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ANALYSIS OF A NEW AUGMENTED MIXED FINITE ELEMENT METHOD
FOR LINEAR ELASTICITY ALLOWING RT0-P1-P0 APPROXIMATIONS ∗

Gabriel N. Gatica
1

Abstract. We present a new stabilized mixed finite element method for the linear elasticity problem
in R

2. The approach is based on the introduction of Galerkin least-squares terms arising from the
constitutive and equilibrium equations, and from the relation defining the rotation in terms of the dis-
placement. We show that the resulting augmented variational formulation and the associated Galerkin
scheme are well posed, and that the latter becomes locking-free and asymptotically locking-free for
Dirichlet and mixed boundary conditions, respectively. In particular, the discrete scheme allows the
utilization of Raviart–Thomas spaces of lowest order for the stress tensor, piecewise linear elements
for the displacement, and piecewise constants for the rotation. In the case of mixed boundary con-
ditions, the essential one (Neumann) is imposed weakly, which yields the introduction of the trace
of the displacement as a suitable Lagrange multiplier. This trace is then approximated by piecewise
linear elements on an independent partition of the Neumann boundary whose mesh size needs to satisfy
a compatibility condition with the mesh size associated to the triangulation of the domain. Several
numerical results illustrating the good performance of the augmented mixed finite element scheme in
the case of Dirichlet boundary conditions are also reported.
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1. Introduction

The possibility of introducing further unknowns of physical interest, such as stresses and rotations, and the
need of locking-free numerical schemes have strongly motivated the utilization of dual-mixed variational formu-
lations and the associated mixed finite element methods in linear and nonlinear elasticity (see, e.g. [6, 8, 10], and
the references therein). The additional unknowns are then approximated directly, which avoids the numerical
postprocessing that is usually employed with the solutions arising from primal formulations. Consequently,
the derivation of appropriate finite element subspaces yielding well posed Galerkin schemes and a priori error
estimates has been extensively studied and several choices are already available in the literature. In particular,
for linear plane elasticity we refer to the family presented in [32], which includes the classical PEERS element
from [1] and a modification of the BDMk spaces (see [10, 12, 13]). On the other hand, a possibility that has
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also been widely investigated is the stabilization of dual-mixed variational formulations through the application
of diverse procedures. To this respect, we first mention [30, 33, 34] in which a locally stabilized mixed finite
element formulation, a stabilized hybrid scheme, and a locking-free mixed finite element scheme with continuous
displacement, respectively, are proposed and analyzed. A quite general technique, certainly not restricted to
dual-mixed schemes, is given by the augmented variational formulations, which go back to [19, 20]. They are
also known as Galerkin least-squares methods and have already been extended in different directions. Some
applications to elasticity problems can be found in [14,22], and a non-symmetric variant was considered in [17]
for the Stokes problem. In addition, stabilized mixed finite element methods for related problems, including
Darcy flow, incompressible flows, plates, and shells, can be seen in [2, 9, 15, 18, 21, 26,27, 29, 31]. The stabilizing
terms employed there consider, among others, interelement jumps, bubble functions, and local residuals. For
an abstract framework concerning the stabilization of general mixed finite element methods, we refer to [11].

The purpose of this work is to present a new locking-free stabilized mixed finite element scheme for the
linear elasticity problem in the plane. It is based on the introduction of suitable Galerkin least-squares terms
arising from the constitutive and equilibrium equations, and from the relation connecting the rotation with
the displacement. Our method, which yields an augmented variational formulation and is easily generalized to
3D, can be viewed as an adaptation to the present case of the non-symmetric procedures utilized in [17, 29].
A similar approach for second order elliptic equations in divergence form, which includes a boundary residual
term expressed in the H1/2 Sobolev norm by means of wavelet bases, is proposed in [7]. The rest of the paper
is organized as follows. In Section 2 we describe the boundary value problems of interest and provide the
corresponding dual-mixed variational formulations with Dirichlet and mixed boundary conditions. In Section
3 we introduce the augmented continuous formulations and show that they are well posed. The locking-
free augmented Galerkin schemes are analyzed in Section 4 and explicit finite element subspaces providing
unique solvability, a priori estimates, and convergence, are defined there. Some computational aspects are also
discussed. As a general remark, we realize that the usual trick of dealing, “for simplicity of the presentation”,
with pure Dirichlet conditions, actually aims to hide the further difficulties arising with the presence of non-
homogeneous Neumann data. In particular, we show that in the case of mixed boundary conditions, the
locking-free property of the discrete scheme only holds asymptotically, that is for sufficiently small mesh sizes.
Finally, in Section 5 we present some numerical results for the case of pure Dirichlet boundary conditions.

We end this section with some notations to be used below. Given any Hilbert space U , U2 and U2×2 denote,
respectively, the space of vectors and square matrices of order 2 with entries in U . In particular, I is the
identity matrix of R

2×2, and given τ := (τij), ζ := (ζij) ∈ R
2×2, we write as usual τ t := (τji) , tr(τ ) :=∑2

i=1 τii , τ d := τ − 1
2 tr(τ ) I , and τ : ζ :=

∑2
i,j=1 τij ζij . Also, in what follows we utilize the standard

terminology for Sobolev spaces and norms, and use C and c, with or without subscripts, bars, tildes or hats,
to denote generic constants independent of the discretization parameters, which may take different values at
different places.

2. The boundary value problems

Let Ω be a bounded and simply connected domain in R
2 with Lipschitz-continuous boundary Γ, and let

ΓD and ΓN be two disjoint subsets of Γ such that |ΓD| �= 0 and Γ = Γ̄D ∪ Γ̄N . Our goal is to determine the
displacement u and stress tensor σ of a linear elastic material occupying the region Ω. In other words, given a
volume force f ∈ [L2(Ω)]2 and a traction g ∈ [H−1/2(ΓN )]2, we seek a symmetric tensor field σ and a vector
field u such that

σ = Ce(u) , div(σ) = − f in Ω ,
u = 0 on ΓD , and σν = g on ΓN .

(2.1)

Hereafter, e(u) := 1
2 (∇u + (∇u)t) is the strain tensor of small deformations, ν is the unit outward normal to

Γ, and C is the elasticity tensor determined by Hooke’s law, that is

C ζ := λ tr(ζ) I + 2µ ζ ∀ ζ ∈ [L2(Ω)]2×2 , (2.2)
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where λ, µ > 0 denote the corresponding Lamé constants. It is easy to see from (2.2) that the inverse tensor
C−1 reduces to

C−1 ζ :=
1

2µ
ζ − λ

4µ (λ+ µ)
tr(ζ) I ∀ ζ ∈ [L2(Ω)]2×2 . (2.3)

2.1. Dirichlet boundary conditions

We are certainly interested in the mixed method of Hellinger and Reissner since it provides simultaneous
approximations of u and σ. More precisely, imposing weakly the symmetry of σ through the introduction of
the rotation γ := 1

2 (∇u − (∇u)t) as a further unknown (see [1, 32]), multiplying by tests functions and then
integrating the equilibrium equation and the relation ∇u − γ = e(u) = C−1σ (see (2.3)), we end up with the
following dual-mixed variational formulation of (2.1)–(2.2) in the case of pure Dirichlet boundary conditions:
find (σ, (u,γ)) ∈ H ×Q such that

a(σ, τ ) + b(τ , (u,γ)) = 0 ∀ τ ∈ H ,

b(σ, (v,η)) = −
∫

Ω

f · v ∀ (v,η) ∈ Q ,
(2.4)

where H = H(div; Ω) := {τ ∈ [L2(Ω)]2×2 : div(τ ) ∈ [L2(Ω)]2 }, Q := [L2(Ω)]2 × [L2(Ω)]2×2
skew, with

[L2(Ω)]2×2
skew := {η ∈ [L2(Ω)]2×2 : η + ηt = 0 }, and the bilinear forms a : H ×H → R and b : H × Q → R

are defined by

a(ζ, τ ) :=
∫

Ω

C−1ζ : τ =
1

2µ

∫
Ω

ζ : τ − λ

4µ (λ+ µ)

∫
Ω

tr(ζ) tr(τ ) (2.5)

and
b(τ , (v,η)) :=

∫
Ω

v · div(τ ) +
∫

Ω

η : τ , (2.6)

for all ζ, τ ∈ H and for all (v,η) ∈ Q.
It is easy to see from (2.5) and (2.6) that for any (τ , (v,η), c) ∈ [L2(Ω)]2×2 ×Q× R there holds

a(c I, τ ) =
c

2 (λ+ µ)

∫
Ω

tr(τ ) and b(c I, (v,η)) = 0 . (2.7)

Also, it is important to remark that a can be rewritten as

a(ζ, τ ) =
1

2µ

∫
Ω

ζd : τ d +
1

4 (λ+ µ)

∫
Ω

tr(ζ) tr(τ ) , (2.8)

which implies that

a(τ , τ ) ≥ 1
2µ

‖τ d‖2
[L2(Ω)]2×2 ∀ τ ∈ [L2(Ω)]2×2 . (2.9)

We now define H0 := {τ ∈ H :
∫
Ω

tr(τ ) = 0} and note that H = H0 ⊕ R I, that is for any τ ∈ H there
exist unique τ 0 ∈ H0 and d := 1

2|Ω|
∫
Ω

tr(τ ) ∈ R such that τ = τ 0 + d I. According to this decomposition and
the identities given in (2.7), we find that (2.4) is equivalent to: find (σ, (u,γ)) ∈ H0 ×Q such that

a(σ, τ ) + b(τ , (u,γ)) = 0 ∀ τ ∈ H0 ,

b(σ, (v,η)) = −
∫

Ω

f · v ∀ (v,η) ∈ Q .
(2.10)

Indeed, taking τ = I in the first equation of (2.4) and using (2.7) we deduce that σ ∈ H0, whence one can show
that (σ, (u,γ)) ∈ H ×Q is solution of (2.4) if and only if σ ∈ H0 and (σ, (u,γ)) is solution of (2.10).

We observe next that (2.10) satisfies the hypotheses of the Babuška-Brezzi theory (see [10] or [1]), which
yields the unique solvability and continuous dependence of this variational formulation. For this purpose we
need the following lemma, which will also be used later on.
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Lemma 2.1. There exists c1 > 0, depending only on Ω, such that

c1 ‖τ‖2
[L2(Ω)]2×2 ≤ ‖τ d‖2

[L2(Ω)]2×2 + ‖div(τ )‖2
[L2(Ω)]2 ∀ τ ∈ H0 , (2.11)

and

c1 ‖τ 0‖2
[L2(Ω)]2×2 ≤ ‖τ d‖2

[L2(Ω)]2×2 + ‖div(τ )‖2
[L2(Ω)]2 ∀ τ ∈ H . (2.12)

Proof. For the proof of (2.11) we refer to Lemma 3.1 in [3] or Proposition 3.1 of Chapter IV in [10]. Then, given
τ = τ 0 + d I ∈ H , with τ 0 ∈ H0 and d ∈ R, we note that (2.12) follows from (2.11) and the fact that τ d

0 = τ d

and div(τ 0) = div(τ ). �

Now, we deduce from (2.6) that V := {τ ∈ H0 : τ = τ t and div(τ ) = 0 in Ω} is the null space of b,
whence (2.9) and (2.11) imply a(τ , τ ) ≥ c1

2µ ‖τ‖2
[L2(Ω)]2×2 for all τ ∈ V . This shows that a is V -elliptic,

independently of the Lamé constant λ. Similarly, it is easy to see from (2.5) that a is bounded with a constant
given by 1

2µ . For a detailed proof of the continuous inf-sup condition satisfied by b we refer to Lemma 4.3 in [6],
while the boundedness of b is clear from (2.6). Alternatively, the well posedness of (2.10) is also proved in [4].

