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Aeroelastic stability remains an important concern for the design of modern structures such
as wind turbine rotors, more so with the use of increasingly flexible blades. A nonlinear
aeroelastic system has been considered in the present study with parametric uncertainties.
Uncertainties can occur due to any inherent randomness in the system or modeling limitations,
and so forth. Uncertainties can play a significant role in the aeroelastic stability predictions in
a nonlinear system. The analysis has been put in a stochastic framework, and the propagation
of system uncertainties has been quantified in the aeroelastic response. A spectral uncertainty
quantification tool called Polynomial Chaos Expansion has been used. A projection-based
nonintrusive Polynomial Chaos approach is shown to be much faster than its classical Galerkin
method based counterpart. Traditional Monte Carlo Simulation is used as a reference solution.
Effect of system randomness on the bifurcation behavior and the flutter boundary has been
presented. Stochastic bifurcation results and bifurcation of probability density functions are also
discussed.

1. Introduction

Fluid-structure interaction can result in dynamic instabilities like flutter. Nonlinear param-
eters present in the system can stabilize the diverging growth of flutter oscillations to
a limit cycle oscillation (LCO). Sustained LCO can lead to fatigue failure of rotating
structures such as wind turbine rotors. Hence, it is an important design concern in aeroelastic
analysis. Moreover, there is a growing interest in understanding how system uncertainties
in structural and aerodynamic parameters and initial conditions affect the characteristics of
such dynamical response.

Uncertainty quantification in a stochastic framework with stochastic inputs has
traditionally been analyzed with Monte Carlo simulations (MCSs). To apply this procedure
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one should use the distribution of the input parameters to generate a large number of
realizations of the response. Probability density function (PDF) and other required statistics
are then approximated from these realizations; however, it is computationally expensive,
especially for large complex problems. Hence, there is a need to develop alternate approaches
which are computationally cheaper than direct MCS procedure. Perturbation method is
a fast tool for obtaining the response statistics in terms of its first and second moments
[1]. The statistical response is determined by expanding the stochastic parameters around
their mean via a Taylor series [2]. The application of this method is, however, limited to
small perturbations and does not readily provide information on high-order statistics [3, 4].
The resulting system of equations becomes extremely complicated beyond second-order
expansions as shown in the literature. Sensitivity method is a more economical approach,
based on the moments of samples, but it is less robust and depends strongly on the modeling
assumptions [5]. Another approach based on expanding the inverse of the stochastic operator
in aNeumann series is also limited to small fluctuations only; even combiningwith theMonte
Carlo method also seems to result in a computationally prohibitive algorithm for complex
systems [4].

Polynomial chaos expansion (PCE) is a more effective approach, pioneered by
Ghanem and Spanos [4], proposed first in the structural mechanics finite elements area. It is a
spectral representation of the uncertainty in terms of orthogonal polynomials. The stochastic
input is represented spectrally by employing orthogonal polynomial functionals from the
Askey scheme as basis in the random space. The original homogeneous PCE was based on
Hermite polynomials from the Askey family [6]. It can give optimal exponential convergence
for Gaussian inputs [7]. A standard Galerkin projection is applied along the random
dimensions to obtain the weak form of the equations. The resulting deterministic systems are
solved using standard techniques to solve for each random mode [8]. Galerkin polynomial
chaos expansion (Galerkin PCE) based approaches have been examined extensively with
different basis functions to model several uncertain flow and flow-induced instability
problems [9, 10].

Galerkin PCE (also called intrusive approach) modifies the governing equations
to a coupled form in terms of the chaos coefficients. These equations are usually more
complex and arriving at them is quite often a tedious task for some choices of the uncertain
parameters. In order to avoid these, several uncoupled alternatives have been proposed.
These are collectively called nonintrusive approaches. In a nonintrusive polynomial chaos
method a deterministic solver is used repeatedly as in Monte Carlo simulation. The
Probabilistic Collocation (PC) method is such a nonintrusive polynomial chaos method in
which the problem is collocated at Gauss quadrature points in the probability space [11, 12].
The deterministic solutions are performed at these collocation points. The nonintrusive
polynomial chaos method proposed by Walters and coworkers [13–15] is based on
approximating the polynomial chaos coefficients. A similar approach called nonintrusive
Spectral Projection has been used by Reagan et al. [16]. Pettit and Beran [17, 18] have also
used a stochastic projection technique to compute the chaos expansion coefficients in an
aeroelastic system.Whenmultiple uncertain parameters are involved the collocation grids are
constructed using tensor products of one-dimensional grids. Thus, the number of collocation
points and therefore the number of required deterministic solutions increases rapidly. As an
alternative, sparse grid collocation approaches can be implemented [19–21].

