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Abstract

This paper presents an analysis of a low-dimensional rep-
resentation of speech for modelling speech dynamics, extracted
using bottleneck neural networks. The input to the neural net-
work is a set of spectral feature vectors. We explore the effect
of various designs and training of the network, such as varying
the size of context in the input layer, size of the bottleneck and
other hidden layers, and using input reconstruction or phone
posteriors as targets. Experiments are performed on TIMIT.
The bottleneck features are employed in a conventional HMM-
based phoneme recognition system, with recognition accuracy
of 70.6% on the core test achieved using only 9-dimensional
features. We also analyse how the bottleneck features fit the as-
sumptions of dynamic models of speech. Specifically, we em-
ploy the continuous-state hidden Markov model (CS-HMM),
which considers speech as a sequence of dwell and transition
regions. We demonstrate that the bottleneck features preserve
well the trajectory continuity over time and can provide a suit-
able representation for CS-HMM.

Index Terms: modelling speech dynamics, continuous-state
hidden Markov model, neural networks, bottleneck features,
low-dimensional features, formants, TIMIT

1. Introduction

A conventional hidden Markov model (HMM) models the
speech signal as a sequence of piece-wise constant segments.
The information about dynamics of speech is typically incorpo-
rated into the feature representation by concatenating features
describing the current signal frame (‘static’) with their time
derivatives (‘delta’). Over the years, there has been consider-
able interest in alternative models which aim to model speech
dynamics more accurately (see [1] for a review). In these
models, which we refer to as segmental, the states are asso-
ciated with sequences of acoustic vectors, or segments, rather
than with individual acoustic feature vectors as in conventional
HMMs. A recent addition to these models is the continuous-
state HMM [8, 9], which can be applied to general segmen-
tal models of speech such as the Holmes-Mattingly-Shearme
dwell-transition model [10]. We use this model in this paper.
Mel-frequency cepstral coefficients (MFCCs) are currently
the mainstream acoustic feature representation.  Although
MFCCs have been shown to perform well for speech recogni-
tion, they are less suitable as feature representation for segmen-
tal models of speech dynamics. This is due to the fact that in
representations of speech derived through a linear transforma-
tion of short-term spectra the articulator dynamics of speech are
manifested indirectly, often as movement between, rather than
within, frequency bands. Representation of speech in terms of

formant parameters (frequencies and amplitudes) or articulatory
features directly describes the process of speech production and
preserves speech dynamics. However, formant features are no-
toriously difficult to estimate reliably. Moreover, they are not
well defined for some speech sounds. Therefore, there is a need
for compact representations of speech that can be reliably esti-
mated for all speech sounds.

Over the last few years, there has been an intensive research
interest on employing (deep) neural networks (NNs) for speech
recognition. A variety of ways of using the NNs have been
investigated. One of the main approaches is to use NNs as a
non-linear feature extractor. Features derived from the output
layer, e.g. [11], or various intermediate hidden layers of the
NNs, e.g. [12], can be used. Comparisons between different
deep NN hidden and output layer features as well as their con-
catenations were studied in [15]. Bottleneck features (BN) are
a special form of NN features which are extracted from NNs
with a compression layer. The bottleneck structure provides a
way to reduce dimensionality. In recent research, most BN-NNs
have tens to hundreds of neurons at the bottle-neck layer, such
as [20, 21].

In this paper, we analyse the suitability of low-dimensional
features extracted from the bottleneck of neural networks, for
modelling speech dynamics. We use neural networks having
five layers. Logarithm filter-bank energies with context are used
as input to the network. The output of the middle bottleneck
layer is used as feature representation. We first assess various
ways of designing and training the network. This includes vary-
ing the size of bottleneck or intermediate hidden layers, the use
of the input spectral features (reconstruction) or phone poste-
riors as targets for training the network. We then assess the
suitability of the obtained bottleneck features in a CS-HMM
system. Experimental evaluations are performed on the TIMIT
speech corpus [13]. We demonstrate that the low-dimensional
bottleneck features thus obtained give on average 33.7% reduc-
tion in phone errors compared with formant-based features of
the same dimensionality in a conventional HMM-based ASR
system. We observe that the bottleneck features preserve better
the trajectory continuity and fit better the CS-HMM modelling
than formants. The bottleneck features provide a compact rep-
resentation in terms of the number of model parameters and they
seem to be in overall well suited to be employed for segmental
models of speech dynamics.