2.2. Mixed boundary conditions

We now deal with the mixed boundary conditions, as set originally in (2.1). To this end we recall that
[H−1/2(ΓN )]2 is the dual of the space [H1/2

00 (ΓN )]2 := {v|ΓN : v ∈ [H1(Ω)]2 , v = 0 on ΓD}, and that the
associated duality pairing with respect to the [L2(ΓN )]2-inner product is denoted by 〈·, ·〉ΓN . Hence, we follow
the approach from [5] and impose the Neumann condition in a weak sense, which yields the introduction of
a Lagrange multiplier ξ := −u|ΓN ∈ [H1/2

00 (ΓN )]2 as an auxiliary unknown. In this way, proceeding with
the remaining terms as in the previous case, we arrive to the following dual-mixed variational formulation
of (2.1)–(2.2): find (σ, (u,γ, ξ)) ∈ H × Q̃ such that

a(σ, τ ) + b̃(τ , (u,γ, ξ)) = 0 ∀ τ ∈ H ,

b̃(σ, (v,η,χ)) = −
∫

Ω

f · v + 〈g,χ〉ΓN ∀ (v,η,χ) ∈ Q̃ ,
(2.13)

where Q̃ := [L2(Ω)]2 × [L2(Ω)]2×2
skew × [H1/2

00 (ΓN )]2 and the bilinear form b̃ : H × Q̃ → R arises after adding the
Neumann boundary term to b, that is

b̃(τ , (v,η,χ)) :=
∫

Ω

v · div(τ ) +
∫

Ω

τ : η + 〈τν,χ〉ΓN . (2.14)

At this point we find it important to remark that, differently from (2.10), the formulation (2.13) can not be
set equivalently in H0 × Q̃. Indeed, from the relation σ = C e(u) we observe that tr(σ) = 2 (λ+µ) tr(e(u)) =
2 (λ + µ) div(u), and hence, using that u = 0 on ΓD, we deduce that

∫
Ω

tr(σ) = 2 (λ + µ)
∫
Ω

div(u) =
2 (λ + µ)

∫
ΓN

u · ν. The above shows that the presence of the Neumann boundary condition on ΓN does not
allow to guarantee that the stress σ belongs to H0, and hence inequality (2.11) can not be applied in this case.
Nevertheless, we prove below that this difficulty can be circumvented by combining (2.12) with the equivalence
result given by the following lemma.

Lemma 2.2. There exists c2 > 0, depending only on ΓN and Ω, such that

c2 ‖τ‖2
H(div; Ω) ≤ ‖τ 0‖2

H(div; Ω) ∀ τ ∈ H such that τν = 0 on ΓN . (2.15)
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Proof. Given τ = τ 0 + d I ∈ H , with τ 0 ∈ H0 and d ∈ R, and such that τν = 0 on ΓN , we note that
dν = − τ 0 ν on ΓN , and hence, with a constant c̃2 > 0, depending on ΓN ,

|d| ‖ν‖[H−1/2(ΓN )]2 = ‖τ 0ν‖[H−1/2(ΓN )]2 ≤ c̃2 ‖τ0ν‖[H−1/2(Γ)]2 ≤ c̃2 ‖τ 0‖H(div; Ω) ,

which yields |d| ≤ c̃2
‖ν‖

[H−1/2(ΓN )]2
‖τ 0‖H(div; Ω) .

This inequality and the fact that ‖τ‖2
H(div; Ω) = ‖τ 0‖2

H(div; Ω) + 2 d2 |Ω| imply (2.15). �

Similarly to (2.10), we now check that (2.13) satisfies the hypotheses of the Babuška-Brezzi theory. In-
deed, we first deduce from (2.14) that the null space of the bilinear form b̃ is given by Ṽ := {τ ∈ H :
τ = τ t and div(τ ) = 0 in Ω, and τν = 0 on ΓN}. Thus, combining (2.9), (2.12), and (2.15), we find that
a(τ , τ ) ≥ c1 c2

2µ ‖τ‖2
[L2(Ω)]2×2 for all τ ∈ Ṽ , which shows that a is Ṽ -elliptic, independently of the Lamé constant

λ. Next, the boundedness of b̃ is straightforward and the proof of the continuous inf-sup condition for b̃ reduces
to combine the corresponding proof for b (see Lem. 4.3 in [6]) with the following result.

Lemma 2.3. Let H̃ := {τ ∈ H : τ = τ t and div(τ ) = 0 in Ω }. Then there exists β̃ > 0, depending only on
ΓD and Ω, such that

sup
τ∈H̃

τ �=0

〈τν,χ〉ΓN

‖τ‖H(div; Ω)
≥ β̃ ‖χ‖

[H
1/2
00 (ΓN )]2

∀ χ ∈ [H1/2
00 (ΓN )]2 . (2.16)

Proof. Given ϕ ∈ [H−1/2(ΓN )]2, we let τ (ϕ) := e(z) where z ∈ [H1
ΓD

(Ω)]2 is the weak solution of the boundary
value problem:

div e(z) = 0 in Ω , z = 0 on ΓD , e(z)ν = ϕ on ΓN . (2.17)

The unique solvability of (2.17) follows from Korn’s second inequality (see Chap. VI in [8]) and Lax-Milgram
Lemma. We observe that τ (ϕ) ∈ H̃ and τ (ϕ)ν = ϕ on ΓN . In addition, applying the continuous dependence
result for (2.17), we find that there exists C > 0, depending only on ΓD and Ω, such that ‖τ (ϕ)‖H(div; Ω) =
‖e(z)‖[L2(Ω)]2×2 ≤ ‖z‖[H1(Ω)]2 ≤ C ‖ϕ‖[H−1/2(ΓN )]2 . Hence, for each χ ∈ [H1/2

00 (ΓN )]2 we can write

sup
τ∈H̃

τ �=0

|〈τν,χ〉ΓN |
‖τ‖H(div; Ω)

≥ |〈τ (ϕ)ν,χ〉ΓN |
‖τ (ϕ)‖H(div; Ω)

≥ 1
C

|〈ϕ,χ〉ΓN |
‖ϕ‖[H−1/2(ΓN )]2

∀ϕ ∈ [H−1/2(ΓN )]2 ,

which, according to a classical result in functional analysis, yields (2.16) with β̃ = 1
C . �

We end this section by recalling that the main difficulty in applying the Galerkin schemes associated
with (2.10) and (2.13) is the derivation of explicit finite element subspaces on which the ellipticity of a and the
discrete inf-sup conditions of b and b̃ hold. As mentioned in Section 1, several approximations, at least for the
case of pure Dirichlet boundary conditions, are already available in the literature (see, e.g. [1, 10, 12, 13, 32]),
which, however, are not always satisfactory since they either are rather expensive (because of the number of
degrees of freedom involved) or yield higher polynomial degrees than expected. Moreover, up to the author’s
knowledge, no much has been done for mixed boundary conditions with non-homogeneous Neumann data. The
PEERS elements are certainly applicable to this case, but since the Neumann boundary condition becomes now
essential, it needs to be approximated for the setting of the discrete system, which yields a non-conforming
Galerkin scheme. These facts have usually motivated the need of alternative methods, such as the augmented
variational formulations to be proposed in the next section.



6 G.N. GATICA

3. The augmented dual-mixed variational formulations

3.1. Dirichlet boundary conditions

We suggest to enrich the corresponding dual-mixed variational formulation (2.10) with residuals arising from
the constitutive and equilibrium equations, and from the relation defining the rotation as a function of the
displacement. More precisely, we substract the second from the first equation of (2.10) and then add the
Galerkin least-squares terms given by

κ1

∫
Ω

(
e(u) − C−1 σ

)
:
(
e(v) + C−1 τ

)
= 0 , (3.1)

κ2

∫
Ω

div(σ) · div(τ ) = − κ2

∫
Ω

f · div(τ ) , (3.2)

and

κ3

∫
Ω

(
γ − 1

2
(∇u − (∇u)t)

)
:
(

η +
1
2
(∇v − (∇v)t)

)
= 0 , (3.3)

for all (τ ,v,η) ∈ H0× [H1
0 (Ω)]2× [L2(Ω)]2×2

skew, where (κ1, κ2, κ3) is a vector of positive parameters to be specified
later. We just remark in advance that we will be able to chose them independently of the Lamé constant λ.
We also notice here that (3.1) and (3.3) implicitly require now the displacement u to live in the smaller space
[H1

0 (Ω)]2.
In this way, instead of (2.10) we propose the following augmented variational formulation: find (σ,u,γ) ∈

H0 := H0 × [H1
0 (Ω)]2 × [L2(Ω)]2×2

skew such that

A((σ,u,γ), (τ ,v,η)) = F (τ ,v,η) ∀ (τ ,v,η) ∈ H0 , (3.4)

where the bilinear form A : H0 × H0 → R and the functional F : H0 → R are defined by

A((σ,u,γ), (τ ,v,η)) :=
∫

Ω

C−1σ : τ +
∫

Ω

u · div(τ ) +
∫

Ω

γ : τ −
∫

Ω

v · div(σ) −
∫

Ω

η : σ

+ κ1

∫
Ω

(
e(u) − C−1 σ

)
:
(
e(v) + C−1 τ

)
+ κ2

∫
Ω

div(σ) · div(τ )

+ κ3

∫
Ω

(
γ − 1

2
(∇u − (∇u)t)

)
:
(

η +
1
2
(∇v − (∇v)t)

)
, (3.5)

and

F (τ ,v,η) :=
∫

Ω

f · (v − κ2 div(τ ) ) . (3.6)

The idea is to choose (κ1, κ2, κ3) so that A becomes strongly coercive and bounded on H0, with constants
independent of λ, with respect to the norm ‖ · ‖H0 defined by

‖(τ ,v,η)‖H0 :=
{
‖τ‖2

H(div; Ω) + |v|2[H1(Ω)]2 + ‖η‖2
[L2(Ω)]2×2

}1/2

∀ (τ ,v,η) ∈ H0 . (3.7)

We first notice, after simple computations, that

∫
Ω

(
e(v) − C−1 τ

)
:
(
e(v) + C−1 τ

)
= ‖e(v)‖2

[L2(Ω)]2×2 − ‖C−1 τ‖2
[L2(Ω)]2×2 ,
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and that ∫
Ω

(
η − 1

2
(∇v − (∇v)t)

)
:
(

η +
1
2
(∇v − (∇v)t)

)

= ‖η‖2
[L2(Ω)]2×2 + ‖e(v)‖2

[L2(Ω)]2×2 − |v|2[H1(Ω)]2 ,

which gives

A((τ ,v,η), (τ ,v,η)) =
∫

Ω

C−1 τ : τ − κ1 ‖C−1 τ‖2
[L2(Ω)]2×2 + (κ1 + κ3) ‖e(v)‖2

[L2(Ω)]2×2

+ κ2 ‖div(τ )‖2
[L2(Ω)]2 + κ3 ‖η‖2

[L2(Ω)]2×2 − κ3 |v|2[H1(Ω)]2 .

