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Analysis of a Multilevel Iterative Method
for Nonlinear Finite Element Equations*

By Randolph E. Bank and Donald J. Rose

Abstract. The multilevel iterative technique is a powerful technique for solving the systems of
equations associated with discretized partial differential equations. We describe how this
technique can be combined with a globally convergent approximate Newton method to solve
nonlinear partial differential equations. We show that asymptotically only one Newton
iteration per level is required; thus the complexity for linear and nonlinear problems is
essentially equal.

1. Introduction. In this discussion we present an extension of a multilevel iterative
method for linear elliptic equations to nonlinear boundary value problems. In
particular, we show how to use an approximate-Newton multilevel scheme to solve
the discrete nonlinear systems of equations which arise from a standard weak
formulation of the nonlinear partial differential equation.

The framework of our analysis combines the multilevel iterative methods for
linear finite element equations discussed in Bank and Dupont [2] and Bank [3] with
the global approximate Newton setting of Bank and Rose [4], [5]. Under appropriate
conditions of elliptic regularity, we show that both the continuous and discrete
solutions exist and that our scheme converges to an approximation within the
discretization error of the continuous problem in time (and also space) proportional
to the largest discrete problem. That is, we can compute in time O(Nj) an approxi-
mation which is 0(N~q) accurate, where q is the appropriate exponent for the
A^-dimensional finite element spaces 911..

In Section 2, we set up the weak (variational) form of the nonlinear boundary
value problem. Using this formulation, we then specify, in Section 3, our regularity
assumptions on the smoothness of the nonlinear operator. These assumptions are
motivated by the generalized Lax-Milgram analysis presented by Babuska and Aziz
in [1] and our previous analysis in [5]. Our main result here is that, asymptotically,
we need compute only one approximate Newton iteration per level (refinement),
provided that the approximate and exact Newton steps agree to some tolerance
which is independent of the level. This implies that the total cost of solving a
nonlinear problem of size N is bounded by C • F(N), where F(N) is the cost of
solving a linear problem of size Nj and Cal. F(Nj) = O(Nj) for the linear
multigrid methods described in [2], [3].
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454 RANDOLPH E. BANK AND DONALD J. ROSE

In Section 4, we consider the case where the linear approximate-Newton equations
are solved by the/-level scheme of [2], [3], and we complete the analysis for the time
bound cited above. We illustrate our analysis with an example boundary value
problem of the form

,   n L(u) = 0      inß ÇA2,
du/dn = 0    on dû,

where
(1.2) L(u) = VflV« + f(x, u, Vm).

A numerical example is given in Section 5.
Our approach for extending multilevel methodology to nonlinear operators using

an approximate-Newton iterative scheme differs in several respects from other
approaches recently reported or under investigation. We discuss briefly the relation
of our scheme to those of Brandt and McCormick [8], Hackbusch [10], and
Mansfield [12].

A common thread in our approach, and those of [8], [10], is the consideration of a
sequence of discrete nonlinear problems, say, L,(«J) = 0, where the u* are succes-
sively more accurate approximations of the solutions of the nonlinear operator
L(u) = 0. As a consequence, the representation of u* in the space containing w*+, is
such that Lj+X(u*) is relatively small. This motivates the choice of taking usj, for
some iteration index jr., as the initial guess in an iterative method to solve Lj+ x(u*+, )
= 0. The integer s¡ is chosen such that the error || u* — usj || is accurate to within the
discretization error. Thus Lj+x(Ujj) will also be relatively small, and consequently
the iterative method should require Sj < s steps (independent of j) for each mesh
level/

Usually the iterative method selected to compute the uk, 1 < k < Sj, is subtle and
recursively winds its way through a sequence of coarser mesh levels; the details need
not concern us here. However, each choice of such an iterative method leads to a
different 'v'-level' strategy. The/level strategy can be based on a nonlinear iteration,
such as the nonlinear Gauss-Seidel method advocated in [8], or on a nonlinear
Picard type iteration used in [10]. These schemes make no use of Jacobian informa-
tion.