The intrusive and nonintrusive PCE approaches and their implementation to an
aeroelastic model with structural nonlinearity are discussed in detail in the subsequent
sections.
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2. Nonlinear Aeroelastic Model

Figure 1 shows a schematic plot of the two degree-of-freedompitch-plunge aeroelastic system
and also the notations used in the analysis. The aeroelastic equations of motion for the linear
system have been derived by Fung [22]. For nonlinear restoring forces such as with cubic
springs in both pitch and plunge, the mathematical formulation is given by Lee et al. [23] as
follows:
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The above equations are shown in the nondimensional form. The nondimensional parameters
are given below. The plunge deflection is considered positive in the downward direction
and the pitch angle about the elastic axis is denoted positive nose up. Elastic axis is located
at a distance ahb from the midchord where b is the half chord. Let us also use v as the
wind velocity h as the plunge deflection. Among the nondimensional quantities, ε = h/b
= nondimensional displacement of the elastic axis point; τ = vt/b = nondimensional time;
U = v/(bωα)= the nondimensional velocity (also called reduced velocity); ω = ωε/ωα,
ωε and ωα are the natural frequencies of the uncoupled plunging and pitching modes
respectively. In the structural part, ζε and ζα are the damping ratios in plunge and pitch
respectively, rα is the radius of gyration about the elastic axis, and µ is the airfoil mass
ratio defined as m/(πρv). βα and βε denote coefficients of cubic spring in pitch and plunge
respectively. For incompressible, inviscid flow, Fung [22] gives the expressions for unsteady
lift and pitching moment coefficients, CL(τ) and CM(τ):
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The Wagner function φ(τ) is given by:

φ(τ) = 1 − ψ1e
−ǫ1τ − ψ2e

−ǫ2τ . (2.3)
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Figure 1: The schematic of a symmetric airfoil with pitch and plunge degrees-of-freedom.

Values for the constants are, ψ1 = 0.165, ψ2 = 0.335, ǫ1 = 0.0455 and ǫ2 = 0.3 [24]. Introducing
the following new variables w1, w2, w3, and w4 [23], the original integrodifferential equa-
tions for aeroelastic system given by (2.1) are reformulated:

w1 =

∫ τ

0

e−ǫ1(τ−σ)α(σ)dσ,

w2 =

∫ τ

0
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∫ τ

0
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0

e−ǫ2(τ−σ)ε(σ)dσ.

(2.4)

Now a set of autonomous differential equations of the form X′ = f(X) are obtained as, X =

{x1, x2, x3, x4, x5, x6, x7, x8} = {α, α′, ε, ε′, w1, w2, w3, w4}.
Explicitly, the system looks like,

x′
1 = x2,

x′
2 =

(c0N − d0M)

(c1d0 − c0d1)
,

x′
3 = x4,

x′
4 =
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,

x′
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x′
6 = x1 − ǫ2x6,

x′
7 = x3 − ǫ1x7,

x′
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(2.5)

where

M = c2x4 + c3x2 + c4x3 + c5x
3
3 + c6x1 + c7x5 + c8x6 + c9x7 + c10x8 − f(τ),

N = d2x2 + d3x1 + d4x
3
1 + d5x4 + d6x3 + d7x5 + d8x6 + d9x7 + d10x8 − g(τ).

(2.6)
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The coefficients c0 · · · c10 and d0 · · ·d10 depend on the system parameters, and their
expressions along with f(τ) and g(τ) are given in the appendix.

3. Uncertainty Quantification and Polynomial Chaos Expansion

It is increasingly being felt among the aeroelastic community that aeroelastic analysis should
include the effect of parametric uncertainties. This can potentially revolutionize the present
design concepts with higher rated performance and can also reshape the certification criteria.
Nonlinear dynamical systems are known to be sensitive to physical uncertainties, since they
often amplify the random variability with time. Hence, quantifying the effect of system
uncertainties on the aeroelastic stability boundary is crucial. Flutter, a dynamic aeroelastic
instability involves a Hopf bifurcation where a damped (stable response) oscillation changes
to a periodic oscillatory response at a critical wind velocity. In a linear system the post
flutter response can grow in an unbounded fashion [22]. System parametric uncertainties can
significantly affect the onset and properties of bifurcation points. The importance of stochastic
modeling of these uncertainties is that they quantify the effect of the uncertainties on flutter
and bifurcation in a probabilistic sense and gives the response statistics in a systematic
manner.

