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A nonautonomous system, i.e. a system driven by an external force, is usually considered as
being phase synchronized with this force. In such a case, the dynamical behavior is conveniently
studied in an extended phase space which is the product of the phase space Rm of the undriven
system by an extra dimension associated with the external force. The analysis is then performed
by taking advantage of the known period of the external force to define a Poincaré section relying
on a stroboscopic sampling. Nevertheless, it may so happen that the phase synchronization
does not occur. It is then more convenient to consider the nonautonomous system as an
autonomous system incorporating the subsystem generating the driving force. In the case of
a sinusoidal driving force, the phase space is Rm+2 instead of the usual extended phase space
Rm × S1. It is also demonstrated that a global model may then be obtained by using m+ 2
dynamical variables with two variables associated with the driving force. The obtained model
characterizes an autonomous system in contrast with a classical input/output model obtained
when the driving force is considered as an input.

1. Introduction

When one is facing a dynamical system, it is of
interest to know whether the system is driven or
not by an external force because, if a driving force
is identified, the analysis may take advantage of a
possible phase synchronization between the driven
system and the external force. Examples are pro-
vided by the Duffing equations [Gilmore & McCal-
lum, 1995] or by experimental driven systems such
as a driven laser [Boulant et al., 1997] or a driven
thermoionic plasma diode [Mansbach et al., 1999].
When the driving force is identified, the phase space
Rm of the undriven system is usually extended to
Rm+1 to describe the driven system. In such a case,
the analysis relies on the use of stroboscopic sections
to compute Poincaré sections and to extract peri-
odic orbits [Gilmore & McCallum, 1995; Boulant
et al., 1997]. The system is therefore implicitly
considered as being phase synchronized with the
driving force. Moreover, when the driving force

may be recorded simultaneously with a dynamical
variable of the system, an input/output model can
be obtained [Aguirre & Billings, 1994]. A set of
equations is then built to describe the response of
the system under the action of the driving force.

Nevertheless, it may occur that the system is
not well phase synchronized with the driving force.
In other cases, the driving force cannot be identified
or cannot be measured. Under such circumstances,
a dynamical analysis cannot be safely performed in
the extended phase space Rm+1 and the use of a
higher-dimensional phase space becomes more con-
venient. Such a phase space is spanned by the dy-
namical variables required for a complete descrip-
tion of the process governing both the driven sys-
tem and the driving force. A driven Rössler system,
with a driving force applied to the third equation,
is used in this paper to illustrate a situation where
a system is not well phase synchronized with the
driving force and, a single variable being recorded,
where the driving force cannot be measured.
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The paper is organized as follows. Section 2
provides a brief review on global modeling and topo-
logical characterization. Section 3 describes the
case of a Duffing oscillator which is phase synchro-
nized with the external force. Section 4 is devoted
to a driven Rössler system whose synchronization
with the driving force depends on its amplitude.
Section 5 is the conclusion.

2. Mathematical Background

2.1. Dynamical systems

We consider a dynamical system defined by a set of
ordinary differential equations reading as:

ẋ = G(µ, x, t) (1)

in which x ∈ Rm is the state vector, G is a vector
valued function, µ ∈ Rp is the control parameter
vector and G is the vector field. When the vec-
tor field explicitly depends on time t, the system
is nonautonomous. In the converse case, it is au-
tonomous. In any case, G is am-component smooth
function generating a flow φt defined as:{

φt : Rm × R→ Rm

φt(x0, t) = xt for every x0 ∈ Rm and t ∈ R
(2)

where x0 is the initial condition at t0 = 0 and xt
represents the trajectory in the phase space.

A volume V of initial conditions is generally
not invariant along flows. The rate of change of V
may be quantified by using the Lie derivative [Bergé
et al., 1984]. When it is negative, the flow is dissi-
pative and the asymptotic motion settles down onto
an attractor A defined as follows.

Definition 1. A closed and bounded invariant set
A is said to be an attractor if there is a neighbor-
hood U(A) such that for every x ∈ U(A), φt(x, t) ∈
U(A) for positive times and limt→∞ φt(x, t) = A.

