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ANALYSIS OF A MOGI-TYPE MODEL DESCRIBING

SURFACE DEFORMATIONS INDUCED BY A MAGMA

CHAMBER EMBEDDED IN AN ELASTIC HALF-SPACE

by Andrea Aspri, Elena Beretta & Corrado Mascia

Abstract. — Motivated by a vulcanological problem, we establish a sound mathematical ap-
proach for surface deformation effects generated by a magma chamber embedded into Earth’s

interior and exerting on it a uniform hydrostatic pressure. Modeling assumptions translate the
problem into classical elasto-static system (homogeneous and isotropic) in a half-space with an

embedded cavity. The boundary conditions are traction-free for the air/crust boundary and uni-

formly hydrostatic for the chamber boundary. These are complemented with zero-displacement
condition at infinity (with decay rate). After a short presentation of the model and of its geo-
physical interest, we establish the well-posedness of the problem and provide an appropriate
integral formulation for its solution for cavity with general shape. Based on that, assuming that
the chamber is centered at some fixed point z and has diameter r > 0, small with respect to
the depth d, we derive rigorously the principal term in the asymptotic expansion for the surface

deformation as ε = r/d → 0
+. Such a formula provides a rigorous proof of the Mogi point

source model in the case of spherical cavities generalizing it to the case of cavities of arbitrary

shape.

Résumé (Analyse d’un modèle du type de Mogi décrivant les déformations de surface induites
par une chambre magmatique contenue dans un demi-espace élastique)

Motivés par un problème volcanologique, nous établissons une approche mathématique so-

lide pour les effets de déformation de surface engendrés par une chambre magmatique contenue
à l’intérieur de la Terre et soumise à une pression hydrostatique uniforme. Des hypothèses de

modélisation traduisent le problème en un système élasto-statique (homogène et isotrope) clas-

sique dans un demi-espace avec une cavité incluse. Les conditions au bord sont sans traction au
bord air/croûte, et uniformément hydrostatiques au bord de la chambre. Elles sont complétées
par une condition de déplacement nul à l’infini (avec taux de décroissance). Après une courte
présentation du modèle et de son intérêt géophysique, nous établissons que le problème est
bien posé et proposons une formulation intégrale appropriée pour sa solution dans le cas d’une
cavité de forme générale. En conséquence, supposant que la chambre est centrée en un point z

et est de diamètre r > 0 petit par rapport à la profondeur d, nous en déduisons rigoureusement
le terme principal du développement asymptotique de la déformation de surface sous la forme
ε = r/d → 0

+. Une telle formule permet de donner une preuve rigoureuse du modèle des points
sources de Mogi dans le cas des cavités de forme arbitraire, qui généralise celle dans le cas des
cavités sphériques.
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1. Introduction

Measurements of crustal deformations are crucial in studying and monitoring vol-

canoes activity. In this context, one of the main goals is to investigate the mechanics

of volcanic systems in order to obtain models for which the predicted synthetic data

best fit the observed ones. Indeed, if the model is accurate it gives good images of

the Earth’s interior. In particular, concerning volcanoes monitoring, synthetic data

might be used to localize underground magma chambers and their volume changes.

In this sense, a well-established and widely used model, in the geological literature, is

the one proposed by Mogi in [33] where the magma chamber is modeled by a pressur-

ized spherical cavity of radius r, buried in a homogeneous, isotropic, elastic half-space

(R3
−) at depth d ≪ r. Specifically, Mogi provides an explicit formula of the leading

term of the displacement field on the boundary (R2) of the half-space when the ratio

r/d goes to zero. This model has been further investigated by McTigue in [30] who

extends the analysis by detecting the second order term in the asymptotic formula.

For other geometries, we mention [16] where Davies considers the case of a pressurized

cavity in the shape of prolate and oblate ellipsoids, restricted to radius ratio to depth

sufficiently small, deriving, also in this case, an explicit formula of the leading order

term.

We stress that the analysis carried out in [16, 30, 33] and the derivation of the

formulas therein are informal. For this reason the principal aim of this article is to

contribute with a rigorous mathematical analysis of such modeling with the crucial

difference relative to the shape of the cavity; our analysis does not require this shape to

be a sphere or an ellipsoid but a general subdomain of the half-space. More precisely,

we derive a rigorous asymptotic expansion of the boundary displacement vector field

due to the presence of a cavity C, buried in an isotropic, homogeneous and elastic

half-space (R3
−), of the form

C = Cε := z + εΩ,

where z is the center of the cavity, ε is a suitable scaling parameter (see Section 2)

and Ω, shape of the cavity, is a bounded Lipschitz domain containing the origin.

Furthermore, we follow the assumption in [16, 33] supposing that the boundary of

the cavity C is subjected to a constant pressure p. In details, denoting by uε the

displacement vector field, we have, for y ∈ R2,

(1.1) ukε(y) = ε3|Ω| p∇̂zN
(k)(z,y) : MI+O(ε4),

for k = 1, 2, 3, as ε → 0 (see Theorem 4.1), where ukε stands for the k-th component

of the displacement vector. Here p ε3 represents the total work exerted by the cavity
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on the half-space, ∇̂N (k) denotes the symmetric part of the gradient related to the

k-th column vector of the Neumann function that is the solution to

div(C∇̂N(·,y)) = δyI in R
3
−, ∂N(·,y)/∂ν = 0 on R

2,

with the decay conditions at infinity

N = O(|x|−1), |∇N| = O(|x|−2),

where ∂/∂ν is the conormal derivative operator. In addition, I is the identity matrix

in R3 and M is the fourth-order moment elastic tensor defined by

M := I+
1

|Ω|

∫

∂Ω

C(θqr(ζ)⊗ n(ζ)) dσ(ζ),

for q, r = 1, 2, 3, where I is the symmetric identity tensor, C is the isotropic elasticity

tensor and n is the outward unit normal vector to ∂Ω. Finally, the functions θqr,

with q, r = 1, 2, 3, are the solutions to

div(C∇̂θqr) = 0 inR
3
rΩ,

∂θqr

∂ν
= − 1

3λ+ 2µ
Cn on ∂Ω,

with the decay conditions at infinity

|θqr| = O(|x|−1), |∇θqr| = O(|x|−2), as |x| −→ ∞.

The leading term in (1.1) contains the information on the location of the cavity, z, on

its shape and on the work p ε3, hence it might be used to detect the unknown cavity

if boundary measurements of the displacement field are given.

In order to establish these results we use the approach introduced by Ammari and

Kang, based on layer potentials techniques for bounded domains, see for example

[4, 5, 6], and following the path outlined in [8]. We highlight that proving the exis-

tence and uniqueness results for unbounded domains with unbounded boundary is,

in general, much more difficult with respect to the case of bounded or exterior do-

mains. The main obstacle is the control of both solution decay and integrability on the

boundary. Indeed, the usual approach is based on the employment of some weighted

functional spaces, see for example [7]. Here, taking advantage of the explicit formula

of the Neumann function N and rewriting the problem into an integral formulation

via layer potential techniques, we are able to prove the existence and uniqueness of

the displacement field generated by an arbitrary finite cavity C in a standard Sobolev

setting. These results follow showing the invertibility of the integral operators, some

of them with singular kernel, that come from the layer potential technique. After that,

we derive the asymptotic expansion (1.1), as ε goes to zero, for a cavity of a generic

shape.

The approach based on the determination of asymptotic expansions in the case of

small inclusions or cavities in bounded domains, which goes back to Friedman and

Vogelius [22], has been extensively and successfully used for the reconstruction, from

boundary measurements, of location and geometrical features of unknown conductiv-

ity inhomogeneities in the framework of electrical impedance tomography (see, for
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example, [11] and [5] for an extended bibliography). In the last decade some of these

results have been extended to elasticity in the case of bounded domains, see [4]. Specif-

ically, starting from boundary measurements given by the couple potentials/currents

or deformations/tractions, in the case, respectively, of electrical impedance tomogra-

phy and linear elasticity, information about the conductivity profile and the elastic

parameters of the medium have been inferred. It is well known that without any a pri-

ori assumptions on the features of the problem, the reconstruction procedures give

poor quality results. This is due to the severe ill-posedness of the inverse boundary

value problem modeling both the electrical impedance tomography [2] and the elastic-

ity problems [3, 34]. However, in certain situations one has some a priori information

about the structure of the medium to be reconstructed. These additional details allow

to restore the well-posedness of the problem and, in particular, to gain uniqueness and

Lipschitz continuous dependence of inclusions or cavities from the boundary measure-

ments. One way to proceed, for instance, is to consider the medium with a smooth

background conductivity or elastic parameters except for a finite number of small

inhomogeneities [4, 5]. Therefore, by means of partial or complete asymptotic formu-

las of solutions to the conductivity/elastic problems and some efficient algorithms,

information about the location and size of the inclusions can be reconstructed, see for

example [4, 5, 24].

Despite the extensive literature in this field, we remark that the mathematical

problem of this work represents an intriguing novelty because we have to deal with

a pressurized cavity, that is, a hole with nonzero tractions on its boundary, buried

in a half-space. These two peculiarities do not allow to reduce the boundary value

problem to a classical one based on cavities (see, for example, problems in [4, 5] and

reference therein).

The paper is organized as follows. In Section 2, we illustrate the model of ground

deformations and motivate the assumptions at the basis of the simplified linearized

version. In Section 3, we recall some arguments about linear elasticity and layer po-

tentials techniques and then we analyze the well-posedness of the direct problem via

an integral representation formula for the displacement field. Section 4 is devoted to

the proof of the main result regarding the asymptotic formula for the boundary dis-

placement field. In addition, as a consequence of the asymptotic expansion, we obtain

the classical Mogi’s formula for spherical cavities.