The original homogeneous polynomial chaos expansion [4] is based on the homo-
geneous chaos theory of Wiener [6, 25]. This is based on a spectral representation of the
uncertainty in terms of orthogonal polynomials. In its original form, it employs Hermite
polynomials as basis from the generalized Askey scheme and Gaussian random variables.
Spectral polynomial chaos-based approaches with other basis functions have also been used
in the recent past in various unsteady flow and flow-structure interaction problems of
practical interest [8, 26, 27].

3.1. Classical Galerkin Polynomial Chaos Approach

In the classical Galerkin-PCE approach, the polynomial chaos expansion of the system
response is substituted into the governing equation and a Galerkin error minimization in
the probability space is followed. This results in a set of coupled equations in terms of the
polynomial chaos coefficients. The resulting system is deterministic, but it is significantly
modified to a higher order and complexity depending on the order of chaos expansion and
system nonlinearity. After solving this set of coefficient equations, they are substituted back
to get the system response.

As per the Cameron-Martin theorem [28], a random process X(t, θ) (as function of
random event θ) which is second-order stationary can be written as

X(t, θ) = â0ψ0 +
∞∑

i1=1

âi1ψ1(ξi1(θ)) +
∞∑

i1=1

i1∑

i2=1

âi1i2ψ2(ξi1(θ), ξi2(θ))

+
∞∑

i1=1

i1∑

i2=1

i2∑

i3=1

(âi1i2i3)ψ3(ξi1(θ), ξi2(θ), ξi3(θ)) + · · · ,

(3.1)

where ψn(ξi1 , ξi2 , . . . , ξin) denotes the Hermite polynomial of order n in terms of n-dimensional
independent standard Gaussian random variables ξ = (ξi1 , ξi2 , . . . , ξin) with zero mean and
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unit variance. The above equation is the discrete version of the original Wiener polynomial
chaos expansion, and the continuous integrals are replaced by summations. For notational
convenience equation (3.1) can be rewritten as

X(t, θ) =
∞∑

j=0

aj(t)Φj(ξ(θ)). (3.2)

There is an one-to-one relationship between the ψ’s andΦ’s and also âj ’s and aj ’s in (3.1) and
(3.2). In the original form, chaos expansion uses Hermite polynomials (ψns). The form of the
one-dimensional Hermite polynomials is given as follows.

ψ0 = 1,

ψ1 = ξ,

ψ2 = ξ2 − 1,

ψ3 = ξ3 − 3ξ,

ψ4 = ξ4 − 6ξ2 + 3,

ψn = ξψn−1 − (n − 1)ψn−2.

(3.3)

One can also use orthogonal polynomials from the generalized Askey scheme for some
standard nonGaussian input uncertainty distributions such as gamma and beta [8]. For any
arbitrary input distribution, a Gram-Schmidt orthogonalization can be employed to generate
the orthogonal family of polynomials [29].

Any stochastic process α(t, ξ(θ)), governed by Gaussian random variables ξ (ξ can
always be normalized as a standard Gaussian one), can be approximated by the following
truncated series:

α(t, ξ(θ)) =
p∑

j=0

α̂j(t)Φj(ξ(θ)) (3.4)

Note that, here the infinite upper limit of (3.2) is replaced by p, called the order of the
expansion. For n number of random variable and polynomial order np, p is given by the
following [26]:

p =

(
n + np

)
!

n!np!
− 1. (3.5)

We demonstrate the Galerkin-PCE approach for a generalized dynamical system for a single
random variable case, that is, with a random cubic stiffness. Let us write the governing
equation with cubic nonlinearity in the following form [27]:

£[α(t, θ)] + βα[α(t, θ)]
3 = 0, (3.6)

here £ is a linear differential operator.
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Equation (3.4) is now rewritten for a single random variable ξ as

α(t, ξ(θ)) =
p∑

j=0

α̂j(t)Φj(ξ(θ)). (3.7)

Here Φj ’s are now Hermite polynomials ψj as shown in (3.3).
If the cubic spring constant βα is assumed to be a Gaussian random variable with mean