(3.8)

Next, using (2.5) and the inverse relation (2.3), and performing some algebraic manipulations, we find that

∫
Ω

C−1 τ : τ − κ1 ‖C−1 τ‖2
[L2(Ω)]2×2 =

1
4µ

{
2 ‖τ‖2

[L2(Ω)]2×2 −
(

λ

λ+ µ

) ∫
Ω

tr2(τ )
}

− κ1

8µ2

{
2 ‖τ‖2

[L2(Ω)]2×2 − 2
(

λ

λ+ µ

) ∫
Ω

tr2(τ ) +
(

λ

λ+ µ

)2 ∫
Ω

tr2(τ )

}

=
1

2µ

(
1 − κ1

2µ

)
‖τ d‖2

[L2(Ω)]2×2 +
1

4(λ+ µ)

(
1 − κ1

2(λ+ µ)

) ∫
Ω

tr2(τ ) , (3.9)

from which we observe that it suffices to choose κ1 so that 1− κ1
2(λ+µ) ≥ 0 and 1− κ1

2 µ > 0, that is 0 < κ1 < 2µ,
which yields∫

Ω

C−1 τ : τ − κ1 ‖C−1 τ‖2
[L2(Ω)]2×2 ≥ 1

2µ

(
1 − κ1

2µ

)
‖τ d‖2

[L2(Ω)]2×2 ∀ τ ∈ H . (3.10)

In this way, (3.8), (3.10), and (2.11) (cf. Lem. 2.1) imply that

A((τ ,v,η), (τ ,v,η)) ≥ α2 ‖τ‖2
H(div; Ω) + (κ1 + κ3) ‖e(v)‖2

[L2(Ω)]2×2

+ κ3 ‖η‖2
[L2(Ω)]2×2 − κ3 |v|2[H1(Ω)]2 ∀ (τ ,v,η) ∈ H0 ,

(3.11)

where

α2 := min
{
α1 c1,

κ2

2

}
and α1 := min

{
1

2µ

(
1 − κ1

2µ

)
,
κ2

2

}
. (3.12)

But, Korn’s first inequality (see, e.g. Thm. 10.1 in [28] or equation (2.11) in [23]) establishes that

‖e(v)‖2
[L2(Ω)]2×2 ≥ 1

2
|v|2[H1(Ω)]2 ∀ v ∈ [H1

0 (Ω)]2 , (3.13)

and hence (3.11) becomes

A((τ ,v,η), (τ ,v,η)) ≥ α2 ‖τ‖2
H(div; Ω) +

(κ1 − κ3)
2

|v|2[H1(Ω)]2 + κ3 ‖η‖2
[L2(Ω)]2×2 (3.14)

for all (τ ,v,η) ∈ H0, from which we deduce that it suffices to take 0 < κ3 < κ1 to obtain the strong coerciveness
of A on the space H0.

Now, as we notice from the above estimates, there is no further restriction on κ2 besides being positive.
For instance, as suggested by the definition of α1, we may choose κ2 = 1

µ (1 − κ1
2 µ) so that α1 = κ2

2 and
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hence α2 = κ2
2 min{c1, 1}. Therefore, according to the definition of A (cf. (3.5)), and taking into account that

the constants appearing in the inverse tensor C−1 are of O(1/µ) (cf. (2.3)), it becomes suitable to consider
κ1 = C1 µ and κ3 = C3 κ1, with any C1 ∈ ]0, 2[ and any C3 ∈ ]0, 1[. In this way, the coerciveness constant of
A arising from (3.14) depends only on µ, 1

µ , and c1. In particular, the feasible choice C1 = 1 and C3 = 1
2 yields

κ1 = µ , κ2 =
1

2µ
, κ3 =

µ

2
, α1 =

1
4µ

, and α2 =
1

4µ
min{c1, 1} , (3.15)

whereas C1 = 3
2 and C3 = 2

3 give

κ1 =
3µ
2
, κ2 =

1
4µ

, κ3 = µ , α1 =
1

8µ
, and α2 =

1
8µ

min{c1, 1} . (3.16)

On the other hand, it is easy to see from (2.3) that ‖C−1 τ‖[L2(Ω)]2×2 ≤ 1
2 µ ‖τ‖[L2(Ω)]2×2 for all τ ∈ [L2(Ω)]2×2.

Hence, applying Cauchy-Schwarz’s inequality to each term on the right hand side of (3.5) we conclude that A
is bounded with a constant depending only on µ, κ1, κ2, and κ3.

We have thus proved the following main result.

Theorem 3.1. Assume that (κ1, κ2, κ3) is independent of λ and such that 0 < κ1 < 2µ, 0 < κ2, and
0 < κ3 < κ1. Then, there exist positive constants M, α, independent of λ, such that

|A((σ,u,γ), (τ ,v,η)) | ≤ M ‖(σ,u,γ)‖H0 ‖(τ ,v,η)‖H0 ,

and
A((τ ,v,η), (τ ,v,η)) ≥ α ‖(τ ,v,η)‖2

H0

for all (σ,u,γ), (τ ,v,η) ∈ H0. In particular, taking κ1 = C1 µ, κ2 = 1
µ (1 − κ1

2 µ), and κ3 = C3 κ1, with any

C1 ∈ ]0, 2[ and any C3 ∈ ]0, 1[, yields M and α depending only on µ,
1
µ

, and c1.

In addition, the well posedness of (3.4) is now easily established.

Theorem 3.2. Assume the same hypotheses of Theorem 3.1. Then the augmented variational formulation
(3.4) has a unique solution (σ,u,γ) ∈ H0, and there exists a positive constant C, independent of λ, such that
‖(σ,u,γ)‖H0 ≤ C ‖F‖ ≤ C ‖f‖[L2(Ω)]2 .

Proof. The linear functional F (see (3.6)) is continuous with a norm bounded above by (1 + κ2) ‖f‖[L2(Ω)]2 .
Therefore, the present proof is a simple consequence of Theorem 3.1 and the well known Lax-Milgram lemma. �

3.2. Mixed boundary conditions

We now deal with mixed boundary conditions and suggest to enrich the corresponding dual-mixed variational
formulation (2.13) with the same Galerkin least-squares terms employed in the previous case (see (3.1), (3.2),
and (3.3)). Consequently, instead of (2.13) we propose the following augmented variational formulation: find
((σ,u,γ), ξ) ∈ H× Q such that

A((σ,u,γ), (τ ,v,η)) + B((τ ,v,η), ξ) = F (τ ,v,η) ∀ (τ ,v,η) ∈ H ,

B((σ,u,γ),χ) = G(χ) ∀χ ∈ Q ,
(3.17)

where H := H × [H1
ΓD

(Ω)]2 × [L2(Ω)]2×2
skew, with [H1

ΓD
(Ω)]2 := {v ∈ [H1(Ω)]2 : v = 0 on ΓD }, Q :=

[H1/2
00 (ΓN )]2, F : H → R is the linear functional given by (3.6), G : Q → R is the linear functional defined by
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G(χ) := 〈g,χ〉ΓN , the bilinear form A : H × H → R is given by (3.5), and the bilinear form B : H× Q → R is
defined by

B((τ ,v,η),χ) := 〈τν,χ〉ΓN ∀ ((τ ,v,η),χ) ∈ H × Q . (3.18)
We remark that, differently from (3.4), the variational formulation (3.17) is written in a dual-mixed structure
since we need the term dealing with the Neumann boundary condition to be kept separate (in the form of B).

The goal now is to choose (κ1, κ2, κ3), independent of λ, so that (3.17) satisfies the hypotheses of the
Babuška-Brezzi theory. We realize first that the null space of B is given by

V := { (τ ,v,η) ∈ H : τν = 0 on ΓN } . (3.19)

Then, we note from (3.8) and (3.10) that for 0 < κ1 < 2µ and for each (τ ,v,η) ∈ H there holds

A((τ ,v,η), (τ ,v,η)) ≥ 1
2µ

(
1 − κ1

2µ

)
‖τ d‖2

[L2(Ω)]2×2 + (κ1 + κ3) ‖e(v)‖2
[L2(Ω)]2×2

+ κ2 ‖div(τ )‖2
[L2(Ω)]2 + κ3 ‖η‖2

[L2(Ω)]2×2 − κ3 |v|2[H1(Ω)]2 , (3.20)

which, according to (2.12) (cf. Lem. 2.1), (3.19), and (2.15) (cf. Lem. 2.2), leads to

A((τ ,v,η), (τ ,v,η)) ≥ α2 c2 ‖τ‖2
H(div; Ω) + (κ1 + κ3) ‖e(v)‖2

[L2(Ω)]2×2

+ κ3 ‖η‖2
[L2(Ω)]2×2 − κ3 |v|2[H1(Ω)]2 ∀ (τ ,v,η) ∈ V , (3.21)

where α2 is the constant defined in (3.12). Again, it follows that there is no further restriction on κ2 besides
being positive. Next, Korn’s first inequality establishes now the existence of kD ∈ (0, 1), depending only on Ω
and ΓD, such that

‖e(v)‖2
[L2(Ω)]2×2 ≥ kD |v|2[H1(Ω)]2 ∀v ∈ [H1

ΓD
(Ω)]2 , (3.22)

and hence (3.21) yields

A((τ ,v,η), (τ ,v,η)) ≥ α2 c2 ‖τ‖2
H(div; Ω) + (κ1 kD − κ3(1 − kD)) |v|2[H1(Ω)]2 + κ3 ‖η‖2

[L2(Ω)]2×2 ,

for all (τ ,v,η) ∈ V, from which we conclude that it suffices to choose 0 < κ3 <
κ1 kD

1−kD
to obtain the strong

coerciveness of A on V with respect to ‖ · ‖H (also defined by (3.7)). At this point we remark that, differently
from (3.13), the constant kD in (3.22) is not known in general. However, as described in Section 5 of the review
article [23], there is a large class of two-dimensional domains for which kD can be estimated explicitly in terms of
geometric constants. The corresponding results include star-shaped and simply connected regions (see [24,25]).

On the other hand, it was already established that A is bounded with a constant depending only on µ, κ1,
κ2, and κ3, and it is easy to see that B is bounded, as well. In addition, as proved by Lemma 2.3, B also
satisfies the continuous inf-sup condition with the constant β̃, which is independent of µ and λ.

In this way, we are able to state the following main result.

Theorem 3.3. Assume that (κ1, κ2, κ3) is independent of λ and such that 0 < κ1 < 2µ, 0 < κ2, and
0 < κ3 <

κ1 kD

1−kD
. Then, there exist positive constants M, α̃, independent of λ, such that

|A((σ,u,γ), (τ ,v,η))| ≤ M ‖(σ,u,γ)‖H ‖(τ ,v,η)‖H ∀ (σ,u,γ), (τ ,v,η) ∈ H ,

and
A((τ ,v,η), (τ ,v,η)) ≥ α̃ ‖(τ ,v,η)‖2

H ∀ (τ ,v,η) ∈ V .

In particular, taking κ1 = C1 µ, κ2 = 1
µ (1− κ1

2 µ), and κ3 = C3
κ1 kD

1−kD
, with any C1 ∈ ]0, 2[ and any C3 ∈ ]0, 1[,

yields M and α̃ depending only on µ, 1
µ , c1, c2, and kD. On the other hand, there exist positive constants β
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and β̃, independent of µ and λ, such that

|B((τ ,v,η),χ) | ≤ β ‖(τ ,v,η)‖H ‖χ‖Q ∀ ((τ ,v,η),χ) ∈ H× Q ,

and

sup
(τ ,v,η)∈H

(τ ,v,η) �=0

B((τ ,v,η),χ)
‖(τ ,v,η)‖H

≥ β̃ ‖χ‖Q ∀χ ∈ Q .

The well-posedness of (3.17) can now be established.

Theorem 3.4. Assume the same hypotheses of Theorem 3.3. Then the augmented variational formulation
(3.17) has a unique solution ((σ,u,γ), ξ) ∈ H × Q, and there exists a positive constant C, independent of λ,
such that

‖((σ,u,γ), ξ)‖H×Q ≤ C { ‖F‖ + ‖G‖ } ≤ C
{
‖f‖[L2(Ω)]2 + ‖g‖

[H
1/2
00 (ΓN )]2

}
.

Proof. The linear functionals F and G are clearly continuous with norms bounded above by (1 +κ2) ‖f‖[L2(Ω)]2

and ‖g‖
[H

1/2
00 (ΓN )]2

, respectively. Therefore, the present proof follows from Theorem 3.3 and the well known
Babuška-Brezzi theory. �

4. The augmented mixed finite element methods

In this section we consider the Galerkin schemes associated to (3.4) and (3.17), define explicit finite element
subspaces yielding the unique solvability of them, derive the a priori error estimates, provide the corresponding
convergence results, and discuss some computational aspects.