Notation. — We denote scalar quantities in italic type, e.g. λ, µ, ν, points and vectors

in bold italic type, e.g. x,y, z and u,v,w, matrices and second-order tensors in bold

type, e.g. A,B,C, and fourth-order tensors in blackboard bold type, e.g. A,B,C. The

half-space {x = (x1, x2, x3) ∈ R3 : x3 < 0} is indicated by R3
−. The unit outer normal

vector to a surface is represented by n. The transpose of a second-order tensor A is

denoted by AT and its symmetric part by Â = 1
2

(
A+AT

)
. To indicate the inner

product between two vectors u and v we use u ·v =
∑

i uivi whereas for second-order

tensors A : B =
∑

i,j aijbij . The cross product of two vectors u and v is denoted by

u×v. With |A| we mean the norm induced by the inner product between second-order

tensors, that is, |A| =
√
A : A.
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2. Description of the mathematical model

Monitoring of volcanoes activity, targeted to the forecasting of volcanic hazards and

development of appropriate prevention strategies, is usually performed by combining

different types of geophysical measurements. Ground deformations are among the

most significant being directly available (in particular, with the development of Global

Positioning Systems) and, at the same time, straightly interpretable in term of elastic

behaviors of the Earth’s crust adjacent to the magma chamber (see [10, 18, 37]).

A well-established model has been proposed by Mogi, [33], following previous results

(see description in [17, 28, 36]), based on the assumption that ground deformation

effects are primarily generated by the presence of an underground magma chamber

exerting a uniform pressure on the surrounding medium. Precisely, the model relies

on three key founding schematizations.

1. Geometry of the model. — The earth’s crust is an infinite half-space (with free

air/crust surface located on the plane x3 = 0) and the magma chamber, buried in the

half-space, is assumed to be spherical with radius r and depth d such that r ≪ d.

2. Geophysics of the crust. — The crust is a perfectly elastic body, isotropic and homo-

geneous, whose deformations are described by the linearized elastostatic equations,

hence are completely characterized by the Lamé parameters µ, λ (or, equivalently,

Poisson ratio ν and shear modulus µ). The free air/crust boundary is assumed to be

a traction-free surface.

3. Crust-chamber interaction. — The cavity describing the magma chamber is assumed

to be filled with an ideal incompressible fluid at equilibrium, so that the pressure p

exerted on its boundary on the external elastic medium is hydrostatic and uniform.

Assuming that the center of the sphere is located at z = (z1, z2, z3) with z3 < 0,

the displacement u = (u1, u2, u3) at a surface point y = (y1, y2, 0) is given by

(2.1) uα(y) =
1− ν

µ

ε3p(zα − yα)

|z − y|3 , (α = 1, 2) u3(y) =
1− ν

µ

ε3p z3
|z − y|3

in the limit ε := r/|z3| → 0 (see Fig. 2.1). A higher-order approximation has been

proposed by McTigue [30] with the intent of providing a formal expansion able to

cover the case of a spherical body with finite (but small) positive radius.

Being based on the assumption that the ratio radius/depth ε := r/|z3| is small,

the Mogi model corresponds to the assumption that the magma chamber is well-

approximated by a single point producing a uniform pressure in the radial direction;

as such, it is sometimes referred to as a point source model. However, even if the source
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Figure 2.1. Normalized Mogi displacement profiles given in (2.1):

horizontal components uα, α = 1, 2, dashed line; vertical component

u3, continuous line.

is reduced to a single point, the model still records the spherical form of the cavity.

Different geometrical form may lead to different deformation effects.

The Mogi model has been widely applied to real data of different volcanoes to infer

approximate location and strength of the magma chamber. The main benefit of such

strategy lies in the fact that it provides a simple formula with an explicit appearance of

the basic physical parameters depth and total work (combining pressure and volume)

and, thus, that it can be readily compared with real deformation data to provide

explicit forecasts.

The simplicity of formulas (2.1) makes the application model viable, but it com-

pensates only partially the intrinsic reductions of the approach. As a consequence,

variations on the geometry of the magma chamber have been proposed to provide

more realistic frameworks but with the target to furnish explicit formulas for ground

deformations; in this way synthetic data can be compared with real data via appro-

priate inversion algorithms. Such attempt has focused on oblate and prolate ellipsoids

[16, 40], rectangular dislocations [35] and horizontal penny-shaped cracks [20]. For

completeness, we mention also the attempts to study the heterogeneity of the crust,

see [29] and references therein, the case of a non-flat crust surface [39, 14] and the com-

bination of elastic properties with gravitational effects and time-dependent processes

modeling of the crust, see [9, 13].

In all cases, refined descriptions have the inherent drawback of requiring a detailed

knowledge of the crust elastic properties. In absence of reliable complete data and

measurements, the risk of introducing an additional degree of freedom in the param-

eter choice is substantial. This observation partly supports the approach of the Mogi

model which consists in keeping as far as possible the parameters choice limited and,

consequently, the model simple.

Now, let us introduce in details the boundary value problem which emerges from

the previous assumptions on the geometry of the model, geophysics of the crust and
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crust-chamber interaction. Denoting by R3
− the (open) half-space described by the

condition x3 < 0, the domain D occupied by the Earth’s crust is D := R3
− r C,

where C ⊂ R3
−, describing the magma chamber, is assumed to be an open set with

bounded boundary ∂C. Hence, the boundary of D is composed by two disconnected

components: the two-dimensional plane R2 := {x = (x1, x2, x3) ∈ R3 : x3 = 0},

which constitutes the free air/crust border, and the set ∂C, corresponding to the

crust/chamber edge. In this setting, we end up with the following boundary value

problem

div
(
C∇̂u

)
= 0 in D,

(
C∇̂u

)
e3 = 0 in R

2,
(
C∇̂u

)
n = pn on ∂C,

which we consider with the asymptotic conditions at infinity

lim
|x|→∞

u(x) = lim
|x|→∞

|x|∇u(x) = 0.

The conjunction of conditions on ∂D and at infinity determines a displacement-

traction problem.

At this point, the model provides the displacement u of a generic finite cavity C.

The next step is to deduce a corresponding point source model, in the spirit of the

Mogi spherical one. To this aim, we assume the cavity C of the form

C = dz + rΩ,

where d, r > 0 are characteristic length-scales for depth and diameter of the cavity, its

center dz belongs to R3
− and its shape Ω is a bounded domain containing the origin.

The Mogi model corresponds to Ω given by a sphere of radius 1.

Introducing the rescaling (x,u) 7→ (x/d,u/r) and denoting the new variables again

by x and u, the above problem takes the form (with unchanged far-field conditions)

div
(
C∇̂u

)
= 0 in Dε,

(
C∇̂u

)
e3 = 0 in R

2,
(
C∇̂u

)
n = pn on ∂Cε,

where ε = r/d, Cε := z + εΩ, Dε := R3
− r Cε and p is a “rescaled” pressure, ratio of

the original pressure p and ε.

In the next section we study the well-posedness of the linear elastic model in the

case of a finite pressurized cavity C and then we derive the asymptotic expansion of

the solution when C := Cε := z + εΩ.

3. Integral representation and well-posedness of the direct problem

Since C := λI⊗ I+ 2µI, the elastostatic Lamé operator L for a homogeneous and

isotropic elastic medium is given by

Lu := div(C∇̂u) = µ∆u+ (λ+ µ)∇ div u,

where u represents the vector of the displacements and ∇̂u = 1
2

(
∇u + ∇uT

)
the

strain tensor. With ∂u/∂ν we depict the conormal derivative on the boundary of a

domain, that is, the traction vector, which has the expression

∂u

∂ν
:= (C∇̂u)n = λ(div u)n+ 2µ(∇̂u)n
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or, equivalently,
∂u

∂ν
= 2µ

∂u

∂n
+ λ(div u)n+ µ(n× rotu).

Here, we analyze the linear elastostatic boundary value problem

(3.1)





div(C∇̂u) = 0 in R3
− r C

∂u

∂ν
= pn on ∂C

∂u

∂ν
= 0 on R2

u = o(1), ∇u = o
(
|x|−1

)
|x| → ∞,

where C is the cavity and p is a constant representing the pressure. For the Lamé

parameters, we consider the physical range 3λ + 2µ > 0 and µ > 0 which ensures

positive definiteness of C. For the sequel, we recall that the positive definiteness of

the tensor C implies the strong ellipticity which corresponds to the request µ > 0 and

λ+ 2µ > 0, see [23].

The aim of this section is to provide an integral representation formula and to

establish the well-posedness of the problem. To do that, we consider three steps:

– firstly, we recall Betti’s formulas, definition and some properties of single and

double layer potentials of linear elasticity;

– then, we give the expression of the fundamental solution N of the half-space with

null traction on the boundary, found by Mindlin in [31, 32];

– finally, we represent the solution to (3.1) by an integral formula through the

fundamental solution of the half-space.

All these objects will be used to prove the well-posedness of the problem (3.1).

3.1. Preliminaries. — We recall Betti’s formulas for the Lamé system which can be

obtained by integration by parts, see for example [4, 27]. Given a bounded Lipschitz

domain C ⊂ R3 and two vectors u,v ∈ R3, the first Betti formula is

(3.2)

∫

∂C

u · ∂v
∂ν

dσ(x) =

∫

C

u · Lv dx+

∫

C

Q(u,v) dx,

where the quadratic form Q associated to the Lamé system is

Q(u,v) := λ(div u)(div v) + 2µ∇̂u : ∇̂v.

From (3.2) it is straightforward to find the second Betti formula

(3.3)

∫

C

(u · Lv − v · Lu) dx =

∫

∂C

(
u · ∂v

∂ν
− v · ∂u

∂ν

)
dσ(x).