βα and standard deviation β̃α, it can be characterized by

βα = βα + ξβ̃α =
1∑

l=0

βαlΦl, (3.8)

with, βα0 = βα and βα1 = β̃α.
Substituting the chaos expansion terms, (3.7) and (3.8) in (3.6),

£

⎡
⎣

p∑

j=0

α̂j(t)Φj

⎤
⎦ +

1∑

l=0

βαlΦl

⎡
⎣

p∑

j=0

α̂j(t)Φj

⎤
⎦

3

= 0. (3.9)

The cubic nonlinear function can be expressed in the following form:

⎡
⎣

p∑

j=0

α̂j(t)Φj

⎤
⎦

3

=

p∑

i=0

p∑

m=0

p∑

n=0

α̂iα̂mα̂nΦiΦmΦn. (3.10)

Substituting (3.10) into (3.9) and simplifying, we get,

£

⎡
⎣

p∑

j=0

α̂j(t)Φj

⎤
⎦ +

1∑

l=0

βαlΦl

[
p∑

i=0

p∑

m=0

p∑

n=0

α̂iα̂mα̂nΦiΦmΦn

]
= 0. (3.11)

Using Galerkin projection on (3.11) by taking 〈·,Φk〉, for k = 0, 1, . . . , p,

£[α̂k(t)] +
1〈
Φ2

k

〉
[

1∑

l=0

p∑

i=0

p∑

m=0

p∑

n=0

βαlα̂iα̂mα̂n〈ΦlΦiΦmΦnΦk〉
]
= 0. (3.12)

The expected value operator 〈·〉, called the inner product, is defined as,

〈Φl · · ·Φk〉 =

∫∞

−∞
Φl · · ·Φk ω(ξ)dξ. (3.13)
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Table 1

〈Φ1Φ1〉 = 1 〈Φ0Φ0Φ0Φ0Φ0〉 = 1

〈Φ2Φ2〉 = 2 〈Φ0Φ0Φ1Φ1Φ2〉 = 2

〈Φ3Φ3〉 = 6 〈Φ0Φ1Φ1Φ2Φ2〉 = 10

〈Φ4Φ4〉 = 24 〈Φ0Φ1Φ2Φ2Φ3〉 = 48

For Hermite polynomials the weighting function ω(ξ) is the Gaussian probability density
function. For single random variable case it is given as

ω(ξ) =

(
1√
2π

)
e−((1/2)ξ

2). (3.14)

The Hermite polynomials are orthogonal with respect to this weighting function in the
Hilbert space. The polynomial chaos forms a complete orthogonal basis in the L2 space of
real-valued functions depending on the Gaussian random variables; hence the inner product
of two orthogonal polynomial can be replaced by the identity

〈ΦlΦk〉 =
〈
Φ2

l

〉
δlk, (3.15)

δlk is the Kronecker delta function, given as:

δlk =

⎧
⎨
⎩
1 if l = k,

0 otherwise.
(3.16)

The inner product terms in (3.12) 〈ΦlΦiΦmΦnΦk〉 and 〈Φ2
k
〉 can be evaluated analytically

before-hand and substituted in the equation. The resulting system becomes a deterministic
differential equation in terms of the chaos coefficients. Depending on the type of nonlinearity,
the number of random variables and the number of expansion terms, evaluating the
inner products could be tedious. In the present study, they are computed by numerical
integration by using Gauss-Hermite quadrature rule and verified analytically by using
symbolic mathematical solver Mathematica. Some typical nonzero inner-products are given
in Table 1.

The Galerkin approach is also called the intrusive approach as it modifies the system
governing equations in terms of the chaos coefficients. The modification results into a higher
order and much more complex form. As a result, this approach may become computationally
quite expensive.

3.2. Nonintrusive Projection Method

A number of nonintrusive variants of PCE have been developed to counter the disadvantages
of the classical Galerkin method. Stochastic projection is one of them [4, 30]. In the present
study, a stochastic projection-based approach is used to evaluate the chaos coefficients. Here,
the chaos expansions are not substituted in the governing equations; instead samples of the
solutions are used (using low-order deterministic simulations) to evaluate the coefficients
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directly using a projection formula. As a result, this approach can utilize the existing
deterministic code and hence the name nonintrusive. The random process is approximated
by a truncated series, as shown in (3.7).