In contrast, we use a y-level strategy based on a linear iteration after choosing a
linear system to represent the Jacobian. Since asymptotically Sj — 1 for this proce-
dure, this strategy will usually require substantially fewer function evaluations of the
Lj. On the other hand, for problems where the Jacobian is difficult to compute, our
method becomes less attractive.

The recent paper by Mansfield [12] takes a different approach. In order to solve
Lj(u*) = 0, for some fixed mesh index y, she considers a one parameter embedding
hj(v, A) = 0, 0 < A < 1, such that A,.(0,0) = 0, and /,/w*, 1) = Lj(uJ) = 0. The
solution is continued from « = 0 to v = u* by solving h(v¡, A,) = 0, where 0 = X,
< X2 < • • • < \m — 1. The A, are chosen such that vi can be computed by Newton's
method using u,_, as the initial iterate. Mansfield proves that the error ||w* — u\\,
where L(u) — 0, is accurate to the discretization order, and the number of continua-
tion steps, m, is independent of the mesh. Furthermore, by showing that the number
of Newton steps, s, to obtain the computed vt satisfies s¡ < s, independent of the
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AN ITERATIVE METHOD FOR FINITE ELEMENT EQUATIONS 455

mesh, and by using a linear/level iterative scheme for the Newton equations, she
obtains an O(Nj) time bound. Assuming that these computed approximations to the
u* are accurate to the discretization error, this result is analogous to our theorem in
Section 4. Note that this method may require m ■ s linear systems be solved on the
finest mesh. Our results would suggest an alternative in which one continues from
X = 0 to A = 1 on the coarsest mesh only, thereby obtaining u''. One then refines
the mesh for X = 1 and obtains the sequence u'f on the finer meshes. This would
asymptotically require only one linear system be solved on the finest mesh.

Multilevel iteration is a general, powerful technique for solving nonlinear operator
equations which can be approximated by an orderly sequence of discrete nonlinear
systems. The linear multigrid schemes of Brandt [7], Hackbusch [9], Nicolaides [ 13],
and possibly others, could be adapted in a similar manner to the one proposed here
and would yield methods with similar properties. We have found our particular
procedure to be effective on a variety of nonlinear PDE's; the implementation was a
reasonably straightforward extension of the one described in [6] for linear problems.

2. Preliminaries. To introduce ideas, we consider a weak form of the example
nonlinear elliptic boundary value problem (1.1)—(1.2): find u E Hx(û) such that

a(u,v) = 0   for all« E Hx(ti),

(2 1)
a(u, v) = I aVu ■ Vi> + f(x,u,Vu)v dx.

Ja

Here Hx(ti) denotes the usual Sobolev space equipped with the norm

(2.2) \\u\\2 — (u, u)x,       (u,v)x = / VuVf + uvdx.

We will defer our discussion of nonlinear elliptic problems such as (2.1) until Section
4. In this section and the next, we prefer to deal with a more abstract problem for
which (2.1) is a special case.

Let g be a mapping of a Hilbert space H onto itself. Equip H with an inner
product (u, v) and norm ||w||2 = (u, u). We consider the following problem: find
u* E H such that

(2.3) (g(u*),v) = 0   for all uG//.
In the example above, g is defined implicitly via the Riesz representation theorem,
H = Hx(û), and the norm and inner product are given by (2.2).

We shall (formally) apply an approximate Newton method to (2.3). Starting from
some initial guess u° G H, we compute a sequence of iterates uk G H, k = 1,2,3,...,
as follows: find xk E H such that

(2.4) (Mkxk,v) = -(g(uk),v)    foralluG/7,

where Mk is a linear mapping from H to H, approximating, in some sense, the
derivative g'(uk). Then we set

(2.5) u* + 1 = uk + tkxk,

where tk G (0,1] is a scalar damping parameter. Setting Mk = g'(uk) and tk — 1
corresponds to Newton's method.
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456 RANDOLPH E. BANK AND DONALD J. ROSE

Generally, a procedure such as (2.4)-(2.5) is intractable computationally since H
may be infinite dimensional. Thus we seek to discretize (2.3)-(2.5). Let {911,} be an
indexed family of finite-dimensional subspaces dense in H, nested in the sense that
911- C 91t t for k > i. Let TV, denote the dimension of 9lt,. We assume the dimensions

j —      K j j j

of the spaces increase geometrically,

(2.6) Nj = ßNj_x,       ß>\,
since this will be the typical situation arising in practice. The discrete analogue of
(2.3) is: find u* E 9H,. such that

(2.7) (*(«*). v) = °   for all v E 9Hy.