Formula (3.2) will be used to prove that the solution of (3.1) is unique, and the

equality (3.3) to get an integral representation formula for it. To accomplish this

second goal, a leading role is played by the fundamental solution of the Lamé system:

the Kelvin matrix Γ (or Kelvin-Somigliana matrix) solution to the equation

div(C∇̂Γ) = δ0I, x ∈ R
3
r {0},
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where δ0 is the Dirac function centred at 0. Setting Cµ,ν := 1/{16πµ(1−ν)}, where ν

is the Poisson ratio which is related to λ and µ by the identity

ν =
λ

2(λ+ µ)
,

the explicit expression of Γ = (Γij) is

(3.4) Γij(x) = −Cµ,ν

{
(3− 4ν)δij

|x| +
xixj
|x|3

}
, i, j = 1, 2, 3,

where δij is the Kronecker symbol and Γij stands for the i-th component of the

displacement when a force is applied in the j-th direction at the point 0. For the

reader’s convenience, we write also the gradient of Γ to highlight its behaviour at

infinity

(3.5)
∂Γij

∂xk
(x) = Cµ,ν

{
(3− 4ν)δijxk − δikxj − δjkxi

|x|3 +
3xixjxk
|x|5

}
, i, j, k = 1, 2, 3.

Therefore, from (3.4) and (3.5) it is straightforward to see that

(3.6) |Γ(x)| = O (1/|x|) and |∇Γ(x)| = O
(
1/|x|2

)
as |x| −→ ∞.

With the Kelvin matrix Γ at hand, we recall the definition of the single and double

layer potentials corresponding to the operator L. Given ϕ ∈ L2(∂C), we set (see

[4, 5, 27])

(3.7)

SΓϕ(x) :=

∫

∂C

Γ(x− y)ϕ(y) dσ(y), x ∈ R
3,

DΓϕ(x) :=

∫

∂C

∂Γ

∂ν(y)
(x− y)ϕ(y) dσ(y), x ∈ R

3
r ∂C,

where ∂Γ/∂ν denotes the conormal derivative applied to each column of the matrix Γ.

In the sequel the subscripts + and − indicate the limits from outside and inside C,

respectively. The double layer potential and the conormal derivative of the single layer

potential satisfy the jump relations

(3.8)

DΓϕ

∣∣∣
±
(x) =

(
∓ 1

2I+K
)
ϕ(x) for almost anyx ∈ ∂C,

∂SΓϕ

∂ν

∣∣∣
±
(x) =

(
± 1

2I+K∗
)
ϕ(x) for almost anyx ∈ ∂C,

where K and K∗ are the L2-adjoint Neumann-Poincaré boundary integral operators

defined, in the sense of Cauchy principal value, by

Kϕ(x) := p.v.

∫

∂C

∂Γ

∂ν(y)
(x− y)ϕ(y) dσ(y),

K∗ϕ(x) := p.v.

∫

∂C

∂Γ

∂ν(x)
(x− y)ϕ(y) dσ(y).
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It is worth noticing that these two operators are not compact even on smooth

domains, in contrast with the analogous operators for the Laplace equation (see [5]),

due to the presence in their kernels of the terms

ni(xj − yj)

|x− y|3 − nj(xi − yi)

|x− y|3 , i 6= j,

which make the kernel not integrable. Indeed, even in the case of smooth domains, we

cannot approximate locally the terms n× (x−y) with a smooth function, that is, by

power of |x− y| via Taylor expansion, in order to obtain an integrable kernel on ∂C.

Therefore, the analysis to prove the invertibility of the operators in (3.8) is intricate

and usually based on regularizing operators (see [27]) in the case of smooth domains.

For the Lipschitz domains the analysis is much more involved and based on Rellich

formulas (see [15] and its companion article [19]).

3.2. Fundamental solution of the half-space. — In this subsection we show the

explicit expression of the Neumann function of the half-space presented for the first

time in [31] by means of Galerkin vector and nuclei of strain of the theory of lin-

ear elasticity, and secondly in [32] using the Papkovich-Neuber representation of the

displacement vector and the potential theory.

We consider the boundary value problem

(3.9)





div(C∇̂v) = b inR3
−

∂v

∂ν
= 0 onR2

v = o(1), ∇v = o(|x|−1) as |x| → +∞.

The Neumann function of (3.9) is the kernel N of the integral operator

(3.10) v(x) =

∫

R3

−

N(x,y)b(y) dy,

giving the solution to the problem.

Given y = (y1, y2, y3), we set ỹ := (y1, y2,−y3).

Theorem 3.1. — The Neumann function N of problem (3.9) can be decomposed as

N(x,y) = Γ(x− y) +R1(x− ỹ) + y3R
2(x− ỹ) + y23 R

3(x− ỹ),

where Γ is the Kelvin matrix, see (3.4), and Rk, k = 1, 2, 3, have components Rk
ij

given by

R1
ij(η) := Cµ,ν

{
−(f̃ + cν g̃)δij − (3− 4ν)ηiηj f̃

3

+ cν
[
δi3ηj − δj3(1− δi3)ηi

]
f̃ g̃ + cν(1− δi3)(1− δj3)ηiηj f̃ g̃

2
}

R2
ij(η) := 2Cµ,ν

{
(3− 4ν)

[
δi3(1− δj3)ηj + δj3(1− δi3)ηi

]
f̃3 − (1− 2δ3j)δijη3f̃

3

+ 3(1− 2δ3j)ηiηjη3f̃
5
}

R3
ij(η) := 2Cµ,ν(1− 2δj3)

{
δij f̃

3 − 3ηiηj f̃
5
}
.
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for i, j = 1, 2, 3, where cν := 4(1− ν)(1− 2ν) and

f̃(η) :=
1

|η| , g̃(η) :=
1

|η| − η3
.

For the proof of Theorem 3.1 see the appendix. Uniqueness of the solution to (3.9)

is similar to the one for problem (3.1) which we present in the following section.

The matrix R, defined by

(3.11) R(η, y3) := R1(η) + y3 R
2(η) + y23 R

3(η),

gives the regular part of the Neumann function since the singular point η = 0 corre-

sponds to y = (y1, y2,−y3) with y3 < 0, which belongs to R3
+.

To convert the problem (3.1) into an integral form, bounds on the decay at infinity

of the Neumann function and its derivative at infinity are needed.

Proposition 3.2. — For any Mx,My > 0, there exists C > 0 such that

(3.12) |N(x,y)| 6 C |x|−1 and |∇N(x,y)| 6 C |x|−2

for any x,y ∈ R3
− with |x| >Mx and |y| 6My.

The proof of this proposition is a consequence of the properties on homogeneous

functions and their derivatives, noticing that Rk are homogeneous of degree −k, for

k = 1, 2, 3.

3.3. Representation formula. — Next, we derive an integral representation formula

for u solution to problem (3.1). For, we make use of single and double layer poten-

tials defined in (3.7) and integral contributions relative to the regular part R of the

Neumann function N, defined by

(3.13)

SRϕ(x) :=

∫

∂C

(R(x,y))Tϕ(y) dσ(y), x ∈ R
3
−,

DRϕ(x) :=

∫

∂C

(
∂R

∂ν(y)
(x,y)

)T

ϕ(y) dσ(y), x ∈ R
3
−,

where ϕ ∈ L2(∂C).

Theorem 3.3. — The solution u to (3.1) is such that

(3.14) u = pSΓn−DΓf + pSRn−DRf in R
3
− r C,

where SΓ, DΓ are defined in (3.7), SR, DR in (3.13), pn is the boundary condition

in (3.1) and f is the trace of u on ∂C.

Before proving this theorem, we observe that if a solution to (3.1) exists, then f

solves the integral equation

(3.15)
(
1
2I+K+DR

)
f = p

(
SΓn+ SRn

)
on ∂C,

obtained by the application of the trace properties of the double layer potential (3.8)

in formula (3.14).
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Proof of Theorem 3.3. — Given r, ε > 0 such that C ⊂ Br(0) and Bε(y) ⊂ R3
− r C,

let

Ωr,ε =
(
R

3
− ∩Br(0)

)
r (C ∪Bε(y))

with r sufficiently large such that to contain the cavity C; additionally, we define

∂Bh
r (0) as the intersection of the hemisphere with the boundary of the half-space, and

with ∂Bb
r(0) the spherical cap (see Figure 3.1). Now, we apply Betti’s formula (3.3)

Figure 3.1. Domain Ωr,ε.

to u and the k-th column vector of N, indicated by N (k), for k = 1, 2, 3, in Ωr,ε,

hence

0 =

∫

Ωr,ε

[
u(x) · LN (k)(x,y)−N (k)(x,y) · Lu(x)

]
dx

=

∫

∂Bb
r(0)

[
∂N (k)

∂νx

(x,y) · u(x)−N (k)(x,y) · ∂u
∂νx

(x)

]
dσ(x)

−
∫

∂Bε(y)

[
∂N (k)

∂νx

(x,y) · u(x)−N (k)(x,y) · ∂u
∂νx

(x)

]
dσ(x)

−
∫

∂C

[
∂N (k)

∂νx

(x,y) · u(x)−N (k)(x,y) · ∂u
∂νx

(x)

]
dσ(x)

:= I1 + I2 + I3,

since, from (3.1) and the boundary condition in (3.9),

∫

∂Bh
r (0)

[
∂N (k)

∂νx

(x,y) · u(x)−N (k)(x,y) · ∂u
∂νx

(x)

]
dσ(x) = 0.
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We show that the term I1 goes to zero by using the behaviour at infinity of u given

in (3.1) and of the Neumann function given in (3.12). Indeed, we have
∣∣∣∣∣

∫

∂Bb
r(0)

∂N (k)

∂νx

(x,y)·u(x) dσ(x)
∣∣∣∣∣ 6

∫

∂Bb
r(0)

|u|
∣∣∣∣
∂N (k)

∂νx

∣∣∣∣ dσ(x) 6
C

r2

∫

∂Bb
r(0)

|u(x)|dσ(x).