We first let {Th}h>0 be a regular family of triangulations of the polygonal region Ω̄ by triangles T of diameter
hT with mesh size h := max{ hT : T ∈ Th }, and such that there holds Ω̄ := ∪{T : T ∈ Th }. Also, we
assume that each point in Γ̄D ∩ Γ̄N becomes a vertex of Th for all h > 0. In addition, given an integer � ≥ 0
and a subset S of R

2, we denote by P�(S) the space of polynomials in two variables defined in S of total degree
at most �, and for each T ∈ Th we define the local Raviart–Thomas space of order zero

RT0(T ) := span
{(

1
0

)
,

(
0
1

)
,

(
x1

x2

)}
⊆ [P1(T )]2 ,

where
(
x1

x2

)
is a generic vector of R

2.

4.1. Dirichlet boundary conditions

Given a finite element subspace H0,h ⊆ H0 := H0 × [H1
0 (Ω)]2 × [L2(Ω)]2×2

skew, the Galerkin scheme associated
to (3.4) reads: find (σh,uh,γh) ∈ H0,h such that

A((σh,uh,γh), (τ h,vh,ηh)) = F (τh,vh,ηh) ∀ (τh,vh,ηh) ∈ H0,h , (4.1)

where κ1, κ2, and κ3, being the same parameters employed in the formulation (3.4), satisfy the assumptions of
Theorem 3.1. Hence, it is important to emphasize that they are independent of any meshsize associated to the
finite element subspace H0,h.

Since A is bounded and strongly coercive on the whole space H0 (cf. Thm. 3.1), the well-posedness of
(4.1) is guaranteed with any arbitrary choice of the subspace H0,h. In particular, defining, respectively, the
Raviart–Thomas space of lowest order and the piecewise linear functions,

Hσ
h :=

{
τ h ∈ H(div; Ω) : τh|T ∈ [RT0(T )t]2 ∀T ∈ Th

}
, (4.2)
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and
Hu

h :=
{
vh ∈ [C(Ω̄)]2 : vh|T ∈ [P1(T )]2 ∀T ∈ Th

}
, (4.3)

we may take H0,h := Hσ
0,h ×Hu

0,h ×H
γ
h , where

Hσ
0,h :=

{
τ h ∈ Hσ

h :
∫

Ω

tr(τ h) = 0
}
, (4.4)

Hu
0,h := {vh ∈ Hu

h : vh = 0 on ∂Ω } , (4.5)
and

H
γ
h :=

{
ηh ∈ [L2(Ω)]2×2

skew : ηh|T ∈ [P0(T )]2×2 ∀T ∈ Th

}
. (4.6)

In general, we have the following main result.

Theorem 4.1. Assume that the parameters κ1, κ2, and κ3 satisfy the assumptions of Theorem 3.1 and let H0,h

be any finite element subspace of H0. Then, the Galerkin scheme (4.1) has a unique solution (σh,uh,γh) ∈
H0,h, and there exist positive constants C, C̃, independent of λ and h, such that

‖(σh,uh,γh)‖H0 ≤ C sup
(τ h,vh,ηh)∈H0,h

(τ h,vh,η
h
) �=0

|F (τ h,vh,ηh) |
‖(τh,vh,ηh)‖H0

≤ C ‖f‖[L2(Ω)]2 ,

and
‖(σ,u,γ) − (σh,uh,γh)‖H0 ≤ C̃ inf

(τ h,vh,ηh)∈H0,h

‖(σ,u,γ) − (τh,vh,ηh)‖H0 . (4.7)

Proof. It follows straightforward from Theorem 3.1, Lax-Milgram lemma, and Cea’s estimate. �
As usual, the estimate (4.7) and the approximation properties of the subspaces involved are the key ingredients

to derive the corresponding rate of convergence of the Galerkin scheme. In the case of the space H0,h :=
Hσ

0,h ×Hu
0,h ×H

γ
h we first recall from [10,16] that:

(APσ
h ) For each τ ∈ [H1(Ω)]2×2 with div(τ ) ∈ [H1(Ω)]2 there exists τh ∈ Hσ

h such that

‖τ − τh‖H(div; Ω) ≤ C h
{
‖τ‖[H1(Ω)]2×2 + ‖div(τ )‖[H1(Ω)]2

}
.

(APu
0,h) For each v ∈ [H2(Ω)]2 ∩ [H1

0 (Ω)]2 there exists vh ∈ Hu
0,h such that

‖v − vh‖[H1(Ω)]2 ≤ C h ‖v‖[H2(Ω)]2 .

(APγ
h ) For each η ∈ [H1(Ω)]2×2

skew there exists ηh ∈ H
γ
h such that

‖η − ηh‖[L2(Ω)]2×2 ≤ C h ‖η‖[H1(Ω)]2×2 .

Now, given τ ∈ [H1(Ω)]2×2 ∩ H0 with div(τ ) ∈ [H1(Ω)]2, the element τ h ∈ Hσ
h provided by (APσ

h ) can be
certainly decomposed as τh = τ 0h + dhI, with τ 0h ∈ Hσ

0,h and dh ∈ R, and hence

‖τ − τ 0h‖2
H(div; Ω) ≤ ‖τ − τ 0h‖2

H(div; Ω) + 2 d2
h |Ω| = ‖τ − τh‖2

H(div; Ω) .

It follows that, in addition to (APσ
h ), we also have:

(APσ
0,h) For each τ ∈ [H1(Ω)]2×2 ∩H0 with div(τ ) ∈ [H1(Ω)]2 there exists τ h ∈ Hσ

0,h such that

‖τ − τh‖H(div; Ω) ≤ C h
{
‖τ‖[H1(Ω)]2×2 + ‖div(τ )‖[H1(Ω)]2

}
.
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In this way, we are able to establish the following result.

Theorem 4.2. Let (σ,u,γ) ∈ H0 and (σh,uh,γh) ∈ H0,h := Hσ
0,h × Hu

0,h × H
γ
h be the unique solutions

of the continuous and discrete augmented mixed formulations (3.4) and (4.1), respectively. Assume that σ ∈
[Hr(Ω)]2×2, div(σ) ∈ [Hr(Ω)]2, u ∈ [Hr+1(Ω)]2, and γ ∈ [Hr(Ω)]2×2, for some r ∈ (0, 1]. Then there exists
C > 0, independent of λ and h, such that

‖(σ,u,γ) − (σh,uh,γh)‖H0 ≤ C hr
{
‖σ‖[Hr(Ω)]2×2 + ‖div(σ)‖[Hr(Ω)]2 + ‖u‖[Hr+1(Ω)]2 + ‖γ‖[Hr(Ω)]2×2

}
.

Proof. It is a consequence of Cea’s estimate, approximation properties (APσ
0,h), (APu

0,h), and (APγ
h ), and

suitable interpolation theorems in the corresponding function spaces. �

On the other hand, it is important to remark that the null mean value condition required by the traces of the
elements in Hσ

0,h is not very convenient for the numerical implementation of (4.1). The usual way to obtain a
basis of Hσ

0,h is to start with one from the given subspace Hσ
h , and then take the Hσ

0,h-components of the latter
according to the decomposition Hσ

h = Hσ
0,h ⊕ R I, which is valid for any subspace Hσ

h of H containing the
multiples of the identity matrix. However, it is easy to see that this canonical procedure yields basis functions
of Hσ

0,h with support Ω, and hence the corresponding block in the global stiffness matrix will likely become full.
In order to overcome the above difficulty, we now let Hσ

h × Hu
0,h × H

γ
h be any finite element subspace

of H × [H1
0 (Ω)]2 × [L2(Ω)]2×2

skew, and suggest to consider, instead of (4.1), the modified discrete scheme: find
(σh,uh,γh, ϕh) ∈ Hσ

h ×Hu
0,h ×H

γ
h × R such that

A((σh,uh,γh), (τ h,vh,ηh)) + ϕh

∫
Ω

tr(τ h) = F (τ h,vh,ηh) ,

ψh

∫
Ω

tr(σh) = 0 ,
(4.8)

for all (τ h,vh,ηh, ψh) ∈ Hσ
h ×Hu

0,h×H
γ
h ×R. In this way, the Lagrange multiplier ϕh ∈ R and the corresponding

test constants ψh ∈ R take care of the above mentioned mean value condition, whence (4.1) and (4.8) become
equivalent, as it is established in the following theorem.

Theorem 4.3.
(a) Let (σh,uh,γh) ∈ H0,h be the solution of (4.1). Then (σh,uh,γh, 0) is a solution of (4.8).
(b) Let (σh,uh,γh, ϕh) ∈ Hσ

h ×Hu
0,h ×H

γ
h × R be a solution of (4.8). Then ϕh = 0 and (σh,uh,γh) is

the solution of (4.1).

Proof. We first observe, according to the definition of A (cf. (3.5)), that for each (τ ,v,η) ∈ H × [H1(Ω)]2 ×
[L2(Ω)]2×2

skew there holds

A((τ ,v,η), (I, 0, 0)) =
1

2(λ+ µ)

(
1 − κ1

2(λ+ µ)

) ∫
Ω

tr(τ ) +
κ1

2(λ+ µ)

∫
Ω

div(v) ,

which gives
A((τ ,v,η), (I, 0, 0)) = 0 ∀ (τ ,v,η) ∈ H0 × [H1

0 (Ω)]2 × [L2(Ω)]2×2
skew . (4.9)

Now, let (σh,uh,γh) ∈ H0,h be the solution of (4.1), and let (τ h,vh,ηh) ∈ Hσ
h × Hu

0,h × H
γ
h . We write

τh = τ 0h + dh I, with τ 0h ∈ Hσ
0,h and dh ∈ R, and observe that (τ 0h,vh,ηh) ∈ H0,h, whence (3.6), (4.1),

and (4.9) yield

F (τh,vh,ηh) = F (τ 0h,vh,ηh) = A((σh,uh,γh), (τ 0h,vh,ηh)) = A((σh,uh,γh), (τ h,vh,ηh)) .
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This identity and the fact that σh clearly satisfies the second equation of (4.8), show that (σh,uh,γh, 0) is
indeed a solution of (4.8).

Conversely, let (σh,uh,γh, ϕh) ∈ Hσ
h ×Hu

0,h ×H
γ
h × R be a solution of (4.8). Then, taking (τ h,vh,ηh) =

(I, 0, 0) in the first equation of (4.8) and using (3.6) and (4.9), we find that ϕh = 0, whence (σh,uh,γh) becomes
the solution of (4.1). �

We end this section by emphasizing, according to the above equivalence result, that the actual computation
of the Galerkin solution (σh,uh,γh) must be performed through the numerical implementation of the scheme
(4.8), instead of (4.1).

4.2. Mixed boundary conditions

In this case, and differently from (3.4), the coerciveness and the inf-sup condition satisfied, respectively, by
the bilinear forms A and B (cf. Thm. 3.3) are not directly transferred to the discrete level. Consequently, the
eventual unique solvability and stability of a Galerkin scheme associated to (3.17) do not follow either from the
well-posedness provided by Theorem 3.4. Actually, as it is typical of the dual-mixed variational formulations of
the form (3.17), these properties and results need to be proved for each particular choice of the corresponding
finite element subspaces.

According to the above, and for reasons that will become clear below, we now introduce an independent
partition {ẽ1, ẽ2, ..., ẽm} of the Neumann boundary ΓN , define the mesh size h̃ := max {|ẽj | : j ∈ {1, ...,m}},
and consider a finite element subspace Qh̃ of Q := [H1/2

00 (ΓN )]2. Next, we let Hh := Hσ
h ×Hu

D,h ×H
γ
h be any

finite element subspace of H := H × [H1
ΓD

(Ω)]2 × [L2(Ω)]2×2
skew and set the Galerkin scheme associated to (3.17):

find ((σh,uh,γh), ξh̃) ∈ Hh × Qh̃ such that

A((σh,uh,γh), (τ h,vh,ηh)) +B((τ h,vh,ηh), ξh̃) = F (τ h,vh,ηh) ,

B((σh,uh,γh),χh̃) = G(χh̃) ,
(4.10)

for all ((τ h,vh,ηh),χh̃) ∈ Hh × Qh̃, where the vector of parameters (κ1, κ2, κ3) satisfies the assumptions
indicated in Theorem 3.3 as well as the eventual ones to be needed for the well-posedness of (4.10).