The Hermite polynomials are statistically orthogonal, that is, they satisfy 〈ΦiΦj〉 = 0
for i /= j, hence the expansion coefficients can be directly evaluated as

α̂j(t) =

〈
α(t, ξ(θ))Φj

〉
〈
Φ2

j

〉 . (3.17)

The denominator in (3.17) can be shown to satisfy 〈Φ2
j 〉 = j! for nonnormalized Hermite

polynomials [31]. So the key step in projecting α(t, ξ(θ)) along the polynomial chaos basis is
the evaluation of 〈α(t, ξ(θ))Φj〉. The inner product is given by the following integral:

〈
α(t, ξ(θ))Φj

〉
=

∫∞

−∞
α(t, ξ(θ))Φjω(ξ)dξ. (3.18)

A Gauss-Hermite quadrature will be suitable for evaluating the above as the domain is
(−∞,∞) and the weight function is Gaussian PDF. The quadrature points are the zeros of
the Hermite polynomials of chosen order. A number of deterministic runs are performed at
the quadrature points which is much lower than the full Monte Carlo simulations. We refer
to this step as a pseudo-Monte Carlo simulation approach. In the pseudo-MCS approach the
samples of βα are generated from the corresponding ξ values which are the Gauss-Hermite
quadrature points. The realizations of the system response α(t, θ) are then used to estimate
the deterministic coefficients, α̂j(t)’s, in (3.17) using the Gauss-Hermite quadrature rule. It
should also be noted that for each evaluation of the inner product integral a convergence
study is done by gradually increasing the number of quadrature points.

4. Results and Discussions

The main focus of the present study is quantifying the effect of system uncertainties on the
bifurcation behavior and the flutter boundary of the nonlinear aeroelastic system. A fourth
order variable step Runge-Kutta method is employed for the time integration. The main
bifurcation parameter in a flutter system is the nondimensional wind velocity, also called
the reduced velocity. In a linear aeroelastic system, the response changes to an exponentially
growing solution from a stable damped oscillation at some critical wind velocity, known as
the linear flutter speed. Nonlinear aeroelastic system can stabilize the response at the post-
flutter regime to limit cycle oscillations [23] and the critical point becomes a Hopf bifurcation
point. With a cubic nonlinearity, both supercritical and subcritical Hopf bifurcations are
possible [32]. The latter case is observed for a softening cubic spring. Here in the stochastic
analysis, we focus on the supercritical case. A deterministic bifurcation diagram with the
following parameter values [23] is shown in Figure 2: µ = 100, ω = 0.2, ah = −0.5, xα =

0.25, ζα = 0, ζε = 0, rα = 0.5, βα = 3, βε = 0. The variation of the limit cycle oscillation (LCO)

amplitude is plotted with reduced velocities. Bifurcation occurs at the corresponding linear
flutter speed of 6.285, and the observation match well with the earlier results [33]. At the post
flutter velocities, limit cycle oscillations are observed and the amplitude of the LCOs increase
as the reduced velocity increases.
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Figure 2: Deterministic flutter and bifurcation diagram with cubic nonlinearity (supercritical Hopf
bifurcation).

We now consider random variations in the system parameters and investigate the
influence on the overall dynamics. We consider only single uncertain parametric variation in
this paper, that is, a single random variable model. First, the hardening cubic spring constant

is considered to be a Gaussian random variable with mean βα = 3 and standard deviation

β̃α = 0.3. All other parameters are assumed to be deterministic. Figure 3 shows bifurcation
behavior with the cubic stiffness as random, it now has a range of possible LCO amplitudes
for each reduced velocity and the onset of flutter is unaffected. The standard deviation, that
is, the amplitude variation range increases as reduced speed increases.

A Galerkin PCE approach is used to quantify the propagation of this uncertainty on
the response. The Galerkin approach modifies the 8th-order flutter system to an 8 × (p + 1)
order system. It also involves calculating the complex fifth-order inner product terms as
shown earlier. As a result, the solution process is computationally intensive for the nonlinear
system in question. After solving for the chaos coefficients, in the post processing stage,
the coefficients are substituted back to the expansion form to get the stochastic response.
Probability density functions (PDFs) and other required statistics can then be readily
obtained. The time histories of the first few randommodes in pitch are plotted in Figure 4. The
zeroth-order mode is the mean; one can also see that the contribution of higher-order random
modes is gradually diminishing. A representative PDF is shown in Figure 5 for increasing
order of chaos expansion terms. PDFs are calculated at time t = 7000 at which the solutions
are well past their transients and stationary. The reduced speed considered here is U = 6.42,
close to the deterministic bifurcation point. The figure also presents results from a standard
MCS with 12000 samples as a comparison reference. One can see how increasing the order
of expansion the CPU time for the solution is getting magnified. Results are presented up to
the 12th order of expansion at which the PCE results match well with that of MCS. However,
the simulation time also approaches to that of the reference MCS. While calculating the CPU
time for the Galerkin-PCE approach the inner products computation and post processing of
results are not taken into account.
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Figure 3: Uncertain nonlinear stiffness: stochastic bifurcation diagram.
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Figure 4: Galerkin-PCE: behavior of the first few random modes.