This last integral can be estimated by means of the spherical coordinates

x1 = r sinϕ cos θ, x2 = r sinϕ sin θ, x3 = r cosϕ,

where ϕ ∈ [π/2, π], since Bb
r(0) is a hemisphere in R3

−, and θ ∈ [0, 2π), indeed

C

r2

∫

∂Bb
r(0)

|u| dσ(x) = C

π∫

π/2

2π∫

0

|u(r, θ, ϕ)| sinϕdθ dϕ

6 C sup
θ∈[0,2π)
ϕ∈[π/2,π]

|u(r, θ, ϕ)| −→ 0,

as r → +∞, since u = o(1). Similarly
∣∣∣∣∣

∫

∂Bb
r(0)

N (k)(x,y)· ∂u
∂νx

(x) dσ(x)

∣∣∣∣∣ 6
∫

∂Bb
r(0)

|N (k)|
∣∣∣ ∂u
∂νx

∣∣∣ dσ(x) 6 C

r

∫

∂Bb
r

∣∣∣ ∂u
∂νx

∣∣∣ dσ(x).

Again, passing through spherical coordinates, we get

(3.16)
C

r

∫

∂Bb
r(0)

∣∣∣ ∂u
∂νx

∣∣∣ dσ(x) 6 C sup
θ∈[0,2π)
ϕ∈[π/2,π]

r
∣∣∣∂u
∂ν

(r, θ, ϕ)
∣∣∣ −→ 0,

as r → +∞, since |∇u| = o(r−1).

The integral I2 gives the value of the function u in y as ε goes to zero. Indeed, we

have
∣∣∣∣∣

∫

∂Bε(y)

N (k)(x,y) · ∂u
∂νx

(x) dσ(x)

∣∣∣∣∣ 6
∫

∂Bε(y)

|N (k)|
∣∣∣ ∂u
∂νx

∣∣∣ dσ(x)

6 sup
x∈∂Bε(y)

∣∣∣ ∂u
∂νx

∣∣∣
∫

∂Bε(y)

[
|Γ(k)|+ |R(k)|

]
dσ(x) = O(ε),

since the second integral has a continuous kernel. On the other hand

−
∫

∂Bε(y)

∂N (k)

∂νx

(x,y) · u(x) dσ(x)

= −u(y) ·
∫

∂Bε(y)

∂N (k)

∂νx

(x,y) dσ(x) +

∫

∂Bε(y)

[u(y)− u(x)] · ∂N
(k)

∂νx

(x,y) dσ(x).
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The latter integral tends to zero when ε goes to zero because
∣∣∣∣∣

∫

∂Bε(y)

[u(y)− u(x)] · ∂N
(k)

∂νx

(x,y) dσ(x)

∣∣∣∣∣ 6 sup
x∈∂Bε(y)

|u(y)− u(x)|
∫

∂Bε(y)

∣∣∣∣
∂N (k)

∂νx

∣∣∣∣ dσ(x)

and this last integral is bounded when ε goes to zero. Let finally observe that

−u(y)·
∫

∂Bε(y)

∂N (k)

∂νx

(x,y) dσ(x)

= −u(y) ·
∫

∂Bε(y)

∂(Γ(k) +R(k))

∂νx

(x,y) dσ(x)(3.17)

= −u(y) ·
∫

∂Bε(y)

∂Γ(k)

∂νx

(x− y) dσ(x)− u(y) ·
∫

∂Bε(y)

∂R(k)

∂νx

(x,y) dσ(x),

where the latter integral tends to zero as ε→ 0, since R(k) represents the regular part

of the Neumann function. To deal with the first integral, we preliminarily observe that

direct differentiation gives

(3.18)

(
∂Γ(k)

∂νx

)

h

(x− y) = −c′ν
{
nk(x)

∂

∂xh

1

|x− y| − nh(x)
∂

∂xk

1

|x− y|

+

[
δhk +

3

(1− 2ν)

∂|x− y|
∂xk

∂|x− y|
∂xh

]
∂

∂n(x)

1

|x− y|

}
,

where c′ν := (1−2ν)/(8π(1−ν)). We substitute this expression into the integral (3.17)

and we take into account that

nh(x) =
xh − yh
|x− y| ,

∂

∂xk

1

|x− y| = − xk − yk
|x− y|3 ,

hence ∫

∂Bε(y)

nh(x)
∂

∂xk

1

|x− y| dσ(x) = −
∫

∂Bε(y)

(xh − yh)(xk − yk)

|x− y|4 dσ(x).

To compute this last integral we use spherical coordinates, that is,

x1 − y1 = ε sinϕ cos θ, x2 − y2 = ε sinϕ sin θ, x3 − y3 = ε cosϕ,

where ϕ ∈ [0, π] and θ ∈ [0, 2π). From a simple calculation it follows

(3.19) −
∫

∂Bε(y)

(xh − yh)(xk − yk)

|x− y|4 dσ(x) =

{
0 ifh 6= k

− 4
3π ifh = k.

Therefore, from (3.18) and (3.19), we have

(3.20)

∫

∂Bε(y)

(
nk(x)

∂

∂xh

1

|x− y| − nh(x)
∂

∂xk

1

|x− y|

)
dσ(x) = 0,
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for any h and k. Hence, (3.17) becomes

− u(y) ·
∫

∂Bε(y)

∂N (k)

∂νx

(x− y) dσ(x) = c′ν

3∑

h=1

uh(y) ·

·
∫

∂Bε(y)

[(
δhk +

3

(1− 2ν)

∂|x− y|
∂xk

∂|x− y|
∂xh

)
∂

∂nx

1

|x− y|

]
dσ(x) +O(ε).

Employing again the spherical coordinates and the definition of c′ν , we find that

(3.21)
1− 2ν

8π(1− ν)

∫

∂Bε(y)

δhk
∂

∂nx

1

|x− y| dσ(x) =




− 1− 2ν

2(1− ν)
ifh = k

0 ifh 6= k.

Similarly

(3.22)
3

8π(1− ν)

∫

∂Bε(y)

(
∂|x− y|
∂xk

∂|x− y|
∂xh

)
∂

∂nx

1

|x− y| dσ(x)

=




− 1

2(1− ν)
ifh = k

0 ifh 6= k.

Putting together all the results in (3.21) and (3.22), we find that

lim
ε→0

(
− u(y) ·

∫

∂Bε(y)

∂N (k)

∂νx

(x− y) dσ(x)

)
= −uk(x).

Using the definition of single and double layer potentials (3.7), (3.13) and splitting N

as Γ+R, Formula (3.14) holds. �

From the behaviour of the Neumann function given in (3.12) and the representation

formula in (3.14), we immediately get

Corollary 3.4. — If u is a solution to (3.1), then

(3.23) u(y) = O(|y|−1) as |y| −→ ∞.

3.4. Well-posedness. — The well-posedness of the boundary value problem (3.1)

reduces to show the invertibility of

(3.24) 1
2I+K+DR : L2(∂C) −→ L2(∂C).

In particular, in order to prove the injectivity of the operator (3.24) we show the

uniqueness of u following the classical approach based on the application of the Betti’s

formula (3.2) and the energy method, see [21, 27]. From the injectivity, it follows the

existence of u proving the surjectivity of (3.24) which is obtained by the application

of the index theory regarding bounded and linear operators.

First of all, let us recall the closed range theorem due to Banach (see [25, 41]).

J.É.P. — M., 2017, tome 4



238 A. Aspri, E. Beretta & C. Mascia

Theorem 3.5. — Let X and Y be Banach spaces, and T a bounded linear operator

defined in X into Y . Then the following propositions are all equivalent:

a. Im(T ) is closed in Y ; b. Im(T ∗) is closed in X∗;

c. Im(T ) = (Ker(T ∗))⊥; d. Im(T ∗) = (Ker(T ))⊥.

Through this theorem we can prove

Lemma 3.6. — The operator 1
2I +K : L2(∂C) → L2(∂C) is invertible with bounded

inverse.

Proof. — The assertion of this lemma is based on the invertibility of the operator
1
2I+K∗ studied in [15]; it is known that

1
2I+K∗ : L2(∂C) −→ L2(∂C)

is a bounded linear operator, injective and with dense and closed range. Therefore,

from Theorem 3.5 we have

Ker
(
1
2I+K

)
= {0}, Im

(
1
2I+K

)⊥
= {0}

and Im(1/2I +K) is closed. Then, it follows that the operator 1
2I +K : L2(∂C) →

L2(∂C) is bijective and the assertion follows exploiting the bounded inverse theorem.

�

Since DR has a continuous kernel we prove its compactness adapting the arguments

contained in [26].

Lemma 3.7. — The operator DR : L2(∂C) → L2(∂C) is compact.

Proof. — For the sake of simplicity, we call

H(x,y) :=
∂R

∂ν
(x,y), x,y ∈ ∂C

and we denote by H(k), k = 1, 2, 3, the column vectors of the matrix H.

Let S be a bounded set such that S ⊂ L2(∂C), that is, ‖ϕ‖L2(∂C) 6 K, for any

ϕ ∈ S. Then, applying Cauchy-Schwarz inequality

|(DRϕ(y))k|2 6 ‖H(k)(·,y)‖2L2(∂C)‖ϕ‖2L2(∂C) 6 K|∂C| max
x,y∈∂C

|H(k)|,

with k = 1, 2, 3, for all y ∈ ∂C and ϕ ∈ S. Hence |DR(ϕ)| 6 K ′, with K ′ > 0, which

implies that DR(S) is bounded. Moreover, for all ε > 0 there exist ϕ,ϕ′ ∈ S and

δ > 0 such that if ‖ϕ(y)−ϕ′(y)‖L2(∂C) < δ then, applying again the Cauchy-Schwarz

inequality

|DR(ϕ−ϕ′)(y)| < ε.

