate of 1ml PPI minute during the entire trial. The computed 

recursive means (of the ordinal responses) yield smooth curves typical of a cumulative dependence. 

The dynamic process can clpmly be obsPIved from these curves. The recursive highest probabilities 

can be very uSPlul because they represent a specific response category. These curves follow pa.ch 

patient's observations reasonably well. 

The population predicted cumulative frequencies, for combinations of dose groups (2.5g, 4g, 

and 8g) and infusion ratffi (0.5ml/min, 1ml/min, 2ml/min, and 4ml/min) which occurred, are 

presented in Figure 4. The probabilitiffi of being in the highest category (level 3: excess Doppler 

signal, above the dotted line) are significantly increased compared to Figures 1c to Ie. Although, 

such deviations could be thought as implying a poor fit, this is not necessarily the case. Indeed, the 
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Recursive fitted levels of Doppler signal 
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Figure 3: Recursive fitted n'Bponse levels for the three dose groups (2.5g, 4g, and 8g). Solid 

line: mean fitted response levels. Dashed line: highest probability fitted response levels. Circles: 

obSPIvations. 
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Figure 4: Mean predkted cumulative frequencies for the three drug dose (2.5g, 4g, and 8g), and 

by the four infusion rates (O.5ml/min, 1ml/min, 2ml/min, and 4ml/min). 
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Table 3: Estimated time spent at an appropriate Doppler signal level. 

Infusion rates 

Doses O.5ml/min 1ml/min 2ml/min 4ml/min 

2.5g 11 min, 46 sec 

4.0g 04 min, 09 sec* 19 min, 5"7 sec** 5 min, 17 sec 

B.Og 18 min, 4"7 sec* 22 min, 49 sec 17 min, 31 sec 8 min, 24 sec 

"' : in addition, approximately 7 minutes and 30 seconds were spent at an excess signal level. 

"' ''' : in addition, approximately 3 minutes were spent at an excess signal level. 

regression curve constraints are imposed on the individual curves (a conditional model is fitted), 

not on the population curve (as would be the case with a marginal model). Hence, the individual 

fitted curves are much more important in assessing the fit of conditional models and these wpxe 

found, in the present case, to be following each patient '8 obSPIvations relatively closely. 

The estimated time a patient would spend at an appropriate Doppler signal level, can be 

obtained from these mean predictions. Table 3 summarises the time spent at the required level de­

pending on the dose of drug administered and whether the patient requires a particular adjustment 

of its infusion rate during the trial. 

Finally, it is clear from this analysis that there is a significant difference among the three dose 

groups. Additionally, the level of Doppler signal observed over time behaves differently for each 

dose group (ie. the interaction between dose group and time as also significant). From Table 3, it 

also can be seen that increasing the dose from 2.5g to 4g increases by a factor a little greater than 1.6 

the amount of time spent at an appropriate Doppler signal level. Unfortunately, further increasing 

the dose administered to 8g no longPI corresponds to a proportional incrpa.se of the estimated time 

spent at an appropriate DopplPI signal level. One should also notice that sevPIal patients receiving 

drug doses of 4g and 8g pxperienced considpIable amounts of time at an pxcess DopplPI signal 

level and that more changes in the infusion rates are required as the dose administpIed increases. 

Hence, some additional studies on high drug doses at lowPI infusion rates might be of interest. 

5 Discussion 

The method described in Section 3 is very flexible in many respects. First, diffpIent mixture 

distributions can be obtained with specific properties inhPIited from the Laplace transform used. 

For pxample, the gamma Laplace transform chosen in this papPI does not have the reflection 

symmetry property. Hence, although changing the ordering diredion dOffi not change the propor­

tional odds model, once oVPI-dispPIsion or any type of dependence is introduced, this symmetry 

property no longer holds. For the data at hand, the ordering diredion was fairly straightforward 

because the no Doppler signal category clearly corresponds to the lowffit possible level of signal. 
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However, a diffpIent Laplace transform might be desirable in the case of some othpI response 

vdIiable. 

Secondly, many different types of updates can be introduced in order to obtain the desired 

dependence structure. The sPIial and Ivlarkov updates WPIe not appropriate hpIe to model the 

relationship among successive responses due to the lack of vdIiability among these. But in the case 

of responses frequently vMying from one response level to anothpI, these types of dependencies 

prove to be VPIY usplul. 

Finally, these two features provide a general family of models to handle any type of non-normally 

distributed repp,ated measurements. Indeed, such models were alrp,ady available for continuous 

responses, count data, and times to event. Now, we have pxtended them to handle ordinal outcomes. 

But most of all, this has provided a wide set of models in the area of repp,ated ordinal mPMurements 

where few were until now available (Crouchley, 1995; Ten Have, 1996; Conaway, 1989; Agresti and 

Lang, 1993). 
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