2. Modelling speech dynamics

Considerable research effort has been devoted to developing
models of speech dynamics which more faithfully reflect the
properties of speech structure than conventional HMMs. Such



dynamic models of speech aim in various ways to reduce the
assumptions that speech is a piece-wise stationary process and
that the observations are temporally independent, as well as im-
prove duration modelling. A comprehensive survey of many
different types of statistical models of speech dynamics is given
in [1]. This includes segmental HMMs [3], trajectory mod-
els [2, 4, 5], intermediate state models [6], Gaussian process dy-
namical models [7] and more recently continuous-state HMMs
(CS-HMMs) [8, 9]. In this paper, we employ the continuous-
state HMM (CS-HMM), briefly outlined next.

We assume speech to fit the Holmes-Mattingly-Shearme
model, in which dwells represent phoneme targets and tran-
sitions the smooth migration from one dwell to the next. d-
dimensional input features are assumed to be noisily distributed
around underlying dwell ‘realisations’ for a phoneme instance,
or around transitions. Dwell realisations are also assumed to be
noisily distributed around reference targets for each phoneme.

A sequential branching algorithm is used to recover a
sequence of alternating dwells and transitions, the times of
changes between them, and the sequence of phonemes which
could have generated them. A set of hypotheses is maintained
for possible trajectories. Each maintains a ‘state’ consisting of
Baum-Welch alpha values oy () in the form of a scaled Gaus-
sian distribution representing its belief of the current underlying
target values which generated the observed data, together with
the ‘slope’ of the current segment. These are updated follow-
ing each observation. Discrete components of the state store
the current phoneme identity, time since previous phoneme, and
phoneme history (for a language model).

Following each observation all hypotheses are split, to
model the alternatives of continuing the current dwell or tran-
sition, or changing from dwell to transition or vice versa. For
every new dwell, a hypothesis is created for every phoneme in
the inventory, while for a new transition a d-dimensional vector
of slope values is appended to @, and marginalised out at the
end of the transition. Low probability hypotheses are ‘pruned’
to maintain computational efficiency. For full details of the al-
gorithm and update calculations we refer the reader to [9].

In this work we use a CS-HMM to recover the dwell-
transition trajectory that best fits the features, ignoring phoneme
targets. To do this we supply the model with an inventory with
a flat prior, consisting of a single phoneme target with very high
variance. We return the top hypothesis with the same number of
dwells as there are TIMIT labelled phonemes in the utterance.
Note that a distinguishing feature of the dwell-transition CS-
HMM used in this work is that continuity is preserved across
the segment boundaries.

3. Representing speech using bottleneck
neural network features

One of the problems with using models of speech dynamics, as
mentioned in Section 2, is the requirement of adequate feature
representations of the acoustic signal. The extracted features
are expected to have a smooth trajectory over time. This is not
valid for conventional mel-frequency cepstral coefficients. As
such a different representation of speech is needed. The most
natural is to use a formant representation of speech. However,
formants are difficult to estimate reliably and they are not well
defined for some speech sounds. Over the last few years, there
has been a huge popularity in (deep) neural networks (NN). As
a NN performs a non-linear mapping, they seem a natural way
to employ for our problem of representing speech.
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Figure 1: Architecture of the multi-layer bottleneck neural net-
work employed for speech representation.

The architecture of the bottleneck neural network that we
used is depicted in Figure 1. The input to network is a vec-
tor containing the logarithm filter-bank energies (logFBEs) of
the current signal frame and several preceeding and following
frames. We explored two approaches to training the network,
one aimed at the reconstruction of the input spectrum and the
other at discrimination between phonemes. In the case of re-
construction, the target is a vector of l1ogFBEs of the current
signal frame. In the case of phoneme discrimination, the tar-
gets were the posterior probabilities of the 49 phones. These
were obtained based on the labels and time-stamp information
supplied with TIMIT. A mapping of 61 to 49 phones was per-
formed as described in [16]. The Softmax function was used at
the last layer.