Thus DR(S) ⊂ C(∂C), where C(∂C) indicates the space of continuous function

on ∂C. Since each component of the matrix H is uniformly continuous on the compact

set ∂C × ∂C, for every ε > 0 there exists δ > 0 such that

|H(k)(z,x)−H(k)(z,y)| 6 ε√
3K|∂C|1/2

,
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for all x,y, z ∈ ∂C with |x− y| < δ. Since

|(DRϕ)k(x)− (DRϕ)k(y)| 6
∫

∂C

|H(k)(z,x)−H(k)(z,y)||ϕ(z)| dσ(z)

6 ‖H(k)(·,x)−H(k)(·,y)‖L2(∂C)‖ϕ‖L2(∂C) 6
ε√
3
,

for k = 1, 2, 3, hence

|(DRϕ)(x)− (DRϕ)(y)| 6 ε,

for all x,y ∈ ∂C and ϕ ∈ S, that is, DR(S) is equicontinuous. The assertion follows

from Ascoli-Arzelà Theorem and noticing that C(∂C) is dense in L2(∂C). �

We now prove

Theorem 3.8 (uniqueness). — The boundary value problem (3.1) admits a unique

solution.

Proof. — Let u1 and u2 be solutions to (3.1). Then the difference v := u1−u2 solves

the homogeneous version of (3.1), that is,

(3.25) div(C∇̂v) = 0 in R
3
− r C

with homogeneous boundary conditions

(3.26)
∂v

∂ν
= 0 on ∂C,

∂v

∂ν
= 0 on R

2

v = O(|x|−1) ∇v = o
(
|x|−1

)
|x| −→ ∞,

where we make use of the decay condition at infinity comes from Corollary 3.4. Ap-

plying Betti’s formula (3.2) to v in Ωr = (R3
− ∩Br(0))r C, we find

∫

∂Ωr

v · ∂v
∂ν

dσ(x) =

∫

Ωr

Q(v,v) dx,

where Q is the quadratic form Q(v,v) = λ(div v)2 + 2µ|∇̂v|2. From the behaviour

of v and the boundary conditions (3.26), we estimate the previous integral defined

on the surface of Ωr; contributions over the surface of the cavity and the intersection

of the hemisphere with the half-space are null by means of (3.26), whereas on the

spherical cap
∣∣∣∣∣

∫

∂Bb
r(0)

v · ∂v
∂ν

dσ(x)

∣∣∣∣∣ 6
∫

∂Bb
r(0)

|v|
∣∣∣∂v
∂ν

∣∣∣ dσ(x) 6 C

r

∫

∂Bb
r(0)

∣∣∣∂v
∂ν

∣∣∣ dσ(x).

As already done in (3.16) to obtain the representation formula, this integral can be

evaluated by spherical coordinates; in particular, it tends to zero when r → +∞.

Therefore ∫

R3

−

rC

{
λ(div v)2 + 2µ|∇̂v|2

}
dx = 0.
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Since the quadratic form is positive definite for the parameters range 3λ+2µ > 0 and

µ > 0, we have that

(3.27) ∇̂v = 0 and div v = 0 in R
3
− r C.

It follows that the rigid displacements v = a + Ax, with a ∈ R3 and A belonging

to the space of the anti-symmetric matrices (see [4, 12]), could be the only nonzero

solutions which satisfy (3.25), the boundary conditions in (3.26) and (3.27). However,

in this case they are excluded thanks to the behaviour of the function v at infinity.

Hence, we obtain that v = 0, that is, u1 = u2 in R3
− r C. �

The uniqueness result for problem (3.1) ensures the injectivity of the operator

(3.24). In order to prove the surjectivity of the operator (3.24) we recall, for the

reader’s convenience, the definition of the index of an operator (see [1, 25]).

Definition 3.1. — Given a bounded operator T : X → Y between two Banach spaces,

the index of the operator T is the extended real number defined as

i(T ) = dim(Ker(T ))− dim(Y/ Im(T )),

where dim(Ker(T )) is called the nullity and dim(Y/ Im(T )) the defect of T . In par-

ticular, when the nullity and the defect are both finite the operator T is said to be

Fredholm.

We recall also an important theorem regarding the index of a bounded linear op-

erator perturbed with a compact operator (see [1]).

Theorem 3.9. — Let T : X → Y be a Fredholm bounded linear operator and

K : X → Y a compact operator between two Banach spaces. Then T +K is Fredholm

with index i(T +K) = i(T ).

Now all the ingredients are supplied in order to prove the surjectivity of the oper-

ator.

Theorem 3.10. — The operator 1
2I+K+DR is onto in L2(∂C).

Proof. — From Lemma 3.6 we have that the operator 1
2I+K : L2(∂C) → L2(∂C) is

Fredholm with index i
(
1
2I+K

)
= 0, because both the nullity and the defect of this

operator are null. Moreover, since the operator DR is compact from Lemma 3.7, it

follows by means of Theorem 3.9 that

i
(
1
2I+K+DR

)
= 0.

Hence

dim
(
Ker

(
1
2I+K+DR

))
= dim

(
L2(∂C)/ Im

(
1
2I+K+DR

))
.

Since the operator 1
2I+K+DR is injective it shows that dim(Ker( 12I+K+DR)) = 0.

Finally, dim(L2(∂C)/ Im
(
1
2I+K+DR)

)
= 0, that is, Im

(
1
2I+K+DR

)
= L2(∂C).

�

Summing up, it follows:
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Corollary 3.11. — There exists a unique solution to (3.1).

Proof. — Uniqueness follows from Theorem 3.8 and the existence from Theorem 3.10.

�

4. Rigorous derivation of the asymptotic expansion

In this section, with the integral representation formula (3.14) at hand, we consider

the hypothesis that the cavity C is small compared to the distance from the boundary

of the half-space. The aim is to derive an asymptotic expansion of the solution u.

In particular, let us take the cavity, that from now on we denote by Cε to highlight

the dependence on ε, as

Cε = z + εΩ,

where Ω is a bounded Lipschitz domain containing the origin. At the same time, we

write the solution of the boundary value problem (3.1) as uε. From (3.14), recalling

that N = Γ+R, we have

(4.1)
ukε(y) = p

∫

∂Cε

N (k)(x,y) · n(x) dσ(x)−
∫

∂Cε

∂N (k)

∂ν
(x,y) · f(x) dσ(x)

:= I
(k)
1 (y) + I

(k)
2 (y), y ∈ R

2,

for k = 1, 2, 3, where ukε indicates the k-th component of the displacement vector and

f = fε is the solution of (3.15), that is,

(4.2)
(
1
2I+Kε +DR

ε

)
fε(x) = p

(
SΓ
ε (n)(x) + SR

ε (n)(x)
)
, x ∈ ∂Cε,

where we add the dependence on ε to all the layer potentials to distinguish them,

in the sequel, from the layer potential defined over a domain independent of ε. In

what follows, with I we indicate the fourth-order symmetric tensor such that IA = Â

and for any fixed value of ε > 0, given h : ∂Cε → R3, we introduce the function

ĥ : ∂Ω → R3 defined by

ĥ(ζ) := h(z + εζ), ζ ∈ ∂Ω.

Moreover, we consider the functions θqr, for q, r = 1, 2, 3, solutions to

(4.3) div(C∇̂θqr) = 0 inR
3
rΩ,

∂θqr

∂ν
= − 1

3λ+ 2µ
Cn on ∂Ω,

with the decay conditions at infinity

(4.4) |θqr| = O(|x|−1), |∇θqr| = O(|x|−2), as |x| −→ ∞,

where the condition ∂θqr/∂ν has to be read as

(∂θqr

∂ν

)
i
= − 1

3λ+ 2µ
Cijqrnj .

We now state our main result.
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Theorem 4.1 (asymptotic expansion). — There exists ε0 > 0 such that for all ε ∈
(0, ε0) the following expansion holds at any y ∈ R2:

(4.5) ukε(y) = ε3|Ω|p∇̂zN
(k)(z,y) : MI+O(ε4),

for k = 1, 2, 3, where O(ε4) denotes a quantity bounded by Cε4 for some uniform

constant C > 0, and M is the fourth-order elastic moment tensor defined by

(4.6) M := I+
1

|Ω|

∫

∂Ω

C(θqr(ζ)⊗ n(ζ)) dσ(ζ),

where θqr, for q, r = 1, 2, 3, solve the problem in (4.3) and (4.4).

Before proving the theorem on the asymptotic expansion of uε, we need to present

some results.

Lemma 4.2. — The integral equation (4.2), when x = z + εζ, with ζ ∈ ∂Ω, is such

that

(4.7)
(
1
2I+K+ ε2ΛΩ,ε

)
f̂(ζ) = εpSΓ(n)(ζ) +O(ε2),

where

ΛΩ,εf̂(η) :=

∫

∂Ω

∂R

∂ν(η)
(z + εη, z + εζ)f̂(η) dσ(η)

is uniformly bounded in ε. Moreover, when ε is sufficiently small, we have

f̂(ζ) = εp
(
1
2I+K

)−1
SΓ(n)(ζ) +O(ε2), ζ ∈ ∂Ω.

Proof. — At the point z + εζ, where ζ ∈ ∂Ω, we obtain

DR
ε f(z + εζ) =

∫

∂Cε

∂R

∂ν(t)
(t, z + εζ)f(t) dσ(t)

= ε2
∫

∂Ω

∂R

∂ν(η)
(z + εη, z + εζ)f̂(η) dσ(η).

Therefore, recalling that the kernel ∂R/∂ν(η) is continuous, we get

(4.8) DR
ε = ε2ΛΩ,ε

where ‖ΛΩ,ε‖ 6 C ′, with C ′ independent of ε. For the integral

Kεf(z + εζ) = p.v.