Now the nonintrusive projection approach is followed using a Gauss-Hermite
quadrature. Galerkin-PCE and nonintrusive results are compared in terms of their accuracy
and simulation time in Figure 6. A good match with MCS is seen for the 12th order
of expansion. Once again a standard MCS with 12000 samples is used as a reference
solution (in other cases too we have used a standard 12000 samples MCS as reference).
However, nonintrusive approach is seen to be much faster than Galerkin-PCE for the same
level of accuracy as indicated in Figure 6. With this, the computational disadvantage of
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6.42.
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the conventional Galerkin based PCE for nonlinear systems is demonstrated. Henceforth,
this approach will not be used for further simulations in this paper.

The response realization time histories for a few samples of random variable ξ are
plotted in Figure 7. The response time histories show difference in amplitude but not in
phase. A typical realization time history obtained with the 12th order PCE along with its
deterministic counterpart is compared in Figure 8. The match is perfect even at long time.
Amplitude response PDFs as a function of reduced velocities (bifurcation parameter) are
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shown in Figure 9. They represent single peak monotonic behavior as all the realizations give
finite amplitude LCOs. Effectively, the PDFs are not undergoing any qualitative change or
bifurcations. Close to U = 6.4 the PDF looks sharper and narrower as most realizations are
going towards the same limit cycle amplitude. As the speed increases, the PDF is broader
and less sharp, indicating that the realization amplitudes are spread over a wider band of
amplitudes.
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Next, we consider the viscous damping ratio in pitch (ζα) to be uncertain (in the
earlier part damping was put to be zero) and all the other parameters deterministic. This
case is potentially more interesting than the earlier one. The damping ratio is assumed

to be a Gaussian random variable with mean ζα =0.1 and standard deviation ζ̃α = 0.01.
Figure 10 shows the bifurcation behavior with random damping ratio. The firm line gives the
deterministic bifurcation behavior. The other bifurcation branches are for the two different
extreme realizations of the random damping. Thus they represent the boundaries of the
possible random variations of the bifurcation behavior (stochastic).

The major difference between the uncertain damping and the earlier considered
uncertain stiffness is that, variation in damping can show phase shifting behavior in the
response realizations. This is presented in Figure 11 where five different realizations are
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shifted in phase from each other. This behavior becomes more pronounced as time increases.
As a result, response PDFs can now show bimodal behavior especially at large times. A
few representative PDFs are plotted now at different reduced velocities. Figure 12 shows
the response PDF at U = 6.52 and time = 1400. Though the time level is past the
transients it is not large and the phase shift is not yet very pronounced. The response
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Figure 13: Uncertain viscous damping: comparison of the PDFs with increasing order of PCE at U = 6.52
with nondimensional time (a) t = 5000, (b) t = 7800.
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Figure 14: Uncertain viscous damping: a typical time history with (a) The 15th order PCE and MCS at
ξ = 2.3 and reduced speedU = 6.52. (b) A close-up of (a).

PDF shows a single peak pattern. A reasonably good match with MCS is obtained within
the 12th order of chaos expansion. However, at higher time levels as the phase shifting
becomes stronger, the PDFs start to look distorted from their single peak behavior and
goes towards a double peak pattern. Figure 13 shows the PDF at U = 6.52 and time
5000 and 7800. In the first case, a double-peak bimodal PDF is just emerging as shown in
Figure 13(a). In this case a 12th order expansion is not sufficient to capture the response
accurately; a 15th order expansion gives better accuracy. At higher time 7800, the response
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PDF is more towards a two-peak bimodal shape as is seen in Figure 13(b). However,
even a 15th order chaos expansion does not give the required accuracy. If one considers a
different reduced velocity, the bimodal behavior can appear at some different time levels.
The important observations from these figures are two-fold. First is the gradual double-
peak behavior with increasing time. The second one is the apparent mismatch between
the MCS and PCE results which seems to be increasing again with time. The reason
for the first is nothing but the increasing phase shifting between the realizations time
histories. However, for the second, the reason for the mismatch is the long time degeneracy
which is shown in Figure 14. This mismatch can be improved by using higher order chaos
expansions.

