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Analysis of a Mixed Finite Element Method

for Elasto-Plastic Plates*

By F. Brezzi, C. Johnson and B. Mercier

Abstract.   We consider a mixed finite element method for finding approximations of the

displacement and moments in a thin elastic-perfectly plastic plate.   Under some weak

assumptions concerning the regularity of the exact solution, we prove an error estimate

for the moments.

1. Introduction.   The purpose of this note is to prove an error estimate for a

finite element method for thin elastic-perfectly plastic plates in the case of Hencky's

law of plasticity.  We shall consider a mixed finite element method, introduced by

Herrmann [5] and Hellan [4], based on a piece wise constant approximation of the

moments and piecewise linear approximation of the displacements.   An analysis of this

method, in the case of elastic plates, can be found in Brezzi and Raviart [1] and John-

son [6].  The results of this note can be extended to the case of quasi-static evolution

following the argument in Johnson [8].   For numerical results and practical experience

of this method, we refer to Backhand [2].

We shall use the following notation: let fi be a bounded Lipschitz region in R2.

For k a natural number and 1 < q < °°, let Wk,q be the Sobolev space with norm

Wv\\k,q = (    Z     f   \D«v\«dx)llq,
\\a\<k    Cl I

with the usual modification if q = °°.   For k = 0, we omit the subscript 0 and write

II • ||   instead of || • ||0   .   Let ZZq be the closure of Cq (Í2) with respect to the norm

II • ||fc 2.   Let H~x = (Hq)' be the dual of ZZ0 with duality pairing (-,->.   Denote by

C(£2) the set of continuous functions on ñ and C0(£2) = {v G C(Ù): v = 0 on 9Í2},

and let M(Í2) = (C0(£l))' = {bounded measures on £2} be the dual of C0(£2) with

duality pairing [-,-].

Let x = (xx, x2) denote the coordinates in R2 and set

dv 32» .  .     .   .

ü>< = áV    "¿/'toft'    ^ = 1'2-

We shall use the convention that repeated indices indicate summation from 1 to 2.

2. The Plasticity Problem.   Consider a clamped isotropic elastic-perfectly plastic

plate occupying the region £2 in R2, subject to a transversal load /€ ¿2(£2).  Suppose

that the set of plastically admissible moments t = {t,-.}, i, j = 1, 2, is given by B =

{t£R4: F(r) < 1}, where F: R4 —► R is continuous, convex and F(0) = 0.
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810 F. BREZZI, C. JOHNSON AND B. MERCIER

Since the plate is isotropic, we may assume that F is invariant under changes of

coordinates, i.e., F(t) depends only on the eigenvalues of the symmetric matrix (t¿).

Define

H= {r= {r¡7}: r,7 GZ.2(Í2), i, j = 1,2, tX2 = t2X],

(a,r) = f  oijTijdx,      ||r|| = (x, t)v\      a,TeH,

(v, w)=  f  vw dx,       ||u|| = (v, v)v\      v,wE Z,2(Í2),

P= {r G ZZ: t(x) G B a.e. in Í2},

Dt = t,7 ,7,      ? = {r G P: Dt G ZT!},

E(t) = {t & H: Dt = tf\,      t>0,

K(t) = E(t) HP,      E = E(l),      K = K(l).

We note the following Green's formula: For v G H2^, and 7 G H with Z)r G L2(íl),

one has

(2.1) (ü,Dr) = (e(u),T),

where

e(u)= {»„}.

The problem of finding the moments a and displacements u in the elasto-plastic

plate can be formulated as follows:

Find (o, u) G P x HlQ such that

(2.2a) (o, t - a) - (u, Dt ~Do)>0,      r G i°

(2.2b) <u, Da) = (u, /),      uGZZ0.

Existence of a solution of this problem can be proved under the following hy-

pothesis:

(H-l ) There exists x G E and 5 > 0 such that (1 + 6)x G P.

Remark. Note that (H-l) <=> tf(l +6)^0. On the other hand, £(1 + S) =£ 0

for some 5 > 0 means that / is not a limit load (see [10] ). Thus (H-l) is a "safe load

hypothesis".

Theorem 1. Z/(H-1) holds, then there exists (a, u) G P x H^ satisfying (2.2).

Moreover, a is uniquely determined.

Remark 2.  One can also show that u G ¿°°(Í2).