In what follows, we assume that there holds the following approximation property of Qh̃:

(APξ
h̃
) For each χ ∈ [H3/2

00 (ΓN )]2 there exists χh̃ ∈ Qh̃ such that

‖χ − χh̃‖[H
1/2
00 (ΓN )]2

≤ C h̃ ‖χ‖
[H

3/2
00 (ΓN )]2

.

Then, we use (APξ
h̃
) to prove the discrete analogue of Lemma 2.2, which, similarly to the continuous case

(cf. (3.21)), will serve to show the coerciveness of A on the discrete null space of B.

Lemma 4.4. Let Vh,h̃ := { τh ∈ Hσ
h : 〈τhν,χh̃〉ΓN = 0 ∀χh̃ ∈ Qh̃ }. Then there exist C2, h0 > 0,

independent of h and h̃, such that for each h̃ ≤ h0 there holds:

C2 ‖τh‖2
H(div; Ω) ≤ ‖τ 0h‖2

H(div; Ω) ∀ τ h ∈ Vh,h̃ . (4.11)

Proof. Let τ h ∈ Vh,h̃ and write τ h = τ 0h + dh I with τ 0h ∈ Hσ
0,h and dh ∈ R. Then, given χ ∈ [H3/2

00 (ΓN )]2 ⊆
[H1/2

00 (ΓN )]2, we apply (APξ
h̃
) and the condition defining Vh,h̃ to write

〈dhν,χ〉ΓN = 〈τ hν,χ〉ΓN − 〈τ 0hν,χ〉ΓN = 〈τ hν,χ − χh̃〉ΓN − 〈τ 0hν,χ〉ΓN ,
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which yields the existence of C̃ > 0, depending on C (cf. (APξ
h̃
)), ΓN , the trace estimate of the normal

components in H(div; Ω), and the continuous imbedding of [H3/2
00 (ΓN )]2 into [H1/2

00 (ΓN )]2, such that

| 〈dhν,χ〉ΓN | ≤ ‖τhν‖[H−1/2(ΓN )]2 ‖χ − χh̃‖[H
1/2
00 (ΓN )]2

+ ‖τ0hν‖[H−1/2(ΓN )]2 ‖χ‖
[H

1/2
00 (ΓN )]2

≤ C̃
{
h̃ ‖τhν‖[H−1/2(Γ)]2 + ‖τ 0hν‖[H−1/2(Γ)]2

}
‖χ‖

[H
3/2
00 (ΓN )]2

≤ C̃
{
h̃ ‖τh‖H(div; Ω) + ‖τ 0h‖H(div; Ω)

}
‖χ‖

[H
3/2
00 (ΓN )]2

.

In this way, we have shown that

| 〈dhν,χ〉ΓN |
‖χ‖

[H
3/2
00 (ΓN )]2

≤ C̃
{
h̃ ‖τh‖H(div; Ω) + ‖τ 0h‖H(div; Ω)

}
∀χ ∈ [H3/2

00 (ΓN )]2 , χ �= 0 ,

which, noting that [H−3/2(ΓN )]2 is the dual of [H3/2
00 (ΓN )]2, leads to

|dh| ≤ 1
‖ν‖[H−3/2(ΓN )]2

C̃
{
h̃ ‖τh‖H(div; Ω) + ‖τ 0h‖H(div; Ω)

}
.

This inequality and the fact that ‖τh‖2
H(div; Ω) = ‖τ 0h‖2

H(div; Ω) + 2 d2
h |Ω| imply (4.11) for each h̃ ≤ h0, where

h0 is sufficiently small. We omit further details. �

At this point we remark that an explicit finite element subspace Qh̃ satisfying (APξ
h̃
) is given by the piecewise

linear functions, that is:

Qh̃ :=
{

χh̃ ∈ [C(ΓN )]2 ∩ [H1/2
00 (ΓN )]2 : χh̃|ẽj ∈ [P1(ẽj)]2 ∀ j ∈ {1, ...,m}

}
. (4.12)

Also, we realize that the discrete null space of the bilinear form B reduces to:

Vh,h̃ :=
{
(τ h,vh,ηh) ∈ Hh : 〈τ hν,χh̃〉ΓN = 0 ∀χh̃ ∈ Qh̃

}
= Vh,h̃ ×Hu

D,h ×H
γ
h , (4.13)

which is, in general, not included in V, the continuous null space of B. This fact explains the non-applicability
of Lemma 2.2 in the discrete case, and the consequent need of Lemma 4.4.

Indeed, we now recall from (3.20) that for 0 < κ1 < 2µ and for each (τ ,v,η) ∈ H there holds

A((τ ,v,η), (τ ,v,η)) ≥ 1
2µ

(
1 − κ1

2µ

)
‖τ d‖2

[L2(Ω)]2×2 + (κ1 + κ3) ‖e(v)‖2
[L2(Ω)]2×2

+ κ2 ‖div(τ )‖2
[L2(Ω)]2 + κ3 ‖η‖2

[L2(Ω)]2×2 − κ3 |v|2[H1(Ω)]2 , (4.14)

which, according to (2.12) (cf. Lem. 2.1), (4.13), (4.11) (cf. Lem. 4.4), and Korn’s first inequality (3.22), leads
to

A((τ h,vh,ηh), (τh,vh,ηh)) ≥ α2 C2 ‖τh‖2
H(div; Ω) + (κ1 kD − κ3(1 − kD)) |vh|2[H1(Ω)]2 + κ3 ‖ηh‖2

[L2(Ω)]2×2 ,

(4.15)
for all (τ h,vh,ηh) ∈ Vh,h̃ and for all h̃ ≤ h0, where α2 is the constant defined in (3.12). The rest of the analysis
is similar to the continuous case (cf. Sect. 3.2).

We have thus proved the following result.
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Theorem 4.5. Assume that the vector of parameters (κ1, κ2, κ3) satisfies the assumptions of Theorem 3.3.
Then, there exists ᾱ > 0, independent of λ, h, and h̃, such that

A((τ h,vh,ηh), (τ h,vh,ηh)) ≥ ᾱ ‖(τh,vh,ηh)‖2
H ∀ (τ h,vh,ηh) ∈ Vh,h̃ , ∀ h̃ ≤ h0 .

It is important to remark here that the cost of obtaining a discrete coerciveness constant ᾱ, independent of λ, is
given by the asymptotic equivalence (for h̃ sufficiently small) provided by Lemma 4.4. Otherwise, if we wanted
to circumvent this, then we would have to get the corresponding lower bound of A((τ h,vh,ηh), (τ h,vh,ηh))
starting from (3.8) and (3.9), and avoiding the use of (3.10) and (3.20) (see also (4.14)). Unfortunately, in this
case we obtain, instead of (4.14),

A((τ ,v,η), (τ ,v,η)) ≥ 1
2µ

(
1 − κ1

2µ

)
‖τ‖2

[L2(Ω)]2×2 +
λ

8µ(λ+ µ)

(
κ1(λ+ 2µ)
µ(λ+ µ)

− 2
)∫

Ω

tr2(τ )

+ (κ1 + κ3) ‖e(v)‖2
[L2(Ω)]2×2 + κ2 ‖div(τ )‖2

[L2(Ω)]2 + κ3 ‖η‖2
[L2(Ω)]2×2 − κ3 |v|2[H1(Ω)]2 ,

from which we deduce the required bound only when 2µ(λ+µ)
(λ+2µ) ≤ κ1 < 2µ. Then, it is not difficult to see that

this estimate yields a coerciveness constant ≤ O( 1
λ), which leads to the numerical locking of the scheme (4.10).

Our next goal is to show the discrete inf-sup condition of B by following the analysis provided in [5]. Actually,
the technical results given below (cf. Lems. 4.6 and 4.7) are simple extensions of the corresponding ones in
Section 3 of [5]. To this end, we now consider the specific finite element subspaces Hσ

h and Qh̃ defined,
respectively, by (4.2) and (4.12). In addition, we let {e1, e2, ..., en} be the partition on ΓN inherited from the
triangulation Th, and define the subspace H−1/2

h of [H−1/2(ΓN )]2 given by the piecewise constant functions,
that is

H
−1/2
h := {ρh ∈ [L2(ΓN )]2 : ρh|ej ∈ [P0(ej)]2 ∀j ∈ {1, ..., n} } ,

which satisfies the following approximation property:

(AP−1/2
h ) For all s ∈ (− 1

2 ,
1
2 ] and for all ρ ∈ [Hs(ΓN )]2 there exists ρh ∈ H

−1/2
h such that

‖ρ − ρh‖[H−1/2(ΓN )]2 ≤ C hs+1/2 ‖ρ‖[Hs(ΓN )]2 .

Next, the family of triangulations {Th}h>0 is assumed to be uniformly regular near ΓN , which means that there
exists C > 0, independent of h, such that |ej| ≥ C h for all j ∈ {1, ..., n}, for all h > 0. This condition implies
the inverse inequality for H−1/2

h , that is for any real numbers s and t with −1/2 ≤ s ≤ t ≤ 0, there exists C > 0
such that

‖ρh‖[Ht(ΓN )]2 ≤ C hs−t ‖ρh‖[Hs(ΓN )]2 ∀ρh ∈ H
−1/2
h . (4.16)

Lemma 4.6. There exists β̄1 > 0, independent of h and h̃, such that for all χh̃ ∈ Qh̃ there holds

sup
τ h∈Hσ

h
τ h �=0

〈τ hν,χh̃〉ΓN

‖τh‖H(div; Ω)
≥ β̄1 sup

ρ
h
∈H

−1/2
h

ρh �=0

〈ρh,χh̃〉ΓN

‖ρh‖[H−1/2(ΓN )]2
·

Proof. It is a componentwise application of Lemma 3.2 in [5], whose proof employs a suitable auxiliary problem,
and applies, mainly, elliptic regularity results, the properties of the equilibrium interpolation operator mapping
[H1(Ω)]2×2 onto Hσ

h (see [10]), and the inverse inequality (4.16). We omit further details and refer to [5]. �

On the other hand, we also assume that the independent partition {ẽ1, ..., ẽm} of ΓN is uniformly regular, that
is there exists C > 0, independent of h̃, such that |ẽj | ≥ C h̃ for all j ∈ {1, ...,m}, for all h̃ > 0. This condition
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and the fact that Qh̃ ⊆ [H1
00(ΓN )]2 guarantees the inverse inequality for Qh̃, which means that for any real

numbers s and t with 0 ≤ s ≤ t ≤ 1, there exists C > 0 such that

‖χh̃‖[Ht
00(ΓN )]2 ≤ C h̃s−t ‖χh̃‖[Hs

00(ΓN )]2 ∀χh̃ ∈ Qh̃ . (4.17)

Lemma 4.7. There exist β̄2, C0 > 0, independent of h and h̃, such that for all h ≤ C0 h̃ and for all χh̃ ∈ Qh̃

there holds

sup
ρh∈H

−1/2
h

ρh �=0

〈ρh,χh̃〉ΓN

‖ρh‖[H−1/2(ΓN )]2
≥ β̄2 ‖χh̃‖[H

1/2
00 (ΓN )]2

.

Proof. It is a componentwise application of Lemma 3.3 in [5], whose proof also employs an auxiliary problem,
and applies, mainly, elliptic regularity results, the approximation property (AP−1/2

h ), and the inverse inequal-
ity (4.17). Again, we omit details and refer to [5]. �

As a corollary of Lemmas 4.6 and 4.7 we can establish the following result.

Theorem 4.8. There exist β̄, C0 > 0, independent of h and h̃, such that for all h ≤ C0 h̃ and for all χh̃ ∈ Qh̃

there holds

sup
(τ h,vh,η

h
)∈Hh

(τ h,vh,ηh) �=0

B((τ h,vh,ηh),χh̃)
‖(τh,vh,ηh)‖H

≥ β̄ ‖χh̃‖[H
1/2
00 (ΓN )]2

.