A typical realization time history with PCE along with its deterministic counterpart
are presented in Figure 14. One can clearly see a degeneracy in the time history which starts
around time levels close to 6000. PCE can show such type of degenerate behavior in capturing
LCO response [17], especially at large times. As a counter measure, one can increase the order
of the chaos expansion. However, this can only push the degeneracy to a later time but can
not solve it entirely. Nonpolynomial based chaos approaches have been attempted in the
recent past towards this end [17]. An unsteady adaptive stochastic finite elements method,
developed by Witteveen and Bijl [34–36] has also been used successfully. This approach is
based on time-independent parametrization. This achieves a constant accuracy in time with
a constant number of samples. In this method interpolation of oscillatory samples is based on
constant phase instead of a constant time.

The amplitude response PDFs for the uncertain damping case is shown in Figure 15 for
different reduced velocities. Here the LCO amplitudes are captured after the initial transients
have died down but before the time degeneracy has started. A nonmonotonic behavior is
clearly indicated; some realizations are going to damped oscillation and others give LCO
amplitudes scattered within the domain boundary. At U = 6.5, the double-peak behavior of
the PDF indicates the two different LCO amplitudes around which most of the realizations
are concentrated. TowardsU = 6.6, all realizations give finite amplitude LCO, thus essentially
they are of the same type. The PDF shows a single-peak monotonous behavior. Therefore, the
PDFs of the response amplitude have clearly gone through a qualitative change here, in other
words, a bifurcation.
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Figure 16: Uncertain viscous damping: (a) CDF, (b) PDF of the critical flutter point.

For the uncertain damping case, we also see that the critical reduced velocity at which
flutter can occur, has come down from its corresponding deterministic value. This value can
be read off the bifurcation plot (Figure 10) as U = 6.35. This is the lowest extrema of the
critical points. The cumulative distribution function (CDF) and the PDF of the critical points
are shown in Figure 16. The CDF can directly give the probability of flutter (in other words,
probability of failure) at any given reduced velocity.

5. Conclusions

The bifurcation behavior of a nonlinear pitch-plunge flutter problem with uncertain system
parameters has been studied. The problem is a simple model problem to understand the
mechanism of nonlinear flutter in a stochastic framework. The parameters which have been
assumed to be random could attribute their uncertainties to laboratory testing conditions.
Moreover, a cubic nonlinear stiffness is used for various sources of analytic nonlinearities;
they often represent different control mechanisms and could face modeling uncertainties.

The classical Galerkin Polynomial Chaos method and the nonintrusive Projection
method are applied to capture the propagation of uncertainty through the nonlinear
aeroelastic system. The focus of this work is to investigate the performance of these
techniques and to see how the aeroelastic stability characteristics are altered due to the
random effects. The Monte Carlo solution is used as reference solution. The computational
cost of the Galerkin Polynomial Chaos method is seen to be very high and subsequently only
the Projection method based on Gauss-Hermite quadrature is used for the analysis. The effect
of uncertain cubic structural nonlinearity and viscous damping parameter are investigated.
Uncertainty in the cubic stiffness does not alter the bifurcation (flutter) point, it only affects
the amplitudes of the periodic response in the post flutter stage. The PDF behavior also does
not show any qualitative changes. On the other hand, uncertainty in damping affects the
bifurcation point. It can lower the onset of flutter; the PDF of the response amplitude also
undergoes a qualitative change. In other words, a bifurcation of the response PDF takes
place. The results highlight the risk induced by parametric uncertainty and importance of
uncertainty quantification in nonlinear aeroelastic systems.
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The uncertain damping case by polynomial chaos suffer from long time degeneracy,
as is also discussed in the literature. The degeneracy can be controlled by using higher order
chaos expansions, though this cannot be a permanent solution. For the uncertain nonlinear
stiffness, the problem of time degeneracy is not encountered.

Appendix

The coefficients introduced in Section 2 are used from [23] and are reproduced here for the
sake of completeness:
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