4. Experimental setup
4.1. Speech corpus

Experiments were performed on the TIMIT speech corpus [13].
We used the training set, containing 462 speakers, without the
SA recordings to train the models. The reported results are
based on the core test set, containing speech from 24 speakers.

4.2. Feature extraction based on bottleneck neural network

The speech, sampled at 16 kHz, was analysed using a 25-
ms Hamming window with a 10-ms frame rate. We used
Mel-frequency filter-bank analysis, implemented based on the
Fourier transform. The number of filter-bank channels was set
to 26, covering the range from O to 8 kHz. The logarithm filter-
bank energies (logFBEs) were normalised to have zero mean
and unit variance based on the entire training set.

We used 90% of the training set (random 90% of utterances
for each gender in each dialect) as the neural network training
set, and the remaining 10% as validation set. The networks
were trained with stochastic gradient decent using the Theano
toolkit [18, 19]. The maximum epoch number was set to 3000.
The training stopped when the error on the validation set started
to rise or when the epoch reached the maximum.

4.3. HMM-based phoneme recognition system

Speech recognition experiments were performed using a stan-
dard GMM-HMM system built using HTK [14]. HMMs were
built for the 49 phone set, each model consisting of 3 states.
The number of GMM components per state was set to increase
from 1 in powers of 2 up to 512. The number of components
for silence was twice of that for phonemes. A bigram language



model was used. For evaluating recognition performance, the
49 phone set was reduced to 40 according to [17] . The re-
ported results are on the core test set using the number of GMM
components corresponding to the best accuracy achieved on the
validation test set.

5. Experimental results
5.1. Analysis of the bottleneck representation of speech

This section presents results demonstrating the effect of differ-
ent designs of the neural network. The bottleneck features are
employed in a conventional HMM-based ASR system and the
phone recognition accuracy is reported.

Our initial experiments explored the use of the network
for spectrum reconstruction or phoneme-probability estimation.
The best result achieved using the reconstruction network was
56.8% phone accuracy, obtained with 16 bottleneck features
and 128 units in the other hidden layers, while the phoneme-
posterior network with the same number of neurons in the hid-
den layers achieved phone accuracy of 69.7%. The inclusion
of context in the input layer had negligible effect on the per-
formance in the case of the spectrum reconstruction network.
Based on this, all results reported in the remainder of the paper
are using the network with the phoneme-probability as targets.

Next, we explored the effect of varying the number of
neurons in hidden layers of the network with the phoneme-
posteriors as targets. We used 3 hidden layers, denoted as H-
B-H, where ‘B’ stands for the bottleneck layer. The number of
neurons in both ‘H’ hidden layers was kept the same and set to
32, 128, 512, 1024, and 2048. The number of neurons in the
bottleneck layer was set to 4, 9, 16, and 32. Our experiments
showed that best performance was obtained using the context of
5 frames around the current frame in the input layer and as such
only those results are reported here, i.e., the input layer is of
size 286. The output layer is of size 49. The results achieved by
monophone HMMs are depicted in Figure 2. It can be seen that
a considerable performance improvement is obtained when the
bottleneck layer increases from 4 to 9 neurons. Increasing the
bottleneck further beyond 9 neurons gives only minor improve-
ments. Increasing the size of the other two hidden ‘H’ layers
from 32 to 512 also gives a great improvement in performance,
but only minor improvements are seen when the size is above
512.
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Figure 2: Phone recognition accuracy using bottleneck features
as a function of the number of neurons in the bottleneck and
other hidden layers when using phoneme-posterior network.