The unique solvability and stability of (4.10) and the corresponding Cea’s estimate can be established now.

Theorem 4.9. Assume that the vector of parameters (κ1, κ2, κ3) satisfies the assumptions of Theorem 3.3.
Let Hh := Hσ

h ×Hu
D,h ×H

γ
h be a finite element subspace of H with Hσ

h given by (4.2), and let Qh̃ be defined
by (4.12). Then, for all h̃ ≤ h0 and for all h ≤ C0 h̃ the Galerkin scheme (4.10) has a unique solution
((σh,uh,γh), ξh̃) ∈ Hh × Qh̃. In addition, there exist positive constants C, C̃, independent of λ, h, and h̃,
such that

‖((σh,uh,γh), ξh̃)‖H×Q

≤ C

⎧⎪⎪⎨
⎪⎪⎩ sup

(τ h,vh,ηh)∈Hh

(τ h,vh,η
h
) �=0

|F (τ h,vh,ηh)|
‖(τh,vh,ηh)‖H

+ sup
χ

h̃
∈Q

h̃
χh̃ �=0

|G(χh̃)|
‖χh̃‖Q

⎫⎪⎪⎬
⎪⎪⎭ ≤ C

{
‖f‖[L2(Ω)]2 + ‖g‖[H−1/2(ΓN )]2

}

and

‖((σ,u,γ), ξ) − ((σh,uh,γh), ξh̃)‖H×Q

≤ C̃ inf
((τ h,vh,ηh),χh̃)∈Hh×Qh̃

‖((σ,u,γ), ξ) − ((τ h,vh,ηh),χh̃)‖H×Q . (4.18)

Proof. It is a consequence of the boundedness of A and B (cf. Thm. 3.3), Theorems 4.4 and 4.5, and the well
known Babuška-Brezzi theory. �

The corresponding rate of convergence of the Galerkin scheme (4.10) is provided next. To this end, we also
assume that there holds an approximation property of Hu

D,h, say (APu
D,h), which is analogous to the one of

Hu
0,h (see (APu

0,h)).
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Theorem 4.10. Let ((σ,u,γ), ξ) ∈ H and ((σh,uh,γh), ξh̃) ∈ Hh ×Qh̃ be the unique solutions of the contin-
uous and discrete augmented mixed formulations (3.17) and (4.10), respectively. Assume that σ ∈ [Hr(Ω)]2×2,
div(σ) ∈ [Hr(Ω)]2, u ∈ [Hr+1(Ω)]2, γ ∈ [Hr(Ω)]2×2, and ξ ∈ [Hr+1/2

00 (ΓN )]2 for some r ∈ (0, 1]. Then there
exists C > 0, independent of λ, h, and h̃, such that for all h̃ ≤ h0 and for all h ≤ C0 h̃ there holds

‖((σ,u,γ), ξ) − ((σh,uh,γh), ξh̃)‖H×Q ≤ C h̃r ‖ξ‖
[H

r+1/2
00 (ΓN )]2

+ C hr
{
‖σ‖[Hr(Ω)]2×2 + ‖div(σ)‖[Hr(Ω)]2 + ‖u‖[Hr+1(Ω)]2 + ‖γ‖[Hr(Ω)]2×2

}
.

Proof. It follows from Cea’s estimate (4.18), approximation properties (APσ
h ), (APu

D,h), (APγ
h ), and (APξ

h̃
),

and suitable interpolation theorems in the corresponding function spaces. �

4.3. Some computational aspects

In order to illustrate the complexity of our augmented mixed finite element schemes, we now describe the
matrix structure of the discrete system (4.8), which, according to Theorem 4.3, corresponds to the case of pure
Dirichlet boundary conditions. To this end, we first let {�1, �2, ..., �N̄}, {x1,x2, ...,xn̄}, and {T1, T2, ..., Tm̄} be
the edges, interior nodes, and triangles, respectively, of the triangulation Th. Then, we denote by {τ1, τ2, ..., τN̄},
{v1, v2, ..., vn̄}, and {η1, η2, ..., ηm̄} the canonical bases of the Raviart–Thomas space of lowest order, the piece-
wise linear functions vanishing on ∂Ω, and the piecewise constant functions, respectively. In other words, given
j ∈ {1, ..., N̄}, τj := (τj1, τj2) is the unique function in H(div; Ω) := {τ ∈ [L2(Ω)]2 : div(τ) ∈ L2(Ω)} such
that τj |T ∈ RT0(T )t for all T ∈ Th, τj ·ν = 1 on �j , and τj ·ν = 0 on �i for all i �= j. Also, given j ∈ {1, ..., n̄},
vj is the unique function in C(Ω̄) such that vj |T ∈ P1(T ) for all T ∈ Th, vj = 0 on ∂Ω, vj(xj) = 1, and
vj(xi) = 0 for all i �= j. Similarly, given j ∈ {1, ..., m̄}, ηj is the unique function in L2(Ω) such that ηj = 1 on
Tj and ηj = 0 on Ti for all i �= j.

It follows easily that the corresponding canonical bases of the spaces Hσ
h , Hu

0,h, and H
γ
h are given, respec-

tively, by the following sets:

{(
τj1 τj2
0 0

)
: j ∈ {1, ..., N̄}

}
∪

{(
0 0
τj1 τj2

)
: j ∈ {1, ..., N̄}

}
, (4.19)

{(
vj

0

)
: j ∈ {1, ..., n̄}

}
∪

{(
0
vj

)
: j ∈ {1, ..., n̄}

}
, (4.20)

and {(
0 ηj

−ηj 0

)
: j ∈ {1, ..., m̄}

}
. (4.21)

At this point we compare the dimensions of the subspaces Hσ
h ×Hu

0,h ×H
γ
h and PEERS (cf. [1]) when uniform

triangulations are utilized. In fact, we first observe that in this case each interior edge (resp. interior node)
belongs to 2 (resp. 6) triangles, which yields corresponding correction factors of 1

2 and 1
6 when counting the

global number of degrees of freedom (DOF) in terms of the number of triangles m̄. Then, it is not difficult to see
that in the augmented scheme (4.8) the parameter DOF behaves asymptotically as 5 m̄, whereas this behaviour
is given by 7.5 m̄ when PEERS is used in the Galerkin scheme of the non-augmented formulation (2.10). In
other words, the discrete system using PEERS introduces at large 50% more unknowns than our approach at
each mesh, and therefore the present augmented method becomes a much cheaper alternative. In addition, it
is also important to note that the polynomial degrees involved in the definition of Hσ

h ×Hu
0,h ×H

γ
h , being 1,

1 and 0, yield simpler computations than for the PEERS subspace, whose polynomial degrees are 2, 0, and 1,
respectively.
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We now go back to the discrete system (4.8). According to (4.19), (4.20), and (4.21), there exist S0 :=
(σ1, ..., σN̄ )t, S0 := (σ1, ..., σN̄ )t ∈ R

N̄ , U0 := (u1, ..., un̄)t, U0 := (u1, ..., un̄)t ∈ R
n̄, and G := (g1, ..., gm̄)t ∈

R
m̄, such that the first three components of the solution of (4.8) can be written as

σh :=
N̄∑

j=1

σj

(
τj1 τj2
0 0

)
+

N̄∑
j=1

σj

(
0 0
τj1 τj2

)
, (4.22)

uh :=
n̄∑

j=1

uj

(
vj

0

)
+

n̄∑
j=1

uj

(
0
vj

)
, (4.23)

and

γh :=
m̄∑

j=1

gj

(
0 ηj

−ηj 0

)
. (4.24)

In this way, the unknown vector of the linear system arising from (4.8) is given by

⎡
⎢⎢⎢⎢⎢⎢⎣

S0

S0

U0

U0

G
ϕh

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ R
M̄ ,

where M̄ := 2 (N̄ + n̄) + m̄ + 1.
Now, in order to compute the associated stiffness matrix, we first observe from the definition of the bilinear

form A (cf. (3.5)), and using some formulae provided in Section 2, that the following identities hold:

A((σ,0,0), (τ ,0,0) =
1
2µ

(
1 − κ1

2µ

) ∫
Ω

σ : τ + κ2

∫
Ω

div(σ) · div(τ )

− λ

4µ(λ+ µ)

(
1 +

κ1

µ

(
λ

2(λ+ µ)
− 1

)) ∫
Ω

tr(σ) tr(τ ) ,

(4.25)

A((σ,0,0), (0,v,0)) = −
∫

Ω

v · div(σ) − κ1

2µ

∫
Ω

σ : e(v)

+
κ1 λ

4µ (λ+ µ)

∫
Ω

tr(σ) div(v) ,
(4.26)

A((σ,0,0), (0,0,η)) = −
∫

Ω

η : σ , (4.27)

A((0,u,0), (0,v,0)) =
(
κ1 − κ3

2

) ∫
Ω

∇u : ∇v +
(
κ1 + κ3

2

) ∫
Ω

∇u : (∇v)t , (4.28)

A((0,u,0), (0,0,η)) = − κ3

∫
Ω

∇u : η , (4.29)

and

A((0,0,γ), (0,0,η)) = κ3

∫
Ω

γ : η . (4.30)



AUGMENTED MIXED FINITE ELEMENT METHOD FOR LINEAR ELASTICITY 19

Then, applying (4.25) to the elements of the canonical basis (4.19), we find that the corresponding block of the

stiffness matrix is given by
[

A C
Ct B

]
, where

A =
1
2µ

(
1 − κ1

2µ

)
Aτ + κ2 Adiv − λ

4µ(λ+ µ)

(
1 +

κ1

µ

(
λ

2(λ+ µ)
− 1

))
A1,1 , (4.31)

B =
1
2µ

(
1 − κ1

2µ

)
Aτ + κ2 Adiv − λ

4µ(λ+ µ)

(
1 +

κ1

µ

(
λ

2(λ+ µ)
− 1

))
A2,2 , (4.32)

and

C = − λ

4µ(λ+ µ)

(
1 +

κ1

µ

(
λ

2(λ+ µ)
− 1

))
A1,2 , (4.33)

with the matrices Aτ := (Aτ
ij), Adiv := (Adiv

ij ), A1,1 := (A1,1
ij ), A1,2 := (A1,2

ij ), and A2,2 := (A2,2
ij ) ∈ R

N̄×N̄ ,
being defined as

Aτ
ij :=

∫
Ω

τi · τj , Adiv
ij :=

∫
Ω

div(τi) div(τj) ,

A1,1
ij :=

∫
Ω

τi1 τj1 , A1,2
ij :=

∫
Ω

τi1 τj2 , and A2,2
ij :=

∫
Ω

τi2 τj2 .

Note that the entries of these matrices are possibly non null only for those indexes i and j such that the edges �i
and �j form part of a common triangle in Th. In addition, observe that Aτ , Adiv, A1,1, and A2,2, and hence
A and B, are all symmetric.

Now, applying (4.26) to the elements of the canonical bases (4.19) and (4.20), we find that the corresponding

block of the stiffness matrix is given by
[

D Ẽ
E G

]
, where

D := −Ddiv +
κ1

2µ

(
λ

2(λ+ µ)
− 1

)
D1,1 − κ1

4µ
D2,2 , (4.34)

E := − κ1

4µ
D1,2 +

κ1 λ

4µ(λ+ µ)
D2,1 , (4.35)

Ẽ :=
κ1 λ

4µ(λ+ µ)
D1,2 − κ1

4µ
D2,1 , (4.36)

and

G := −Ddiv − κ1

4µ
D1,1 +

κ1

2µ

(
λ

2(λ+ µ)
− 1

)
D2,2 , (4.37)

with the matrices Ddiv := (Ddiv
ij ), D1,1 := (D1,1

ij ), D1,2 := (D1,2
ij ), D2,1 := (D2,1

ij ), and D2,2 := (D2,2
ij ) ∈ R

n̄×N̄ ,
being defined as

Ddiv
ij :=

∫
Ω

vi div(τj) , D1,1
ij :=

∫
Ω

∂vi

∂x1
τj1 ,

D1,2
ij :=

∫
Ω

∂vi

∂x1
τj2 , D2,1

ij :=
∫

Ω

∂vi

∂x2
τj1 , and D2,2

ij :=
∫

Ω

∂vi

∂x2
τj2 .