Once a basis for 911 • has been chosen, (2.7) can be formulated as a set of Nj
nonlinear algebraic equations.

The analogue of (2.4)-(2.5) proceeds from an initial guess uj E 91ty and computes
uk E 9H, such thatj j
(2.8) {Mkxk, v) = - {g{uk), v)    for all v E 9Hy..

Equation (2.8) corresponds to an Nj X Nj linear algebraic system to be solved. Then
set
(2.9) uk+x = uk + tkxk.

Corresponding to 9!t-, we define a sequence of seminorms, | • \j on H by

(2.10) |4=      sup      |(k,d)|/||©||.
i)6^; u#0

In essence, if u E H and Pj is the orthogonal projector from H to 9It, then
\u\j= || Pj(u)\\ ; furthermore, since the 9Hy are dense in H,

(2.11) Hull = sup | m L
j

Thus, | • \j represents a strong norm on G^Lk, k </ and | u \j■ — Il u \\ for all u E 9IL^,
k <f, while | -\j is a seminorm on 91t¿ with k >j. In the solution of (2.7), it is the
seminorm | ¡ L which is computable, and the solution u* satisfies | g(u*) \j = 0, while
||g(H*)|| >0 in general.

Suppose solutions u* and u* of (2.3) and (2.7), respectively, exist (this follows
from our assumptions below; see Remark 4). Our central assumption is that the
discrete solutions u* are increasingly good approximations of u*. Specifically, we
assume there exists a fixed constant C, = Cx(u, g, {9!t..}) and a positive number q
such that

(2.12) \\u*-u*\\^CxNj-q.

Given (2.12), our strategy for computing approximate solutions which satisfy
bounds like (2.12) is to sequentially compute approximate solutions of (2.7), using
(2.8)-(2.9), and using the final iterate of they — 1st problem as the initial guess for
theyth. We summarize this procedure in

Algorithm I.
(i) For 7=1, carry out sx iterations of (2.8)-(2.9), starting from initial guess

u\dE(t)lx.
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AN ITERATIVE METHOD FOR FINITE ELEMENT EQUATIONS 457

(ii) For j > 1, carry out s, iterations of (2.8)-(2.9), starting from initial guess
u° = us/-¡ G9Hy_, ç9H,.

3. Analysis. We begin by stating the underlying assumptions of our analysis. Our
presentation is chosen to be consistent with our analysis in [5].

Given u®, let §7 be closed subsets of 91L7- inductively defined as follows:

%x = {uEyix\\g(u)\x^\g{u°)\x},

(3.1) S,= («e91t,||g(H)|,.«; sup \g(v)\}.
oeS,.,

Define

(3.2) S0=    iiG//|||g(ii)||<     sup     ||g(o)||   .
*■ oeS,;;>l '

Al. S0is bounded.
Remark 1. For w E 911,, z E 91L/._ „ and vEH,

I (*(»). «0 |<| {g(v), Pj-]W) | +| (g(t>) -*,(/- Py-,)w)

Hence

(3-3) |s(«>H<|s(»H-i +    inf    |g(t;)-z|,.

Typically, the spaces 911. will be such that the second term can be bounded by
CAT/!«,. Thus if

Yi = ls(M?)li>       Yy= SUP|S(»)|/.
ueSy

then
Y7<V, + CAf.lV       y>l.

If (2.6) holds,

Y,<7, + CNx-q(\-ß-«y'<C.

Using (2.11), we see that S0 is contained in the level set

S¿={uEH\\\g(u)\\<C'}

(cf. Al of [5]).
A2. We assume g is differentiable on S0, and for u E SQ and v, w E H:

(3.4) \(g'(u)v,w)\<C2\\v\\\\w\\,

(3.5) inf     sup   \(g'(u)v,w)\>kjx > 0,
llcll = l   ||W||<1

(3.6) sup|(g'(«)»,w)|>0,       w^O

(C2 is finite and C2 and k3 are independent of u).
Remark 2. Equations (3.4)-(3.6) guarantee that a unique solution v E H will exist

for the problem
(g'(u)v,w) — (z,w)    for all w EH,
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458 RANDOLPH E. BANK AND DONALD J. ROSE

where z EH and

(3.7) llolKMzll;
see Babuska and Aziz [1, Section 5.2].