When a dynamical system is driven by an exter-
nal force, it may be viewed as constituted by a dis-
sipative subsystem interacting with a Hamiltonian
process. There is then a continuum of attractors
since, to each set of initial conditions for the Hamil-
tonian process, i.e. the driving force, corresponds
a different attractor for the dissipative subsystem.
We say that such a system is mixed. Examples

and justifications for these definitions will appear in
the sequel.

2.2. Global modeling

Given a scalar time series {xi}Ni=1, it has been shown
that a set of equations may be built starting from
the series [Crutchfield & McNamara, 1987; Farmer
& Sidorowitch, 1987]. The variables involved in the
model may equivalently rely on time-delay coordi-
nates or derivatives. Here, the derivative coordi-
nates are used as in [Gouesbet & Letellier, 1994].
The successive derivatives ẋ(t), ẍ(t), . . . of the time
series are evaluated to form vectors (X1 = x, X2 =
ẋ, . . . , XdE = ddE−1x/dtdE−1) defining the state of
the system in a dE-dimensional space. We then
model the dynamics by using a vector field reading
as [Gouesbet & Maquet, 1992]:

Ẋ1 = X2

Ẋ2 = X3

...

ẊdE = F (X1, X2, . . . , XdE )

(3)

where F is a function to estimate.
The function F is approximated by using a

mutivariate polynomial basis on nets [Gouesbet
& Letellier, 1994] which may be built by means
of a Gram–Schmidt orthogonalization procedure
[Letellier et al., 1997]. It is important here to
stress that the use of a polynomial basis is not
an essential ingredient for estimating the function
F . Rational functions, or other models, may work
too ([Gouesbet & Maquet, 1992] and references
therein). However, even if the function F is not
exactly a polynomial, the Weierstrass convergence
theorem [Rice, 1964, 1969] tells us that the func-
tion F may, in principle, be arbitrary closely ap-
proximated by polynomial forms, explaining why
global vector field modeling have been success-
fully applied to many experimental, even noisy,
systems [Crutchfield & McNamara, 1987; Brown
et al., 1994; Letellier et al., 1995]. The use of
polynomials in this paper therefore does not con-
stitute a noticeable limitation of its contents. Let
us however remark that exact functions used in this
paper will be polynomials, allowing one to stress on
physics without being possibly disturbed by numer-
ical incidental difficulties.

The polynomial algorithm uses modeling
parameters which are (i) dE , the embedding
dimension, (ii) Nv, the number of vectors
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(X1,i, X2,i, . . . , XdE ,i), (i ∈ [1, Nv]) on the net,
with i a time index, (iii) ∆t, the time step between
two successive vectors which may be expressed as
the number of vectors, Np, sampled per pseudo-
period, (iv) NK , the number of retained multi-
variate polynomials and (v) τw, the window size
on which the derivatives are estimated (by using
a sixth degree interpolation polynomial). Here,
τw = 7δt where δt is the time step used in the
discretization of the time series. The interpolation
polynomials are built by using six nearest neigh-
bors. Derivatives are obtained by analytically de-
riving these polynomials. Of course, it is well known
that using higher derivatives amplifies numerical er-
rors. The present method to evaluate derivatives is
however very efficient. In particular, as a conse-
quence, the present global modeling technique with
derivatives has been successfully applied to many
experimental systems [Crutchfield & McNamara,
1987; Letellier et al., 1995]. The estimated func-
tion, denoted F̃ , finally reads as:

F̃ (X1, X2, . . . , XdE ) =
NK∑
p=1

KpΞ
p (4)

where Ξp = Xn1
1 Xn2

2 · · ·X
ndE
dE

is a monomial in
which the integers p are related to ndE -uplets
(n1, n2, . . . , ndE ) by a bijective relationship [Goues-
bet & Letellier, 1994].