Note that the entries of these matrices are possibly non null only for those indexes i and j such that the vertex
xi and the edge �j belong to a common triangle in Th.

Also, applying (4.28) to the elements of the canonical basis (4.20), we find that the corresponding block of

the stiffness matrix is given by
[

J L
Lt K

]
, where

J := κ1 J1,1 +
(
κ1 − κ3

2

)
J2,2 , K :=

(
κ1 − κ3

2

)
J1,1 + κ1 J2,2 , (4.38)
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and

L :=
(
κ1 + κ3

2

)
J2,1 , (4.39)

with the matrices J1,1 := (J1,1
ij ), J2,2 := (J2,2

ij ), and J2,1 := (J2,1
ij ) ∈ R

n̄×n̄, being defined as

J1,1
ij :=

∫
Ω

∂vi

∂x1

∂vj

∂x1
, J2,2

ij :=
∫

Ω

∂vi

∂x2

∂vj

∂x2
, and J2,1

ij :=
∫

Ω

∂vi

∂x2

∂vj

∂x1
·

Note that the entries of these matrices are possibly non null only for those indexes i and j such that the vertices
xi and xj belong to a common triangle in Th. In addition, observe that J1,1 and J2,2, and hence J and K, are
all symmetric.

Next, applying (4.27) to the elements of the canonical bases (4.19) and (4.21), we find that the corresponding
block of the stiffness matrix is given by

[
P Q

]
, where the matrices P := (Pij) and Q := (Qij) ∈ R

m̄×N̄

are defined as

Pij := −
∫

Ω

ηi τj2 = −
∫

Ti

τj2 and Qij :=
∫

Ω

ηi τj1 =
∫

Ti

τj1·

Note that the entries of P and Q are possibly non null only for the indexes i and j such that the edge �j form
part of triangle Ti.

Similarly, applying (4.29) to the elements of the canonical bases (4.20) and (4.21), we find that the corres-
ponding block of the stiffness matrix is given by

[
S T

]
, where the matrices S := (Sij) and T := (Tij)

∈ R
m̄×n̄ are defined as

Sij := − κ3

∫
Ω

ηi
∂vj

∂x2
= − κ3

∫
Ti

∂vj

∂x2
and Tij := κ3

∫
Ω

ηi
∂vj

∂x1
= κ3

∫
Ti

∂vj

∂x1
·

Observe now that the entries of S and T are possibly non null only for the indexes i and j such that the vertex
xj belongs to triangle Ti.

On the other hand, applying (4.30) to the elements of the canonical basis (4.21), we obtain that the corres-
ponding block of the stiffness matrix is given by

U := 2 κ3 diag (|T1|, |T2|, ..., |Tm̄|) ∈ R
m̄×m̄ . (4.40)

The stiffness matrix is completed with the vectors V := (Vi) and W := (Wi) ∈ R
N̄×1 arising from the

terms involving the Lagrange multiplier ϕh, which are defined as

Vi :=
∫

Ω

τi1 and Wi :=
∫

Ω

τi2 . (4.41)

Summarizing all the above, the discrete system (4.8) can be rewritten in matrix form as follows:

⎡
⎢⎢⎢⎢⎢⎢⎣

A C −Dt −Et −Pt V
Ct B −Ẽt −Gt −Qt W
D Ẽ J L −St 0
E G Lt K −Tt 0
P Q S T U 0
Vt Wt 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

S0

S0

U0

U0

G
ϕh

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

F1,d

F2,d

F1

F2

0
0

⎤
⎥⎥⎥⎥⎥⎥⎦
, (4.42)
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where, according to the definition of the functional F (cf. (3.6)) and setting f := (f1, f2)t, the vectors F1,d :=
(F1,d

i ), F2,d := (F2,d
i ) ∈ R

N̄×1, and F1 := (F1
i ), F2 := (F2

i ) ∈ R
n̄×1, become

F1,d
i := − κ2

∫
Ω

f1 div(τi) , F2,d
i := − κ2

∫
Ω

f2 div(τi) ,

F1
i :=

∫
Ω

f1 vi , and F2
i :=

∫
Ω

f2 vi .

Since U is diagonal and invertible, the vector G can be easily eliminated from (4.42), thus yielding a reduced
system.

5. Numerical results

In this section we provide several numerical results illustrating the performance of the augmented mixed
finite element scheme (4.8) on a finite sequence of uniform triangulations of the domain.

We begin with some notations. As indicated in Section 4.3, DOF stands for the total number of degrees of
freedom (unknowns) of (4.8), which behaves asymptotically as 5 m̄, where m̄ is the number of triangles of each
triangulation. Also, the individual and total errors are denoted by

e(σ) := ‖σ − σh‖H(div; Ω) , e(u) := ‖u− uh‖[H1(Ω)]2 , e(γ) := ‖γ − γh‖[L2(Ω)]2×2 ,

and
e(σ,u,γ) :=

{
[e(σ)]2 + [e(u)]2 + [e(γ)]2

}1/2
.

Next, we recall that given the Young modulus E and the Poisson ratio ν of a linear elastic material, the
corresponding Lamé constants are defined as

µ :=
E

2(1 + ν)
and λ :=

E ν

(1 + ν) (1 − 2 ν)
·

Then, in order to emphasize the convergence of our augmented scheme (4.8) independently of how large λ
becomes (locking-free property), in the examples below we fix E = 1 and take ν = 0.4900 and ν = 0.4999,
which yield the following values of µ and λ:

ν µ λ
0.4900 0.3356 16.4430
0.4999 0.3333 1666.4444

In addition, in order to show the robustness of the method with respect to the parameters κ1, κ2, and κ3, and
according to our analysis in Section 3.1, we consider the feasible choices described in (3.15) and (3.16), that is

(κ1, κ2, κ3) =
(
µ,

1
2µ

,
µ

2

)
and (κ1, κ2, κ3) =

(
3µ
2
,

1
4µ

, µ

)
.

We now specify the four examples to be presented here. We take Ω as the square domain ]0, 1[× ]0, 1[ and
chose the datum f so that the Poisson ratio ν and the exact solution u are given as follows:

Example ν u(x1, x2)

1 0.4900
(
x3

1(1 − x1)2 x3
2(1 − x2)2 , x3

1(1 − x1)2 x3
2(1 − x2)2

)t
2 0.4999

(
x3

1(1 − x1)2 x3
2(1 − x2)2 , x3

1(1 − x1)2 x3
2(1 − x2)2

)t
3 0.4900

(
sin(π x1) sin(π x2) , sin(π x1) sin(π x2)

)t
4 0.4999

(
sin(π x1) sin(π x2) , sin(π x1) sin(π x2)

)t
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Actually, according to (2.1) and (2.2) we have σ = λdiv(u) I + 2µ e(u), and hence simple computations show
that f := −div(σ) = − (λ + µ)∇(div u) − µ∆u. Further, we also recall from Section 2 that the rotation γ
is defined as 1

2

(
∇u − (∇u)t)

)
.

The numerical results given below were obtained in a Compaq Alpha ES40 Parallel Computer using a fortran
code. The linear system (4.42) is implemented in this code exactly as explained in Section 4.3, and it is solved by
a direct method. In addition, the individual errors are computed on each triangle using a Gaussian quadrature
rule. Given a uniform initial triangulation of Ω, each subsequent mesh is obtained from the previous one
by dividing each triangle into the four ones arising after joining the middle points of its sides. The number of
unknowns DOF and the number of triangles m̄ of the uniform meshes employed in the computations are displayed
in the following array, where one can also verify, as already mentioned, that the ratio DOF/m̄ approaches 5 as
m̄ (and hence DOF) increases:

Mesh DOF m̄ DOF/m̄

1 643 128 5.0234
2 1003 200 5.0150
3 1443 288 5.0104
4 1963 392 5.0077
5 2563 512 5.0059
6 3243 648 5.0046
7 4003 800 5.0038
8 4843 968 5.0031
9 5763 1152 5.0026
10 6763 1352 5.0022
11 7843 1568 5.0019
12 9003 1800 5.0017
13 10243 2048 5.0015
14 11563 2312 5.0013
15 12963 2592 5.0012

In Tables 1 up to 4 we present the individual and total errors of each example for this sequence of uniform
meshes. We first remark that there are no significant differences between the results obtained with the two
choices of parameters (κ1, κ2, κ3), which numerically shows the corresponding robustness of our augmented
mixed finite element scheme. Hence, we consider just one of these sets of parameters in each case to display in
Figures 1 up to 4 the log-log curves of the number of unknowns DOF versus the meshsize h and the errors. We
observe there that the rate of convergence O(h) predicted by Theorem 4.2 (when r = 1) is attained in all the
examples, independently of the value of ν (and hence of λ), which confirms not only the a priori error estimate
provided by that theorem but also the locking-free character of our method. We also notice in Examples 1
and 2 that the convergence of e(u) is even faster than O(h), which, however, is just a special behaviour of this
particular solution u. On the other hand, the same rate of convergence O(h) for each error should be obtained
by using PEERS but, as commented before, employing 50% more unknowns than our method. Finally, we
deduce from the tables that the dominant component of the total error is given by e(σ), which is actually a
quite frequent fact in many mixed finite element schemes. This feature is also evident from the figures, where
one sees that the curves corresponding to e(σ,u,γ) and e(σ) do not distinguish from each other.
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Table 1. Individual and total errors of Example 1 with (κ1, κ2, κ3) = (µ, 1
2 µ ,

µ
2 ) and

(κ1, κ2, κ3) = (3 µ
2 ,

1
4 µ , µ).

DOF h e(σ) e(u) e(γ) e(σ,u, γ)

643 0.12500 0.9382E-01 0.5429E-02 0.1106E-01 0.9463E-01

1003 0.10000 0.7576E-01 0.3725E-02 0.9973E-02 0.7650E-01

1443 0.08333 0.6345E-01 0.2725E-02 0.8914E-02 0.6413E-01

1963 0.07143 0.5455E-01 0.2087E-02 0.7990E-02 0.5517E-01

2563 0.06250 0.4782E-01 0.1653E-02 0.7207E-02 0.4839E-01

3243 0.05556 0.4256E-01 0.1346E-02 0.6545E-02 0.4308E-01

4003 0.05000 0.3834E-01 0.1119E-02 0.5984E-02 0.3882E-01

4843 0.04545 0.3488E-01 0.9479E-03 0.5506E-02 0.3532E-01

5763 0.04167 0.3199E-01 0.8151E-03 0.5094E-02 0.3240E-01

6763 0.03846 0.2954E-01 0.7102E-03 0.4736E-02 0.2993E-01

7843 0.03571 0.2744E-01 0.6258E-03 0.4424E-02 0.2780E-01

9003 0.03333 0.2562E-01 0.5569E-03 0.4149E-02 0.2596E-01

10243 0.03125 0.2402E-01 0.5000E-03 0.3905E-02 0.2434E-01

11563 0.02941 0.2261E-01 0.4523E-03 0.3687E-02 0.2291E-01

12963 0.02777 0.2136E-01 0.4120E-03 0.3492E-02 0.2164E-01

643 0.12500 0.9377E-01 0.2669E-02 0.5728E-02 0.9398E-01

1003 0.10000 0.7572E-01 0.1906E-02 0.5110E-02 0.7592E-01

1443 0.08333 0.6342E-01 0.1441E-02 0.4534E-02 0.6360E-01

1963 0.07143 0.5452E-01 0.1137E-02 0.4043E-02 0.5468E-01

2563 0.06250 0.4780E-01 0.9262E-03 0.3633E-02 0.4795E-01

3243 0.05556 0.4255E-01 0.7744E-03 0.3289E-02 0.4268E-01

4003 0.05000 0.3833E-01 0.6612E-03 0.3001E-02 0.3845E-01

4843 0.04545 0.3487E-01 0.5745E-03 0.2756E-02 0.3498E-01

5763 0.04167 0.3198E-01 0.5065E-03 0.2546E-02 0.3209E-01

6763 0.03846 0.2953E-01 0.4520E-03 0.2365E-02 0.2963E-01

7843 0.03571 0.2743E-01 0.4076E-03 0.2207E-02 0.2752E-01

9003 0.03333 0.2561E-01 0.3708E-03 0.2068E-02 0.2570E-01

10243 0.03125 0.2402E-01 0.3400E-03 0.1945E-02 0.2410E-01

11563 0.02941 0.2261E-01 0.3137E-03 0.1835E-02 0.2268E-01

12963 0.02777 0.2136E-01 0.2913E-03 0.1737E-02 0.2143E-01

1e-04

0.001

0.01

0.1

1

100 1000 10000 100000
DOF

h

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦♦♦♦♦♦♦♦

♦
e(σ)

+ + + + + + +++++++++

+
e(u)

�
� � � � � ���������

�
e(γ)

× × × × × ××××××××××

×
e(σ,u,γ)� � � � �����������

�

Figure 1. Example 1 with (κ1, κ2, κ3) = (µ, 1
2 µ ,

µ
2 ).
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Table 2. Individual and total errors of Example 2 with (κ1, κ2, κ3) = (µ, 1
2 µ ,

µ
2 ) and

(κ1, κ2, κ3) = (3 µ
2 ,

1
4 µ , µ).