A3. For u E S , v, w G 911, and Mk as in (2.8), assume

(3.8) inf     sup   \(g'(u)v,w)\>k¡x > 0,
llt>lt = l   ||W||<1

(3.9) inf      sup   \(Mkv,w)\>kxx>0
\\v\\ = \    \\w\\^\

(kx and k6 are independent of u andy).
Remark 3. In our particular application (3.8) will follow from A2, and we will

show kx <2k6 (see inequality 4.7).
We embed S0 in the closed, convex ball

(3.10) Sx = \uEH\\\u\\ < sup Hüll +fc,||g(tj)
1 ves0

A4. We assume g' is Lipshitz on Sx and for u, v E Sx,

(3.11) llg'(«)-g'(o)ll<ifc2lt«-t»ll.
Since g is differentiable, we also have

(3.12) llg(«)-g(ü)ll<*5ll"-»ll
for u,vESx (as in [5, Eq. (2.28)]).

Remark 4. Assumption Al above is analogous to Al in [5]. Equation (3.9) implies
a bound as in (3.7), which, in turn, implies A2 of [5]. Finally, A4 above implies A3 of
[5]. Thus the argument used to obtain Theorem 1 of [5] implies the existence of each
u* E 9Hy and also u* EH.

We define the relative residuals ak for the solutions of (2.7) by

(3-13) a* = |g'(«*)** + g{uk) \j/\g{uk) \j.

Th quantity a* is computable and measures how well xf approximates the true
Newton step (ak — 0 for Newton's method). We will choose the damping parameters
tk of (2.9) according to the formula

(3.14) tk = {\+%k\g{uk)\J)-\

where the %k are nonnegative scalars.
The following result applies Proposition 1 of [5] for each j > 1.

Proposition 3.1. Let 80 E (0,1 - a0), aj G (0, a0),a0< 1, and let tk be chosen as
in (3.14), where 0 « %f « %0, and

(3.15) %k > (k2k2/2){\ -a*- o0)-' - | g{uk) l;1.

Assume A1-A4 and all ak < a°. Then
(i) all uk E §>j, the sequence \g(uk)\j is strictly decreasing, and | g(w*) |y-> 0.

Furthermore,
(ii) \g(uk + x)\j/\g(uk) \j -» 0 if and only if cxk -» 0, and, for any fixed p G (0,1],

\g(ur)\^c3\g(uk)\x+»
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// and only if

«/<QI*k)lT
for positive constants C3 and Q.

Note that we may consider %0 as bounded uniformly in j by

(3.16) %0>{k2k2/2)(l-a0-80)-\

Proposition 3.1 states that the approximate-Newton method converges and that
the rate of convergence is governed by the ak. The parameter ô0 is a sufficient
decrease parameter [5] and can be used in the actual computation to determine if
(3.15) is satisfied. In [5] we prove that, for uk sufficiently close to uj, we have

fe41|w* - ujII <\ g( uj ) |,. < k51| ii* - uj ||,
showing that the rate of convergence of | g( uk ) |. to zero is also the asymptotic rate
of convergence of uj to u*.

In our case, however, we are interested in computing uj only insofar as it is an
approximation of u* of (2.3), and not as an approximation of uj (although the two
are clearly related). Thus we want to avoid wasting iterations by computing 'too
good' an approximation of u*. In Theorem 3.2, we indicate the degree to which we
must approximate uj in order to obtain bounds of the form (2.12) for the computed
solutions.