Figure 3 shows the performance with bottleneck features
obtained from the phoneme-posterior network when using
monophone and triphone modelling and adding delta features.
The network configuration 286-512-B-512-49 was used, with
varying the bottleneck layer size. It can be seen that by append-
ing A and AA to bottleneck features gives improvement be-
tween 2% to 4%, depending on the size of bottleneck. Note that
the results obtained using 9 dimensional bottleneck features are
better than using 4 dimensional bottleneck features appended
by A and AA, i.e., 12 dimensional features. This suggests that
the bottleneck features are containing both the spectral and tem-
poral properties of speech. Interestingly, the use of triphone
models gives lower performance than monophone models, es-
pecially for very low-dimensional bottleneck features. This
suggests that the contextual information may have been com-
pressed due to the very low-feature dimensionality.
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Figure 3: Phone recognition accuracy using bottleneck features
extracted from phoneme-posterior network 286-512-B-512-49
when varying the size of the bottleneck layer.

5.2. Analysis of the bottleneck features for modelling
speech dynamics

This section analyses the use of bottleneck features for mod-
elling speech dynamics, with comparisons made to formant-
based representation.

First, we compare the performance of the bottleneck and
formant features when using a conventional HMM-based ASR
system. Results are presented in Table 1. Experiments were
performed with formants estimated using the Wavesurfer [23]
and Praat [22] tool. The former achieved better results and as
such only these are reported here. It can be seen that the use
of 3 bottleneck features considerably outperforms the use of 3
formant frequencies. It seems that the bottleneck features may
be able to encode information about both frequency and am-
plitude. Thus, we also performed experiments with formant-
based features containing the formant frequencies, amplitudes
and bandwidths, resulting in a 27 dimensional feature vector
(with delta and delta-delta) and compared these with the same
dimensionality bottleneck features (with delta and delta-delta).
It can be seen that bottleneck features considerably outper-
formed formant-based features. The use of the bottleneck-based
feature representation results, on average, in a 33.7% reduction
in phone errors compared with formant-based features with the
same dimension. The confusion matrices recognition results
showed that the bottleneck features achieved nearly uniform im-
provement over formant-based features across all phonemes.
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Figure 4: An example of the dwell-transition trajectories recovered by the CS-HMM when using bottleneck features (a) and estimated
formant frequencies (b). Blue line with dots show the observations (feature values) and solid red line the estimated dwell-transition
trajectory. TIMIT phoneme boundaries are indicated by thin vertical lines, recovered dwell starts (magenta) and ends (blue) by vertical

dashed lines.

Table 1: Recognition performance of an HMM-based ASR sys-
tem when using formant and bottleneck feature representation.

Feature representation Dim. Recognition
Corr (%)  Acc (%)
Baseline: MFCC + A + AA 39 76.23 70.95
Formants
3 freq 3 49.30 40.71
3freq+ A+ AA 9 56.32 51.12
3 freq & amp & bw 9 55.96 52.04
3 freq & amp & bw+ A + AA 27 65.06 60.43
Bottleneck features
3 BN features 3 65.02 60.94
3 BN features + A + AA 9 70.87 65.73
9 BN features 9 74.37 70.57
9 BN features + A + AA 27 76.77 73.07

Now, we analyse the performance when using the
continuous-state HMM (CS-HMM) for modelling speech dy-
namics. Figures 4 shows an example of trajectories recov-
ered by the CS-HMM when using 3 bottleneck features and
formant frequencies, respectively. The formants range from 0
to 4000 Hz, while the bottleneck features are in the range [0, 1]

but plotted shifted on the vertical axis for clarity. These plots
suggest that bottleneck features fit the model considerably bet-
ter than the formant features. The formant trajectories seem
smooth in voiced regions but vary widely in unvoiced regions
and this seems to affect their fit to the model.

6. Summary and future work

Segmental models of speech hold promise for speech recogni-
tion due to their ability to parsimoniously model speech dynam-
ics. However they have been hampered by lack of a good rep-
resentation. Formants model voiced sounds well, but are inap-
propriate for unvoiced speech, while articulatory parameters are
difficult to obtain. We presented results of ASR experiments us-
ing low-dimensional bottleneck features extracted from Neural
Networks, and an initial analysis of their temporal dynamics.
Our results showed that when the networks were trained to pre-
dict phoneme posteriors, bottleneck features significantly out-
performed formant features of similar dimensionality. We plan
to extend this work to understand the characteristics of speech
being captured by bottleneck features and how to influence the
features through the training of the Neural Networks. We also
plan to integrate these features into our CS-HMM recognis-
ers [8, 9].
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