∫

∂Cε

∂Γ

∂ν(t)
(t− z − εζ)f(t) dσ(t)

we use the explicit expression of the conormal derivative of the fundamental solution

of the Lamé operator given in (3.18). In particular, since (3.18) is a homogeneous
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function of degree −2, with the substitution t = z + εη, we find
(
∂Γ(k)

∂ν

)

h

(ε(η − ζ))

= − 1

4πε2

{[
1− 2ν

2(1− ν)
δhk +

3

2(1− ν)

ηk − ζk
|η − ζ|

ηh − ζh
|η − ζ|

]
∂

∂n(η)

1

|η − ζ|

+
1− 2ν

2(1− ν)
nh(η)

ηk − ζk
|η − ζ|3 − 1− 2ν

2(1− ν)
nk(η)

ηh − ζh
|η − ζ|3

}

=
1

ε2

(
∂Γ(k)

∂ν

)

h

(η − ζ),

for h, k = 1, 2, 3. Therefore, we immediately obtain that

(4.9) Kεf(z + εζ) = p.v.

∫

∂Ω

∂Γ

∂ν(η)
(η − ζ)f̂(η) dσ(η) = Kf̂(ζ).

Evaluating the other integrals in (4.2) we obtain

SΓ
ε (n)(z + εζ) =

∫

∂Cε

Γ(t− z − εζ)n(t) dσ(t),

hence, choosing t = z + εη, with η ∈ ∂Ω, we find

(4.10) SΓ
ε (n)(z + εζ) = ε2

∫

∂Ω

Γ(ε(η − ζ))n(η) dσ(η) = εSΓ(n)(ζ),

where the last equality follows noticing that the fundamental solution is homogeneous

of degree −1. In a similar way

SR
ε (n)(z + εζ) =

∫

∂Cε

R(t, z + εζ)n(t) dσ(t),

hence, taking again t = z + εη, we find

SR
ε (n)(z + εζ) = ε2

∫

∂Ω

R(z + εη, z + εζ)n(η) dσ(η)

and since R is regular it follows that

(4.11) SR
ε (n)(z + εζ) = O(ε2).

Relation (4.7) follows putting together the result in (4.8), (4.9), (4.10) and (4.11).

To conclude, from (4.7) we have
(
1
2I+K

) (
I+ ε2

(
1
2I+K

)−1
Λε,Ω

)
f̂ = εpSΓ(n) +O(ε2) on ∂Ω.

From Lemma 3.6 and the continuous property of Λε,Ω described before, we have
∥∥∥
(
1
2I+K

)−1
Λε,Ω

∥∥∥ 6 C,

where C > 0 is independent of ε. On the other hand, choosing ε20 = 1/2C, it follows

that, for all ε ∈ (0, ε0),

I+ ε2
(
1
2I+K

)−1
Λε,Ω
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is invertible and (
I+ ε2

(
1
2I+K

)−1
Λε,Ω

)−1

= I+O(ε2).

Therefore

f̂ = εp
(
1
2I+K

)−1
SΓ(n) +O(ε2) on ∂Ω,

that is, the assertion. �

For ease of reading, we define the function w : ∂Ω → ∂Ω as

(4.12) w(ζ) := −
(
1
2I+K

)−1
SΓ(n)(ζ), ζ ∈ ∂Ω.

Taking the problem

(4.13) div
(
C∇̂v

)
= 0 in R

3
rΩ,

∂v

∂ν
= −n on ∂Ω

with decay conditions at infinity

(4.14) v = O(|x|−1), |∇v| = O(|x|−2) as |x| −→ +∞,

we show that w(x), for x ∈ ∂Ω, is the trace of v on the boundary of Ω. The well-

posedness of this problem is a classical result in the theory of linear elasticity so we

remind the reader, for example, to [21, 23, 27].

Proposition 4.3. — The function w, defined in (4.12), is such that w = v
∣∣
x∈∂Ω

,

where v is the solution to (4.13) and (4.14).

Proof. — Applying the second Betti formula to the fundamental solution Γ and the

function v into the domain Br(0) r (Ω ∪ Bε(x)), with ε > 0 and r > 0 sufficiently

large so that the domain contains the cavity Ω, we obtain, as done in a similar way

in the proof of the Theorem 3.3,

v(x) = −SΓn(x)−DΓv(x), x ∈ R
3
rΩ.

Therefore, from the single and double layer potential properties for the elastostatic

equations, we find

v(x) = −SΓn(x)−
(
− 1

2I+K
)
v(x), x ∈ ∂Ω,

hence

v(x) = −
(
1
2I+K

)−1
SΓ(n)(x), x ∈ ∂Ω,

that is, the assertion. �

We note that the function v, as well as its trace w on ∂Ω, can be written in terms

of the functions θqr. Indeed, taking

v = θqrδqr, q, r = 1, 2, 3,

and using (4.3) and (4.4), it is straightforward to see that the elastostatic equation

and the boundary condition in (4.13) are satisfied.
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Proof of Theorem 4.1. — We study separately the two integrals I
(k)
1 , I

(k)
2 defined in

(4.1). Since y ∈ R2 and x ∈ ∂Cε = z + εζ, with ζ ∈ ∂Ω, we consider the Taylor

expansion for the Neumann function, that is,

(4.15) N (k)(z + εζ,y) = N (k)(z,y) + ε∇N (k)(z,y)ζ +O(ε2),

for k = 1, 2, 3. By the change of variable x = z + εζ and substituting (4.15) in I
(k)
1 ,

we find

I
(k)
1 = ε2pN (k)(z,y) ·

∫

∂Ω

n(ζ) dσ(ζ) + ε3p

∫

∂Ω

n(ζ) · ∇N (k)(z,y)ζ dσ(ζ) +O(ε4)

:= p
(
ε2I

(k)
11 + ε3I

(k)
12

)
+O(ε4).

The integral I
(k)
11 is null, in fact, applying the divergence theorem

∫

∂Ω

n(ζ) dσ(ζ) = 0.

For the integral I
(k)
12 , we use the equality n · ∇N (k)ζ = ∇N (k) : (n(ζ)⊗ ζ), therefore

(4.16) I
(k)
1 = ε3p∇N (k)(z,y) :

∫

∂Ω

(
n(ζ)⊗ ζ

)
dσ(ζ) +O(ε4), k = 1, 2, 3.

For the term I
(k)
2 we use the result in Lemma 4.2 and the Taylor expansion of the

conormal derivative of N(k)(x,y), for k = 1, 2, 3. In particular, for x = z + εζ, when

ζ ∈ ∂Ω and y ∈ R2, we consider only the first term of the asymptotic expansion,

that is,

∂N (k)

∂ν(x)
(x,y) =

∂N (k)

∂ν(ζ)
(z,y) +O(ε), k = 1, 2, 3.

Therefore

I
(k)
2 = −ε2

∫

∂Ω

∂N (k)

∂ν(x)
(z + εζ,y) · f̂(ζ) dσ(ζ)

= −ε3p
∫

∂Ω

∂N (k)

∂ν(ζ)
(z,y) ·w(ζ) dσ(ζ) +O(ε4),

for any k, where w is defined in (4.12). Since ∂N (k)/∂ν(ζ) = C∇̂N (k)n(ζ), we have

C∇̂N (k)n(ζ) ·w(ζ) = C∇̂N (k) : (w(ζ)⊗ n(ζ)).

Therefore

(4.17) I
(k)
2 (y) = ε3 pC∇̂N (k)(z,y) :

∫

∂Ω

(w(ζ)⊗ n(ζ)) dσ(ζ) +O(ε4).
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Collecting the result in (4.16) and (4.17), Equation (4.1) becomes

ukε(y) = I
(k)
1 (y) + I

(k)
2 (y)

= ε3p

[
∇N (k)(z,y) :

∫

∂Ω

(n⊗ ζ) dσ(ζ) + C∇̂N (k)(z,y) :

∫

∂Ω

(w ⊗ n) dσ(ζ)

]
+O(ε4).

Now, handling this expression, we highlight the moment elastic tensor. We have

(4.18)

∫

∂Ω

(n(ζ)⊗ ζ) dσ(ζ) = |Ω|I,

indeed, for any i, j = 1, 2, 3, it follows
∫

∂Ω

ζi nj dσ(ζ) =

∫

∂Ω

n · ζiej dσ(ζ) =
∫

Ω

div (ζiej) dζ =

∫

Ω

ej · ei dζ = |Ω|δij ,

where ej is the j-th unit vector of R3. Hence, by (4.18) and taking the symmetric

part of ∇N (k), for any k, we find

ukε = ε3p

[
∇̂N (k) : I|Ω|+ C∇̂N (k) :

∫

∂Ω

w ⊗ n dσ(ζ)

]
+O(ε4).

Using the symmetries of C, we have

ukε = ε3|Ω|p∇̂N (k) :

[
I+

1

|Ω|

∫

∂Ω

C(w ⊗ n) dσ(ζ)

]
+O(ε4),

for k = 1, 2, 3. Now, taking into account that I = II and using the equality w = θqrδqr,

with q, r = 1, 2, 3, we have the assertion. �

The Mogi model. — In this subsection, starting from the asymptotic expansion (4.5),

that is,

ukε(y) = ε3|Ω| p∇̂zN
(k)(z,y) : MI+O(ε4), k = 1, 2, 3,

where M is the tensor given in (4.6), we recover the Mogi model, presented within

the Section 2, related to a spherical cavity. We first recall that

MI =

[
I+

1

|Ω|

∫

∂Ω

C(θqr ⊗ n) dσ(ζ)

]
I = I+

1

|Ω|

∫

∂Ω

C(w ⊗ n) dσ(ζ),

where, in the last equality, we use the link between the functions w and θqr, that is,

w = θqrδqr, q, r = 1, 2, 3. Therefore, to get the Mogi’s formula, we first find the

explicit expression of w when the cavity Ω is the unit sphere and then we calculate

the gradient of the Neumann function N.