Theorem 3.2. Let uj satisfy (2.7) and let uj, 0 < k «5 s¡, be computed as in
Algorithm I, using (2.8), (2.9), and(3.\4). Let 8 E (0, ß~q), and suppose

(3.17) ||«{■-«*|| <CxeNx-q,
where

(318) e = 8(]+ßq)(\-8ßqy\
11«^-«;II <Ö\\uJ-uJ\\,

and uj — uSj'z\,j > 1. Then

(3.19) II«;-'-ii*ll <C,(1 +e)Nj-".
Proof. Let e¡ = Il u)> - w*||. Then by (3.18), (2.12), and (2.6),

ej < 8IIu° - u*\\<8{\\uSj>-{ - u*_,11 + Hu*_, - «*|| + ||«* - uj||}

««{e^. + C.O+iS«)^}.

Solution of the majorizing difference equation, and the use of (3.17), shows ey <
CxeNj-q, and thus

\\usj> - ii*|| < ej + ||w* - u*|| < C,(l + e)Nj-q.

Theorem 3.2 quantifies the advantage of using the strategy embodied in Algorithm
I. For each problem after the first, one must reduce the error by only a fixed
amount, independent of j, in order to obtain a sequence of approximations at the
level of discretization error. The central result of this section is that for j sufficiently
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460 RANDOLPH E. BANK AND DONALD J. ROSE

large s¡= 1. Thus, the asymptotic cost of solving the nonlinear systems (2.7) is
essentially the cost of computing approximate solutions of linear systems of the form
(2.8).

To see this we use a Taylor expansion as in (2.26) of [5] to obtain, for v E 911,

0 = {g(uj),v) = {g{uj),v) + {g'{uj){uj - uj},v)

+ ^({sU + ^î-^})-S'{uk)}{uj-uj},v)ds

(3.20) = (l - tk){g{uj), v) + tk{g'{uj)xj + g{uj), v)

+ (giuj){uj-uj+x},v)

+ f({g'(uj + s{uj - uj}) - g'{uj)}{uj - uj},v) ds.

Moving the third term to the left-hand side, taking (semi) norms, and using (3.8),
(3.11), and (3.13), we have

\uk+x - u*\.    I"; "j b
(3.21)

<k6{{\ - tk)\g{uj)\J + tkaj\g(uj)\J + (k2/2)\uj - uj\2}.

Using Proposition 3.1 and (3.15), (3.16), and

lg(M;)i,<*5|M*-M*i,

(an easy consequence of (3.12), noting that | u |y < II «11 with equality for ü G 91L-),
we obtain

(3.22) | uj + x - uj \j < k6{{%0kj + k2/2) | uj - uj |, + k5aj) \ uj - uj |,.

Consider the case k = 0. Then, using Theorem 3.2 inductively,

I uj - u* \j < 11"?-.' - "*H + II«* - «*ll < C,{1 + (1 + e)ß")Nfi,
and, from (3.22),

(3.23) | u) - uj \j < {c6N-q + C7«*) | ii« - uj \j,

where

Q = Cxk6{%0kj + k2/2){\ + (1 + e)ßq),        C7 = k6k5.

For example, suppose that j is sufficiently large that CbNfq < 8/2. Since we can
control a°j, we may require

(3.24) C1aj<8/2.
Then (3.18) will be satisfied for Sj= 1. Note that Q and C7 are independent of /
and thus we have shown

Theorem 3.3. Let the hypotheses of Proposition 3.1 hold, and suppose aj is
sufficiently small (aj satisfies (3.24), for example). Then, for j sufficiently large, we
may take í = 1 in (3.19).
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We will establish (3.24) for the multilevel iterative method in the next section.
Remark 5. In Algorithm I, we obtain linear convergence of uj> to u* with the rate

of convergence being roughly ß~q. Since Newton's method is quadratically conver-
gent, one can ask under what circumstances we can have uj' converge to u*
quadratically. Assuming (2.12) is sharp, this can be accomplished if we allow the
dimensions of the spaces 911, to square rather than increase geometrically, i.e.,

(3.25) Nj = ßNjLx,       ß>0,

rather than (2.6). If we repeat our analysis using (3.25) in place of (2.6), the analogue
of Theorem 3.2, Eq. (3.18) would indicate that we must reduce the initial error by
8Nj~q/2 rather than by a fixed amount. If we require aj < C|g(M*)| (which is
consistent with quadratic convergence on the basis of Proposition 3.1), then (3.22)
implies that the first iteration produces an error reduction of the right order of
magnitude 0(Nj~q/2), but the constant may be too large. Two iterations, however,
will be more than sufficient; hence Sj < 2 for y sufficiently large.