Proof of Theorem 1.   The uniqueness of a follows easily.   To prove the existence,

we shall apply the technique used in [7].   For v, p > 0, we consider the following

problem obtained by penalizing the constraint a G P and regularizing with respect to

u: Find iaßV,ußv)eH x H\ such that

(2.3a) (oßV, t) + (J'(aßV), r) - (e(ußV), r) = 0,      r G H,
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(2.3b) Keif), e(ußV)) + (e(v), V) = (v, f),      v G ZZ2,

where

is the Gateaux derivative of

Jfo) ='(r - HT)

Jix(t) = ±i\\t-itt\\2,      tEH,

and w. R4 —► R4 is the orthogonal projection onto B.

Using a result [3, p. 161] on the existence of saddle points, we see that this

problem has a solution.  Taking r = a    - x in (2.3a) and v = u     in (2.3b), and add-

ing, we find easily that

(2.4) MoßVf + vWeiu^W2 + (/>„„), aßV - x) < HHxIl2,

using the fact that x e E.  Since Jß(x) = 0 and by the convexity of/

Jß(°nv) " Jß(x) < (J'tS.o^ °ßv - X),

we thus obtain the a priori estimates

(2.5) llalli2 < C,

(2.6) VHIeOv)" < c-

(2-7) VV> < (^(^J, <V - X) < C,

where C does not depend on p and ¡a

Next, using (H-l) as in [7], we see that there exists a positive constant ß depend-

ing only on 5 and B such that

iWXJII, <(J'ß(oßV),aßV-X)<C.

Thus, by (2.3a) and (2.5), we have l|e(wMi,)||1 < C, so that by Sobolev's embedding

theorem,

(2-8) llaM„ll1,2<C.

Letting first v and then p tend to zero, using (2.5)-(2.8) and (2.1), we finally obtain

(a, u) G P x Hq satisfying (2.2).  This completes the proof of the theorem.    □

The above existence result is slightly too weak to permit a discretization using the

mixed finite element of Herrmann. To this end, we shall need the following hypothesis

concerning the function m G ZZ¿ n Z.°°(fi) given by Theorem 1:

(H-2) „ G C0(ñ).

Remark.   Note that it is not true in general that u G H^ since u t may be discon-

tinuous.   To indicate what can happen, we give the following one dimensional example:

d2
£2 = ]-l,l[,      e-^>      B = {o-GR||a|< 1},      /=constant.

We check that, for 0 </< 3, the solution is elastic
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812 F. BREZZI, C. JOHNSON AND B. MERCIER

u = ¿(l-x)2(l +x)2,       * = ¿(*2-f),

and that, for 3 </< 4, the solution is elastic-plastic

" = ¿(i-*2Xc-x2)ézz2(íí),     o = f-ix2-b),

where c = 5 - 12//and b = 1 - 2//.  Note that at points x (unknown beforehand)

where \o(x)\ = 1, the control of du/dx is lost; in the example, the boundary condition

dui±l)¡dx = 0 is not satisfied for 3 </< 4.  More generally, du/dx may be discontin-

uous at points where the plasticity condition \a(x)\ = 1 is active.    D

3.   Approximation.   For the finite element approximation we shall use two finite

dimensional spaces Vh and Ph depending on the positive parameter h, such that Vh C

C0(ST) and Ph C P.   For r G Ph, Dt will be a finite sum of Dirac measures, so that

Dt GM(Í2) but Dt &H~l.  Thus, in the discrete problem, we shall choose to work

with the duality [ ■ , • ] between C0(Í2) and A/(Í2) instead of the duality < • , • > between

Hx0 and H~x used in the continuous problem.  This will make sense since Vh C C0iÙ)

but will eventually call for assumption (H-2).

Let us now define the spaces Vh and Ph.   For simplicity, we shall assume that Í2

is a convex polygonal domain.   For 0 < h < 1, let Th = [T] be a triangulation of £2

with h = max{diam T: T G Jh}.  We shall assume as usual that Th is regular, i.e.,

there exists a constant 6 > 0, independent of h, such that for T ETh, the minimum

angle of T is greater than 6.  Define

Vh = [v G C0(Í2): v\T is linear in T, T G Tn},

Hh = {t G ZZ: tIj. is constant in T, T GJh}.