We recall that w is the trace on the boundary of the cavity of the solution to the

external problem

div(C∇̂v) = 0 in R
3
rB1(0),

∂v

∂ν
= −n on ∂B1(0),

where B1(0) = {x ∈ R3 : |x| 6 1} with decay at infinity

v = O(|x|−1), |∇v| = O(|x|−2) as |x| −→ +∞.
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We look for a solution of the form

v(x) = φ(r)x with r := |x|,
so that

∆vi =
{
φ′′ +

4φ′

r

}
xi, div v = rφ′ + 3φ, ∇ div v =

{
φ′′ +

4φ′

r

}
x.

By direct substitution, since n = x on ∂B, we get

div(C∇̂v) = (λ+ 2µ)
(
φ′′ +

4φ′

r

)
x,

∂v

∂ν
=

{
(λ+ 2µ)rφ′ + (3λ+ 2µ)φ

}
x

Thus, we need to find a function φ : [1,+∞) → R such that

φ′′ +
4φ′

r
= 0, (λ+ 2µ)rφ′ + (3λ+ 2µ)φ

∣∣
r=1

= −1, φ
∣∣
r=+∞

= 0.

The condition at infinity implies that B = 0 and A = 1/4µ. Therefore, the solution

is v(x) = x/4µ|x|3, which implies that

w(x) := v(x)
∣∣∣
|x|=1

=
x

4µ
.

With the function w at hand, we have that

I+
1

|B1(0)|

∫

∂B1(0)

C(w(ζ)⊗ n(ζ)) dσ(ζ) = I+
3

16πµ

∫

∂B1(0)

C(ζ ⊗ ζ)

|ζ|3 dσ(ζ).

Through the use of spherical coordinates and orthogonality relations for the circular

functions, it holds ∫

∂B1(0)

ζ ⊗ ζ

|ζ|3 dσ(ζ) =
4π

3
I,

hence the second-order tensor MI is given by

MI =
3(λ+ 2µ)

4µ
I.

It implies

(4.19) ukε(y) =
π(λ+ 2µ)

µ
ε3pTr(∇̂zN

(k)(z,y)) +O(ε4), k = 1, 2, 3.

For the Neumann’s function N (see the appendix for its explicit expression), we are

interested only in the trace of ∇zN(z,y) computed at y3 = 0.

Evaluating N = N(z,y) at y3 = 0, we get

κ−1
µ Nαα = −f − (zα − yα)

2f3 − (1− 2ν)g + (1− 2ν)(zα − yα)
2fg2

κ−1
µ Nβα = (zα − yα)(zβ − yβ)

{
−f3 + (1− 2ν)fg

}

κ−1
µ N3α = (zα − yα)

{
−z3f3 + (1− 2ν)fg

}

κ−1
µ Nα3 = (zα − yα)

{
−z3f3 − (1− 2ν)fg

}

κ−1
µ N33 = −2(1− ν)f − z23f

3

where α, β = 1, 2 and κµ = 1/(4πµ), with f = 1/|z − y| and g = 1/
{
|z − y| − z3

}
.
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Let ρ2 := (z1 − y1)
2 + (z2 − y2)

2. Using the identities

ρ2f2 = 1− z23f
2, (1− z3f)g = f

and the differentiation formulas

∂zα
f = −(zα − yα)f

3, ∂z3
f = −z3f3,

∂zα
g = −(zα − yα)fg, ∂z3

g = fg,

∂zα
(fg) = −(zα − yα)(f + g)f2g, ∂z3

(fg) = f3,

we deduce the following formulas for some of the derivatives of κ−1
µ Nij

κ−1
µ ∂zα

Nαα = (zα − yα)
{
−f3 + 3(zα − yα)

2f5

+ (1− 2ν)
[
3f − (zα − yα)

2f2(f + 2g)
]
g2
}

κ−1
µ ∂zβ

Nβα = (zα − yα)
{
−f3 + 3(zβ − yβ)

2f5

+ (1− 2ν)
[
f − (zβ − yβ)

2f2(f + 2g)
]
g2
}

κ−1
µ ∂z3

N3α = (zα − yα)
{
−2νf3 + 3z23f

5
}

κ−1
µ ∂zα

Nα3 = −z3f3 + 3(zα − yα)
2z3f

5 + (1− 2ν)
[
−1 + (zα − yα)

2(f + g)f
]
fg

κ−1
µ ∂z3

N33 = −2νz3f
3 + 3z33f

5.

As a consequence, we obtain

(4.20)
Tr

(
∇̂N (α)

)
= 2κµ(1− 2ν)(zα − yα)f

3, forα = 1, 2

Tr
(
∇̂N (3)

)
= 2κµ(1− 2ν)z3f

3.

Combining (4.19), (4.20) and using the explicit expression for f , we find

uαε (y) =
1− ν

µ

ε3p(zα − yα)

|z − y|3 +O(ε4), forα = 1, 2

u3ε(y) =
1− ν

µ

ε3p z3
|z − y|3 +O(ε4),

that are the components given in (2.1).

Appendix. Neumann function for the half-space with zero traction

For the reader’s convenience, we provide here the complete derivation of the explicit

formula for the Neumann function N of the problem

Lv := div
(
C∇̂v

)
= b in R

3
−,

(
C∇̂v

)
e3 = 0 in R

2

as stated in Theorem 3.1. By definition, N is the kernel of the integral operator which

associates to the forcing term b the solution v to the boundary value problem, viz.

v(x) =

∫

R3

−

N(x,y)b(y) dy.

The explicit expression for the Neumann function has been determined by Mindlin

in [31, 32] using different approaches. Here, we follow the second one which is based

on the Papkovich–Neuber representation of the displacement v and potential theory.
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There exist other mathematical approaches to obtain the Neumann function. See for

example [38] for an application of a Fourier method.

Let us introduce the functions

φ0(x) :=
1

|x| and ψ0(x) :=
φ0(x)

1− x3φ0(x)
=

1

|x| − x3
,

observing that, apart from ∂iφ0 = −xiφ30, i = 1, 2, 3, the following identities hold true

for α = 1, 2,

φ0 − ψ0 = −x3φ0 ψ0, ∂αψ0 = −xαφ0 ψ2
0 , ∂3ψ0 = φ0 ψ0, ∂3(φ0 ψ0) = φ30.

We denote by φ and φ̃ the values φ0(x + e3) and φ0(x − e3), respectively, with

analogous notation for ψ0, that is, ψ and ψ̃ are the values ψ0(x+ e3) and ψ0(x− e3)

respectively.

Proposition A.1. — Let I be the identity matrix and δ the Dirac delta concentrated

at −e3. Then, the matrix-valued function N = N (x) solution to

Lv := div
(
C∇̂v

)
= δI in R

3
−,

(
C∇̂v

)
e3 = 0 in R

2,

is given by

(A.1)

Nαα=−Cµ,ν

{
(3− 4ν)φ+ x2αφ

3 + φ̃+ [(3− 4ν)x2α − 2x3]φ̃
3

+ 6x2αx3φ̃
5 + cν

(
ψ̃ − x2αφ̃ ψ̃

2
)}

Nαβ=−Cµ,νxαxβ
{
φ3 + (3− 4ν)φ̃3 + 6x3φ̃

5 − cν φ̃ ψ̃
2
}

N3α=−Cµ,νxα
{
(x3 + 1)φ3 + (3− 4ν)(x3 + 1)φ̃3 + 6x3(x3 − 1)φ̃5 − cν φ̃ ψ̃

}

Nα3=−Cµ,ν xα
{
(x3 + 1)φ3 + (3− 4ν)(x3 + 1)φ̃3 − 6x3(x3 − 1)φ̃5 + cν φ̃ ψ̃

}
,

N33=−Cµ,ν

{
(3− 4ν)φ+ (x3 + 1)2φ3 + (1 + cν)φ̃

+
[
(3− 4ν)(x3 − 1)2 + 2x3

]
φ̃3 − 6x3(x3 − 1)2φ̃5

}
,

where Cµ,ν :=1/{16πµ(1− ν)}, cν := 4(1− ν)(1− 2ν) and α = 1, 2.

To establish (A.1), we observe that the columns N (i) of N are determined by

solving the equation Lv = eiδ for i = 1, 2, 3 and using the Papkovich–Neuber repre-

sentation

(A.2) v = Cµ,ν

{
4(1− ν)h−∇

(
x · h+ β

)}
with

{
∆h = 4πeiδ

∆β = 4πδi3δ.

where δij is the Kronecker symbol. The coupling between h and β is determined by

the boundary conditions on the plane {x3 = 0}, which are

(A.3)
(1− 2ν)(∂3hα + ∂αh3)− x · ∂2α3h− ∂2α3β = 0, (α = 1, 2),

2ν div h+ 2(1− 2ν) ∂3h3 − x · ∂233h− ∂233β = 0,
for x3 = 0.

Given y := (y1, y2, y3), let ỹ be the reflexed point. Set

G(x,y) := −φ0
(
x− y

)
+ φ0

(
x− ỹ

)
.
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Denoting by 〈f, g〉 the action of the distribution f on the function g, we determine h

and β taking advantage of the relation (which is deduced from the second Green

identity)

(A.4) F (x) = 1
4π 〈∆F,G(x, ·)〉,

applied to different choices of F .

Proof of Proposition A.1.. — To determine N , we consider separately the case of hor-

izontal and vertical forcing. By symmetry, x1 and x2 can be interchanged.

Horizontal force: Lv = e1δ. — We choose h2 = 0, so that boundary conditions be-

come 



(1− 2ν)(∂3h1 + ∂1h3)− x1∂
2
13h1 − ∂213β = 0,

(1− 2ν)∂2h3 − x1∂
2
23h1 − ∂223β = 0,

2ν ∂1h1 + 2(1− ν) ∂3h3 − x1∂
2
33h1 − ∂233β = 0,

for x3 = 0.