4. A Newton-Multilevel Method. We now return to the example problem (1.1). Let
a E C'(ß) be positive and bounded in Í2; i.e.,

0<a^a(x)^â   forxEÛ.

Let of/du E C°(ß), and df/dux¡ G C'(fi), i = 1,2. For u E HX(Û), define

(4.1) b(u; v,w) - f flVt) • Vw + b ■ Vvw + cvwdx,

where

bi = -z—(x,u,Vu)    and    c = -r- (x, u, Vu).
dux au

If we make a correspondence between a(u, v) and (g(u), v) as in Section 2, then
b(u; v,w) corresponds to (g'(u)v, w). Recall that H — Hx(ü) and that the norm
and inner product for H are given in (2.2).

Let t, be a quasi-uniform, shape regular triangulation of Œ, and let hx denote the
diameter of the largest triangle in t, (for convenience, assume ñ is a polygon). We
inductively construct a nested sequence of triangulations T,tj= 1,2,..., as follows:
for each triangle t G r¡_x, construct four triangles in t7 by pairwise connecting the
midpoints of the edges of t. Each triangulation will then be quasi-uniform and shape
regular, and will have hy = hx2x~j; see [3], [2]. Let 9IL. denote the space of C°
piecewise linear polynomials associated with ry. Then 91t. C GJtk, k >/ and ß = 4
in (2.6).

The central issue to be addressed in this section is the method of solving the linear
systems (2.8) required by Algorithm I. If we were to use Newton's method (Mk =
g'(uj)), then, in the present context, we would solve the problems: find xj E 91L
such that

(4.2) b(uj; xj, v) = -a(uj, v)    for all v E 91Ly.

(In this case a* = 0 in (3.13).)
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However, rather than solve (4.2) exactly, we will compute an approximate solu-
tion, xj, using a multilevel iterative method, in particular, one of the /level schemes
described in [3], [2]. In this case, Mk ^ g'(uj) in general, but rather Mk is defined
implicitly in terms of the iteration; see [5, Section 4].

If r iterations of the/level iteration are used, starting from initial guess zero, then
the analysis in [3], [2] shows that under suitable hypotheses

(4.3) \\xj-xj\\^yr\\xj\\,

where y G [0,1) is a fixed constant independent of / Furthermore, the cost of each
iteration is O(N-) asj -» oo.

We assume that for u G 50, the boundary value problem: find v E Hx(ti) such
that
(4.4) b(u;v,w) = (z,w)    for all w E H\Q),

and its adjoint: find v E HX(Q) such that

(4.5) b*(u;v,w) = b(u;w,v) = (z,w)    for all w G Hx(ü),

have unique solutions for each z E Hx(ti). (This will follow if assumption A2 is
satisfied.)

If one assumes (4.4)-(4.5) and a modest amount of elliptic regularity, then one
can use the argument in Schatz [14] to prove that the problem: find v E 911- such
that
(4.6) b(u;v,w) = (z,w)   for all w G 911,,

and its adjoint have unique solutions, provided hx is sufficiently small.
This in turn can be used to verify assumption A3, Eq. (3.8) as follows [1]: Let

v E HX(Q) and choose the scalar X sufficiently large that

b(u; v,v) +X(v,v) » ClluH2.

Note that X is independent of v. By arguments given in [14], the problem: find
z G 91L such that

b(u;z,w) = (Xv,w)    for all w G 91t,,

has a unique solution satisfying || z || < C'll Xv ||, provided h, is sufficiently small.
Now let v E 9H with Hull = 1, and let z be defined as above. Take

w= (v + z)/(\ + C'X),
and note that II w || > 1. Then

b(u; v,w) = (b(u; v, v) + b(u; v, z))/ (1 + C'X)

= (b(u; v, v) + X(v, v))/ (1 + C'X)

>C/(l + C'X)=k-6x.