DOF h e(σ) e(u) e(γ) e(σ, u, γ)

643 0.12500 0.9134E+01 0.5266E+00 0.1049E+01 0.9209E+01

1003 0.10000 0.7377E+01 0.3602E+00 0.9470E+00 0.7446E+01

1443 0.08333 0.6179E+01 0.2622E+00 0.8471E+00 0.6242E+01

1963 0.07143 0.5313E+01 0.1993E+00 0.7598E+00 0.5370E+01

2563 0.06250 0.4658E+01 0.1565E+00 0.6856E+00 0.4710E+01

3243 0.05556 0.4146E+01 0.1261E+00 0.6228E+00 0.4194E+01

4003 0.05000 0.3735E+01 0.1037E+00 0.5696E+00 0.3779E+01

4843 0.04545 0.3397E+01 0.8668E-01 0.5241E+00 0.3438E+01

5763 0.04167 0.3116E+01 0.7351E-01 0.4850E+00 0.3154E+01

6763 0.03846 0.2877E+01 0.6311E-01 0.4510E+00 0.2912E+01

7843 0.03571 0.2673E+01 0.5474E-01 0.4213E+00 0.2706E+01

9003 0.03333 0.2495E+01 0.4793E-01 0.3951E+00 0.2526E+01

10243 0.03125 0.2340E+01 0.4230E-01 0.3719E+00 0.2369E+01

11563 0.02941 0.2202E+01 0.3760E-01 0.3512E+00 0.2230E+01

12963 0.02777 0.2080E+01 0.3364E-01 0.3326E+00 0.2107E+01

643 0.12500 0.9129E+01 0.2484E+00 0.5489E+00 0.9148E+01

1003 0.10000 0.7373E+01 0.1735E+00 0.4903E+00 0.7391E+01

1443 0.08333 0.6176E+01 0.1279E+00 0.4354E+00 0.6192E+01

1963 0.07143 0.5310E+01 0.9789E-01 0.3884E+00 0.5325E+01

2563 0.06250 0.4656E+01 0.7719E-01 0.3490E+00 0.4669E+01

3243 0.05556 0.4144E+01 0.6233E-01 0.3161E+00 0.4156E+01

4003 0.05000 0.3734E+01 0.5131E-01 0.2884E+00 0.3745E+01

4843 0.04545 0.3397E+01 0.4294E-01 0.2649E+00 0.3407E+01

5763 0.04167 0.3115E+01 0.3643E-01 0.2447E+00 0.3124E+01

6763 0.03846 0.2877E+01 0.3128E-01 0.2273E+00 0.2886E+01

7843 0.03571 0.2672E+01 0.2714E-01 0.2121E+00 0.2680E+01

9003 0.03333 0.2495E+01 0.2376E-01 0.1988E+00 0.2503E+01

10243 0.03125 0.2340E+01 0.2097E-01 0.1870E+00 0.2346E+01

11563 0.02941 0.2202E+01 0.1864E-01 0.1764E+00 0.2209E+01

12963 0.02777 0.2080E+01 0.1668E-01 0.1670E+00 0.2086E+01
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1
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100 1000 10000 100000
DOF

h

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦♦♦♦♦♦♦♦

♦
e(σ)

+ + + + + + +++++++++

+
e(u)

�
�

� � � � ���������

�
e(γ)

× × × × × ××××××××××

×
e(σ,u,γ)

� � � � �����������
�

Figure 2. Example 2 with (κ1, κ2, κ3) = (3 µ
2 ,

1
4 µ , µ).
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Table 3. Individual and total errors of Example 3 with (κ1, κ2, κ3) = (µ, 1
2 µ ,

µ
2 ) and

(κ1, κ2, κ3) = (3 µ
2 ,

1
4 µ , µ).

DOF h e(σ) e(u) e(γ) e(σ, u, γ)

643 0.12500 0.1671E+02 0.9248E+00 0.3978E+00 0.1674E+02

1003 0.10000 0.1338E+02 0.6676E+00 0.2822E+00 0.1339E+02

1443 0.08333 0.1115E+02 0.5198E+00 0.2133E+00 0.1116E+02

1963 0.07143 0.9563E+01 0.4249E+00 0.1689E+00 0.9573E+01

2563 0.06250 0.8369E+01 0.3593E+00 0.1385E+00 0.8377E+01

3243 0.05556 0.7440E+01 0.3113E+00 0.1167E+00 0.7447E+01

4003 0.05000 0.6697E+01 0.2747E+00 0.1004E+00 0.6703E+01

4843 0.04545 0.6088E+01 0.2459E+00 0.8795E-01 0.6093E+01

5763 0.04167 0.5581E+01 0.2227E+00 0.7810E-01 0.5585E+01

6763 0.03846 0.5152E+01 0.2035E+00 0.7016E-01 0.5156E+01

7843 0.03571 0.4784E+01 0.1875E+00 0.6365E-01 0.4788E+01

9003 0.03333 0.4465E+01 0.1738E+00 0.5822E-01 0.4468E+01

10243 0.03125 0.4186E+01 0.1620E+00 0.5362E-01 0.4189E+01

11563 0.02941 0.3940E+01 0.1517E+00 0.4970E-01 0.3943E+01

12963 0.02777 0.3721E+01 0.1427E+00 0.4630E-01 0.3724E+01

643 0.12500 0.1671E+02 0.6800E+00 0.2323E+00 0.1672E+02

1003 0.10000 0.1338E+02 0.5281E+00 0.1745E+00 0.1339E+02

1443 0.08333 0.1115E+02 0.4324E+00 0.1392E+00 0.1115E+02

1963 0.07143 0.9562E+01 0.3664E+00 0.1157E+00 0.9569E+01

2563 0.06250 0.8368E+01 0.3181E+00 0.9901E-01 0.8374E+01

3243 0.05556 0.7439E+01 0.2812E+00 0.8652E-01 0.7444E+01

4003 0.05000 0.6696E+01 0.2520E+00 0.7685E-01 0.6701E+01

4843 0.04545 0.6088E+01 0.2284E+00 0.6914E-01 0.6092E+01

5763 0.04167 0.5581E+01 0.2088E+00 0.6285E-01 0.5585E+01

6763 0.03846 0.5152E+01 0.1924E+00 0.5762E-01 0.5155E+01

7843 0.03571 0.4784E+01 0.1783E+00 0.5320E-01 0.4787E+01

9003 0.03333 0.4465E+01 0.1662E+00 0.4942E-01 0.4468E+01

10243 0.03125 0.4186E+01 0.1557E+00 0.4615E-01 0.4189E+01

11563 0.02941 0.3940E+01 0.1464E+00 0.4329E-01 0.3941E+01

12963 0.02777 0.3721E+01 0.1381E+00 0.4076E-01 0.3723E+01
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Figure 3. Example 3 with (κ1, κ2, κ3) = (µ, 1
2 µ ,

µ
2 ).
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Table 4. Individual and total errors of Example 4 with (κ1, κ2, κ3) = (µ, 1
2 µ ,

µ
2 ) and

(κ1, κ2, κ3) = (3 µ
2 ,

1
4 µ , µ).

DOF h e(σ) e(u) e(γ) e(σ, u, γ)

643 0.12500 0.1631E+04 0.6712E+02 0.4018E+02 0.1633E+04

1003 0.10000 0.1306E+04 0.4427E+02 0.2774E+02 0.1307E+04

1443 0.08333 0.1089E+04 0.3159E+02 0.2028E+02 0.1090E+04

1963 0.07143 0.9334E+03 0.2378E+02 0.1548E+02 0.9338E+03

2563 0.06250 0.8169E+03 0.1860E+02 0.1221E+02 0.8172E+03

3243 0.05556 0.7262E+03 0.1498E+02 0.9892E+01 0.7264E+03

4003 0.05000 0.6536E+03 0.1234E+02 0.8182E+01 0.6538E+03

4843 0.04545 0.5942E+03 0.1036E+02 0.6886E+01 0.5943E+03

5763 0.04167 0.5447E+03 0.8824E+01 0.5879E+01 0.5448E+03

6763 0.03846 0.5028E+03 0.7613E+01 0.5081E+01 0.5029E+03

7843 0.03571 0.4669E+03 0.6640E+01 0.4438E+01 0.4670E+03

9003 0.03333 0.4358E+03 0.5845E+01 0.3911E+01 0.4359E+03

10243 0.03125 0.4086E+03 0.5188E+01 0.3474E+01 0.4086E+03

11563 0.02941 0.3846E+03 0.4637E+01 0.3108E+01 0.3846E+03

12963 0.02777 0.3632E+03 0.4171E+01 0.2797E+01 0.3632E+03

643 0.12500 0.1631E+04 0.2991E+02 0.1994E+02 0.1631E+04

1003 0.10000 0.1306E+04 0.2021E+02 0.1367E+02 0.1306E+04

1443 0.08333 0.1089E+04 0.1469E+02 0.9966E+01 0.1089E+04

1963 0.07143 0.9333E+03 0.1120E+02 0.7597E+01 0.9334E+03

2563 0.06250 0.8168E+03 0.8853E+01 0.5991E+01 0.8169E+03

3243 0.05556 0.7261E+03 0.7186E+01 0.4852E+01 0.7262E+03

4003 0.05000 0.6536E+03 0.5958E+01 0.4015E+01 0.6536E+03

4843 0.04545 0.5942E+03 0.5026E+01 0.3380E+01 0.5942E+03

5763 0.04167 0.5447E+03 0.4301E+01 0.2887E+01 0.5447E+03

6763 0.03846 0.5028E+03 0.3725E+01 0.2496E+01 0.5028E+03

7843 0.03571 0.4669E+03 0.3260E+01 0.2180E+01 0.4669E+03

9003 0.03333 0.4358E+03 0.2878E+01 0.1922E+01 0.4358E+03

10243 0.03125 0.4086E+03 0.2561E+01 0.1708E+01 0.4086E+03

11563 0.02941 0.3845E+03 0.2294E+01 0.1529E+01 0.3845E+03

12963 0.02777 0.3632E+03 0.2068E+01 0.1376E+01 0.3632E+03
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Summarizing, the numerical results presented here constitute enough support for our augmented mixed
finite element scheme to be considered as a valid and competive alternative when solving the linear elasticity
problem. We end this section by mentioning that further developments on this approach, including other
computational aspects, preconditioning of (4.42), a posteriori error analysis, adaptivity, and corresponding
numerical experiments with larger numbers of degrees of freedom, will be reported in separate works.
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