In order to define Pn, we note the following Green's formula: if v\T G C°°iT),

T GTh, and t & Hh, then

(3.1) L/r^*=s|-jrv*/*+/,,*««!*+/„*«*>!*( '

where for T *E Th,

Mn(T) = Tijninj,      Mnt(f) = t,.,.«,.^.,

where « = (n,, n2) is the unit outward normal to dT and t = (n2, -«,), is the unit

tangent along aT. For t G Hh, we shall say that Mn(r) is continuous at the interele-

ment boundaries if for T', T" G T^ with T' n 7"" ̂  0, one has

M„'(Tlr0 = M„,(T|r)    on 7" n 7",

where n and «" are the unit outward normals to T' and T", respectively.  We now de-

fine Ph as

Ph =Mhnp,

where

Mh = {t GZZft: Mn(r) is continuous at interelement boundaries}.
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As the degrees of freedom for Mh one can take the values of MnÍT) at the mid-

point of each side of Tn.  Let us note that for v G Cq (Í2) and t EMh, the Green's

formula (3.1) reduces to

(3-2) (e(v),T)= £f   Mnt(T)^-ds,
T JäT dt

since ti7   = 0 in each T and Af„(r) is continuous at interelement boundaries.   Further,

integrating by parts along each side of each T G Th,we find that (3.2) can be written

(3-3) (e(u),T)=    £   R(r,N)u(N),      v G C~(iî), r EMh,

¿veNft

where Wft = {A7} is the set of nodes of Tn and for N G Nh, Ä(r; A7) is a certain linear

combination of the values of t for the triangles meeting at N.   Since C^iSl) is dense in

C0(ñ), (3.3) implies:

Lemma 1.   IfrEMh, then Dt G M(SÎ) a«tZ

[v, Dt] = 52 *0; WV),     y e c0(ñ).
Tv-

Let us now formulate the discrete problem:

Find ioh, uh)EPh x Vh such that

(3.4a) ion,T-on)-[un,DT-Doh]>0,      TEPh,

(3.4b) [u, £>aj = (u, /),      uGF„.

Note that (o^, wh) can be equivalently characterized as a saddle point of the

functional L: Ph x Vh —► R defined by

Lít, v) = '¿Hill2 - [v, Dt] + (u, f).

Existence of a solution of (3.4) then follows (see, e.g. [12, Section 28]) from the

following qualification hypothesis corresponding to (H-l):

(H-3)     There exists 8 > 0 and xh G E„ such that (1 + 8)xh EP, and \\xh\\ < C,

where

Eh = {t G Mn : [u, /)t] = (u, /), vEVn],

and C and ô do not depend on h.

If x is sufficiently regular (e.g. x G [IV1'1 n C(Í2)]4), then (H-l) will imply (H-3).

To see this, we introduce the interpolation operator nh: [W1'1 U C(S2)]4 —► Mh, de-

fined by

Mni^r)\s=^SsMniT)ds,      SESh,

where Sh = {5} denotes the sides of the triangles T EJh and |5| = length of 5.  We

note the following important property of irh :

Lemma 2.   If t G [H/1-1]4 and Dt GZ,2(Í2), rten

(w, Dr) = [y, DithT],      v E Vh.
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Proof.   Integrating by parts over £2, we have, if o G Vn,

Ív,Dt) = - i VjTijjdx.

By (3.1) we also have

-in»Ai* = I j/rV„*-/./Wl*- /ä7."»A)|*|

since u „ = 0 in each TEJn and Mntir) takes the same values on adjacent sides 5.

By the definition of n^r and since dv/dn is constant on each side S, we thus have

(v,Dt) = -Z(   Mn(*nT)fds,      vEVh.

Finally, using (3.1), as we know for all r ^Mh, v E Vh,

so that

(v, Dt)=   Z f   Mnt(irnT)^- ds=Z R(tiht; N)v(N) = [v, Dhht] ,      v E Vh,
T J oT al n

which completes the proof of the lemma.    D

Corollary 1.   If t E [JV1-1]4 n E, then irnTEEh.

Corollary 2.   Ifx E [W1,1 n C(ñ)]4, then (H-l) implies (H-3).

Proof.   Choosing X/, = w^x. we have xft E Eh.   Further, by standard interpolation

theory (cf. [1], [6]), ||x - X/,11.» —y 0 as h —►> 0, which proves the desired result.    D

The error estimate will be expressed in terms of the quantity

(3.5) a(h) = inf {a > 0: 3 r G Eh with ||a - r|| < a and (1 - cx)t E P},

where we assume, to make what follows of any interest, that, for some constant C,

a(h) < C.  The quantity a(h) is a measure of how well the exact solution a E E D P

can be approximated by functions t G Eh "almost" satisfying t EP.   As above, for a

sufficiently regular (e.g. a E [W1'1 n C(ñ)]4), choosing t = n^a in (3.5), we see that

cx(h) —► 0 as h —► 0.   Let us now state the main result of this note.

Theorem 2.  If hypotheses (H-l)-(H-4) hold (for (H-4), see Lemma 4 below),

then there exists a constant C independent ofh, such that for h sufficiently small,

\\a-an\\<C(aih) + h)v\

To prove this estimate, we shall need the following two lemmas.   By C we will

denote a positive constant, independent of h, not necessarily the same at each occurrence.