Differentiating the first equation with respect to x1, the second with respect to x2
and taking the difference, we obtain

0 = (1− 2ν)∂223h1 + ∂223h1 = 2(1− ν)∂223h1 for x3 = 0,

which suggests, after integration with respect to x2, the choice F := ∂3h1. Applying

(A.4),

∂3h1 = −∂y3
G
∣∣
y=−e3

= −∂3(φ+ φ̃) for x3 < 0,

and thus h1 = −(φ+ φ̃).

Being ∂3h1 null for x3 = 0, integration of the second boundary condition encourages

the choice F := (1− 2ν)h3 − ∂3β which is zero for x3 = 0. Hence, since ∆F = 0, we

deduce

(A.5) (1− 2ν)h3 − ∂3β = 0 for x3 < 0.

Concerning the third boundary condition, we observe that

∂1h1=x1(φ
3 + φ̃3)=2x1φ̃

3=−2∂1φ̃

x1∂
2
33h1=x1(φ

3 + φ̃3 − 3φ5 − 3φ̃5)=2x1(φ̃
3 − 3φ̃5)=−2

(
∂1φ̃− ∂213φ̃

) for x3=0,

since φ and φ̃ coincide when x3 = 0. Substituting in the third boundary condition,

we obtain

F := 2(1− ν)∂3h3 − ∂233β + 2(1− 2ν)∂1φ̃− 2∂213φ̃ = 0 for x3 = 0.

Since ∆F = 0, we infer

2(1− ν)∂3h3 − ∂233β + 2(1− 2ν)∂1φ̃− 2∂213φ̃ = 0 for x3 < 0,

and thus, being ∂1φ̃ = −x1φ̃3 = −∂3(x1φ̃ ψ̃),

2(1− ν)h3 − ∂3β = −2x1φ̃
3 + 2(1− 2ν)x1φ̃ ψ̃ for x3 < 0.
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Coupling with (A.5), we deduce
{

h3 = −2x1φ̃
3 + 2(1− 2ν)x1φ̃ ψ̃

∂3β = −2(1− 2ν)x1φ̃
3 + 2(1− 2ν)2x1φ̃ ψ̃

for x3 < 0.

Recalling that φ̃3 = ∂3(φ̃ ψ̃) and φ̃ ψ̃ = ∂3ψ̃, by integration,

β = −2(1− 2ν)x1φ̃ ψ̃ + 2(1− 2ν)2x1ψ̃ for x3 < 0.

Using the identity (x3 − 1)φ̃ ψ̃ = ψ̃ − φ̃, we infer

x3h3 + β = x1
{
−2(1− 2ν)φ̃− 2x3φ̃

3 + cνψ̃
}
.

Substituting in (A.2), we get the expressions for Ni1 given in (A.1).

Vertical force: Lv = e3δ. — Choosing h1 = h2 = 0, conditions (A.3) become
{
(1− 2ν)∂αh3 − ∂2α3β = 0 (α = 1, 2),

2(1− ν)∂3h3 − ∂233β = 0
for x3 = 0.

Integrating the first relation with respect to xα, we obtain
{

(1− 2ν)h3 − ∂3β = 0

2(1− ν)∂3h3 − ∂233β = 0
for x3 = 0.

Since ∆h3 = ∆β = δ, identity (A.4) with F := (1− 2ν)h3 − ∂3β gives

(A.6)
(1− 2ν)h3 − ∂3β =

{
(1− 2ν)G+ ∂y3

G
}∣∣

y=−e3

= (1− 2ν)(−φ+ φ̃)− (x3 + 1)φ3 − (x3 − 1)φ̃3 for x3 < 0.

Applying (A.4) to F := 2(1− ν)∂3h3 − ∂233β, we deduce

2(1− ν)∂3h3 − ∂233β =
{
−2(1− ν)∂y3

G− ∂2y3y3
G
}∣∣

y=−e3

= ∂3
{
−2(1− ν)(φ+ φ̃) + ∂3(φ− φ̃)

}
for x3 < 0.

Integrating with respect to x3, we infer

2(1− ν)h3 − ∂3β = −2(1− ν)(φ+ φ̃)− (x3 + 1)φ3 + (x3 − 1)φ̃3 for x3 < 0.

Coupling with (A.6), we get explicit expressions for h3 and ∂3β, namely
{

h3 = −φ− (3− 4ν)φ̃+ 2(x3 − 1)φ̃3

∂3β = (x3 + 1)φ3 − cν φ̃+ (3− 4ν)(x3 − 1)φ̃3
for x3 < 0.

Differentiation of ∂3β with respect to xα gives

∂23αβ = −3xα(x3 + 1)φ5 + cνxαφ̃
3 − 3(3− 4ν)xα(x3 − 1)φ̃5

= ∂3
{
xαφ

3 + cνxαφ̃ ψ̃ + (3− 4ν)xαφ̃
3
}

and thus

∂αβ = xα
{
φ3 + cν φ̃ ψ̃ + (3− 4ν)φ̃3

}
for x3 < 0.

Recalling identity (A.2), we deduce the corresponding expressions for Ni3 in (A.1). �
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The fundamental solution N = N(x,y) in the half-space {x3 < 0} is such that its

columns v1,v2 and v3 solve Lvi = δyei where δy is the Dirac delta concentrated at

y = (y1, y2, y3) with y3 < 0. Thus, the Neumann function N is given by

(A.7) N(x,y) =
1

|y3|
N

(
x1 − y1
|y3|

,
x2 − y2
|y3|

,
x3
|y3|

)

as a result of the homogeneity of δ and the second order degree of L.

Recalling the definitions of φ, φ̃, ψ̃ and computing at (x1 − y1, x2 − y2, x3)/|y3|, we

obtain the identities

f := − φ

y3
=

1

|x− y| , f̃ := − φ̃

y3
=

1

|x− ỹ| , g̃ := − ψ̃

y3
=

1

|x− ỹ| − x3 − y3
.

where ỹ = (y1, y2,−y3). Hence, the components of C−1
µ,νN are given by

C−1
µ,νNαα = −(3− 4ν)f − (xα − yα)

2f3 − f̃ − (3− 4ν)(xα − yα)
2f̃3 − cν g̃

+ cν(xα − yα)
2f̃ g̃2 − 2x3y3f̃

3 + 6(xα − yα)
2x3y3f̃

5

C−1
µ,νNαβ = (xα − yα)(xβ − yβ)

{
−f3 − (3− 4ν)f̃3 + cν f̃ g̃

2 + 6x3y3f̃
5
}

C−1
µ,νN3α = (xα − yα)

{
−(x3 − y3)f

3 − (3− 4ν)(x3 − y3)f̃
3 + cν f̃ g̃

+ 6x3y3(x3 + y3)f̃
5
}

C−1
µ,νNα3 = (xα − yα)

{
−(x3 − y3)f

3 − (3− 4ν)(x3 − y3)f̃
3 − cν f̃ g̃

− 6x3y3(x3 + y3)f̃
5
}

C−1
µ,νN33 = −(3− 4ν)f − (x3 − y3)

2f3 − (1 + cν)f̃ − (3− 4ν)(x3 + y3)
2f̃3

+ 2x3y3f̃
3 − 6x3y3(x3 + y3)

2f̃5.

Recollecting the expression for fundamental solution Γ in the whole space and using

the relation f̃ = g̃− (x3 + y3)f̃ g̃, the above formulas can be rewritten as N = Γ+R,

where Γ is computed at x− y and the component Rij of R are given by

Rαα = Cµ,ν

{
−(f̃ + cν g̃)− (3− 4ν)η2αf̃

3 + cνη
2
αf̃ g̃

2 − 2x3y3
(
f̃3 − 3η2αf̃

5
)}

Rβα = Cµ,νηαηβ
{
−(3− 4ν)f̃3 + cν f̃ g̃

2 + 6x3y3f̃
5
}

R3α = Cµ,νηα
{
−(3− 4ν)(η3 − 2y3)f̃

3 + cν f̃ g̃ + 6x3y3η3f̃
5
}

Rα3 = Cµ,νηα

{
−(3− 4ν)(η3 − 2y3)f̃

3 − cν f̃ g̃ − 6x3y3η3f̃
5
}

R33 = Cµ,ν

{
−(f̃ + cν g̃)− (3− 4ν)η23 f̃

3 + cνη3f̃ g̃ + 2x3y3
(
f̃3 − 3η23 f̃

5
)}
,

where ηα = xα − yα for α = 1, 2 and η3 = x3 + y3, which can be recombined as

Rij = Cµ,ν

{
−(f̃+cν g̃)δij−(3−4ν)ηiηj f̃

3+2(3−4ν)y3
[
δ3i(1−δ3j)ηj+δ3j(1−δ3i)ηi

]
f̃3

+ cν
[
δi3ηj − δ3j(1− δ3i)ηi

]
f̃ g̃ + cν(1− δ3j)(1− δ3i)ηiηj f̃ g̃

2

− 2(1− 2δ3j)x3y3
(
δij f̃

3 − 3ηiηj f̃
5
)}
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for i, j = 1, 2, 3. Since x3 = η3−y3, we obtain the decomposition Rij := R1
ij+R

2
ij+R

3
ij ,

where

R1
ij := Cµ,ν

{
−(f̃ + cν g̃)δij − (3− 4ν)ηiηj f̃

3

+ cν
[
δ3iηj − δ3j(1− δ3i)ηi

]
f̃ g̃ + cν(1− δ3j)(1− δ3i)ηiηj f̃ g̃

2
}

R2
ij := 2Cµ,νy3

{
(3− 4ν)

[
δ3i(1− δ3j)ηj + δ3j(1− δ3i)ηi

]
f̃3 − (1− 2δ3j)δijη3f̃

3

+ 3(1− 2δ3j)ηiηjη3f̃
5
}

R3
ij := 2Cµ,ν(1− 2δ3j)y

2
3

{
δij f̃

3 − 3ηiηj f̃
5
}
.

The proof of Theorem 3.1 is complete.
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