Finally, note that, on the basis of (4.3),

(«r'i^u'^r'i+ií^r1-^«)"'!,
(4.7) ^0+Yr) I ¿'(«I)    \^(\+yr)k6,

showing that we may take kx = 2/c6 in A3, Eq. (3.9).
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We want to choose r such that the hypotheses of Theorem 3.3 will be satisfied and
we can take s¡ — 1 for large enough/ Observe that

\g\uj)xj + g{uj)\J=  sup |¿>(«*;x*,t>) + fl(u*,«)|/IMI
oe<Dlt,

=  sup \b(uj; xj - xj,v) l/Holl
(4.8) °e%

^C2\\xk-xj\\<C2yr\\xj\\

= C2yr\xj\J<C2yrk6\g{uj)\J,

where we have used (3.4), (3.8), and (4.3). Thus, from (3.13),

(4.9) aj < C2kbyr.

To apply Theorem 3.3, we must have aj sufficiently small that an inequality like
(3.24) holds. To insure (3.24), we can require that r be sufficiently large that

(4.10) C1C2kbyr^8/2.

Note that r can be chosen independent of j.
Since Sj — 1 asymptotically, the bulk of the work per level consists of constructing

the linear system (4.2), and then carrying out r iterations of the /level scheme. Since
both of these are asymptotically O(Nj) processes, the work per level can be bounded
by, say, C%Nj operations. The cumulative work for levels 1 toy can then be bounded
by

2 CsNk < C,Nj{\ +ß-x+ß~2+---}^ CsNj{\ - iß-1)"',

due to (2.6). We summarize in

Theorem 4.1. Let Algorithm I be implemented using the j-level iteration, and assume
that (4.3) and the hypotheses of Theorem 3.3 hold. Then, for j sufficiently large and h{
sufficiently small,

\\ux - u*\\ < Cx(l +e)N~q,

as in Eq. (3.19). Furthermore, the computation of ux E 911, including all previous
computations in 9ltA, k<j— 1, requires O(N) time.

5. A Numerical Illustration. We consider the mildly nonlinear elliptic equation

-Au + u(ux + uv)+f(x,y) = 0    inß = (0,l)x(0,l),
u = g    on 9Í2,

where/and g are chosen such that the solution is u* — e~XOxy.
This problem was solved using the Fortran program PLTMG [6]. This package

implements the scheme described in Section 4. The initial grid was the uniform
5X5 mesh given in Figure 5.1.
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Figure 5.1. t.

Two uniform refinements of t, were made, giving t2 and t3 as 9 X 9 and 17X17
grids, respectively. The computations were done on a Vax computer. The initial
guess for the level -1 problem was ux = 0, although better initial guesses are easy to
construct. With this initial guess sx = 4 was sufficient to reduce the error in the
discrete level -1 system by about 10-6, i.e.,

K-m*ii~io-6iim*ii,
where II • II is the Hx(ü) norm. Thus, for practical purposes, the level -1 problem
was solved exactly.

We solved the problem on the second and third grids using Algorithm I for s ■ — 1,
j > 1, and Sj = 2,7 > 1. The relative error was computed from

correct digits = -log(||«^ — w*||/|| w*||),

where u* is the solution of the continuous problem. The results of the calculation are
summarized in Table 5.1. Taking Sj > 2 does not change the results; also tk = 1 for
all steps.

level

1
2
3

N

25
81
289

Table 5.1
correct digits

Casel Case 2
1 sx — 4,s2 =

.334

.576

4, s2 — s
.334
.576

s3 = 2

.859 .859

Since we are comparing the computed solution with the solution of the continuous
problem, the measured error includes both the discretization error uj — u* and error
from the solution process uy - uj The identical results for s¡ = 1  and s, = 2
indicate that the measured error is essentially all discretization error. Thus, in this
problem, taking s¡ = l,j> 1, was sufficient to produce computed solutions at the
level of discretization error (although taking s¡ > 1 produced better approximations
of the discrete solutions uj). Although one cannot expect to have Sj = 1 fory > 1
always, this example shows that the asymptotic behavior predicted by Theorem 3.3
can actually be achieved in problems of practical size.
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The nonlinear package has also been successfully applied to much more com-
plicated problems of physical interest; see, for example, Hutson [11].
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