Lemma 3.   Z/(H-3) holds, then

0)  \\ah\\<C,

(ii)   ||«„||<C
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Proof.   Taking t = Xi, in (3.4a), we obtain

\K\\2<(oh,xh)<\\oh\\\\xh\\<c\\oh\\,

which proves (i).  To prove (ii), we shall first establish the following stability result:

there exists a constant C such that

nm Mull ^ c sup Ii^rl,    vEVh.
(3-6) T<=Mh    HtII^ "

To prove (3.6), let v E Vh and let \p E H\ satisfy A21// = v in £2.   Since £1 is a convex

polygon, we then have ||\rV||3 + £ 2 < C||u|| for some e > 0 (see [9]), so that by Sobolev's

embedding theorem with r = {\¡J ,-•},

(3.7) IItIL < CM,

with C independent of v.  We have, by Lemma 2,

Hüll2 = (v, Dt) = [v, D7ThT],

so that, by (3.7) and the easily established fact that Htt^tIL < Q\t\\„ (note that t is

continuous), one has

[v, DirnT]        [v, DnhT]
Hull < C    „ ,,      < C--J—,

IML \™hT"°°

which proves (3.6).  Next, we note that by (H-3), there exists a constant S > 0 such

that

Xh+7EPh   ix\\7\L< 8,7EMh.

Taking r = Xi¡ + t in (3.4a), we see that since [uh, Dxn - Doh] = 0,

[uh,D7]<(oh,xn +7-ah).

By (i), we thus have

[uh,D7]<C   if rGMft,|ML<S,

which together with (3.6) proves (ii).    D

In the proof of Theorem 2, we shall need to take r = oh in (2.2a).  Since Ph (2

P, this has to be justified.  We have

Lemma 4.   If (H-2) holds and

(H4) tEB=>ítxx,0,0)EB,

then

(3.8) (o,t-o)-[u,Dt-Do]>0,      rEPh.

Remark.   (H-4) is needed only in order to construct a suitable extension of ah

outside Í2.  It is likely that this extension can be made even without assuming (H-4),

but we do not know how to make the construction in this case.   Let us note that (H-4)

is satisfied in particular in the case of Tresca's yield criterion for metal plates, i.e., in
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the case when

TG5<=>max(|X1|, |X2|, |X, -X2|)< 1,

or in the case of Johansson's yield criterion for reinforced concrete plates, i.e.,

rG/3<=*max(|X,|, |X2I) < 1,

where X, and X2 are the eigenvalues of the symmetrix matrix (t,-.) (see [10]).

Proof of Lemma 4.  Let r EPh be given.   Using (H-4), we first construct an ex-

tension r of r to a polygonal domain Í2 D Í2 in such a way that t(x) E B, x E Í2, and

Dt EM(Q.) (for details, see [11]).  Then, we regularize t by convolving with a smooth

function tfir defined by ^(jc) = r~2ip(x/r), where tp G C^iR2), <p is positive and the

mean value of </> is equal to one.   For the regularized function, we can then use (2.2a);

and passing to the limit as r —► 0, we obtain (3.8).  We leave the details to the inter-

ested reader.    D

Proof of Theorem 2.   For a > a(h), there exists rh E Eh such that ||a - rh\\ < a

and (1 - a)Th E Ph.  Taking r = (1 - a)Th in (3.4a), t = ah in (3.8), and adding, we

get

lia - <7„||2 < (a„, (1 - a)Th - a) + [uh, Doh - (1 - cx)DTh] + [u, Do - Dah]

&At +A2+A3,

with obvious notation.  We have by Lemma 3,

(3.10) Ax < \\oh\\ Ha - Th\\ + a\\ah\\ \\t„\\ < Co.

Further, since oh and Th E Eh, we have by Lemma 3,

(3.11) A2 = <x(un, f) < Ca.

Finally, to estimate A3, we note that by (3.4b),

R(oh;N) = (<pN,f),      NEHn,

where ipN E Vh is the basis function which takes the value 1 at node N and vanishes at

the other nodes.   Thus, by Lemma 1,

[". DaH]=Z R(ah;N)u(N) = Z "(%jv, f) = ("„»/).
N N

where uh E Vh interpolates u at the nodes Uh.  Therefore, by well-known interpola-

tion theory,

(3.12) A3 = («„ -«,/)< 11/11 \\u - uh\\ < Ch\\f\\ ||«||12 < On.

Combining (3.9)—(3.12), we then obtain the statement of the theorem.    D

Corollary.   Z/(H-l)-(H-4) hold and oEW1'1 n C(ñ), then \\o - ah\\ —> 0

as h —>■ 0.
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