It is not always ensured that we can obtain a
sufficiently good approximation to the function F ,
due, for instance, to numerical uncertainties. Such
a difficulty is enhanced for nonautonomous systems
because the time t may be involved in the function
F . Since it does not vary on a bounded range, there
is no recurrence property in the extended phase
space and therefore it is very difficult, or even im-
possible, to obtain a sufficiently good approxima-
tion F̃ . Global modeling then leads to systems
which eventually diverge. An alternative approach
will be later presented. The faithfulness of a model
may be checked by using symbolic dynamics and
linking numbers as described in the next section.

As a last remark in this subsection, let us
mention that the number of vectors Nv, used for
the modeling process, may be in some cases, only
slightly larger than the number of parameters, NK ,
to be estimated. Such a feature is observed for very
favorable cases when, for instance, there is no noise
in the simulated data. When the data are noise cor-
rupted, the number of vectors Nv may be increased
as well as the number of coefficients retained in the

estimated function F̃ . Nevertheless, it is often ob-
served that, when the number of vectors Nv is in-
creased too much, the quality of the model may
decrease as the result of enhanced numerical uncer-
tainties which degrade the quality of the estimated
function F̃ , i.e. there may be some optimal values
of Nv.

2.3. Symbolic dynamics and
topological characterization

It is useful to transform continuous flows into
discrete-time maps by introducing a Poincaré sec-
tion allowing one to compute a first-return map
[Wiggins, 1980]. The Poincaré section is the set
of intersections between the trajectory generated
by the m-dimensional system under study with
an (m − 1)-dimensional surface Σ transverse to
the vector field G. The first-return map is split
into N elements, labeled by symbols σ ∈ ΣN =
{0, . . . , N − 1}, and each orbit x1, . . . , xn is asso-
ciated with a symbol sequence σ1, . . . , σn by using
a generating partition. If the flow lies in R3 and is
strongly dissipative, the first-return map is nearly
one-dimensional. An approximate generating par-
tition is then defined by critical points associated
with local extrema separating monotonic branches.
Each branch is associated with a symbol. The case
of weakly dissipative systems is more complicated
[Flepp et al., 1991; Fang, 1995; Grassberger et al.,
1989].

In the case of a strongly dissipative 3D system
whose first-return map is unimodal with a differ-
entiable maximum, all trajectories are encoded on
the set Σ2 = {0, 1} where 0 is associated with
the increasing branch and 1 with the decreasing
branch. A period-q orbit has q periodic points in
a Poincaré section and is represented by a string
S = σ1σ2 · · ·σq of q symbols. Each periodic point
is represented by a symbolic sequence of q symbols
too. The ith point of a period-q orbit is labeled
by the string Si = σiσi+1 · · ·σqσ1 · · ·σi−1. All sym-
bolic sequences are ordered by the unimodal order
[Collet & Eckmann, 1980; Hall, 1994].

Definition 2. To define the unimodal order ≺1

on the symbol set Σ2 = {0, 1}, we consider two
symbolic sequences S1 = σ1σ2 · · ·σkσk+1 · · · and
S2 = ρ1ρ2 · · · ρkρk+1 · · · where σi’s and ρj ’s des-
ignate the symbols of Σ2. Assume σi = ρi for all
i < k and σk 6= ρk. Let S∗ = σ1σ2 · · · σk−1 =
ρ1ρ2 · · · ρk−1 be the common part of S1 and S2. A
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string σ1σ2 · · ·σk−1 is even (odd) if the sum
∑k−1
i=1 σi

is even (odd). Then, we have:
S1 ≺1 S2 if S∗ is even and σk < ρk

S1 ≺1 S2 if S∗ is odd and ρk < σk

S2 ≺1 S1 if S∗ is odd and σk < ρk

S2 ≺1 S1 if S∗ is even and ρk < σk

where < is the natural order on the integers. When
S2 ≺1 S1, we say that S1 implies S2.

A period-q orbit is denoted by the symbolic se-
quence Si (without any parentheses) which implies
q−1 others. This sequence is designated by (Si), in-
cluded between parentheses, and called the orbital
sequence. Two orbital sequences may be ordered
following the unimodal order too. When an orbital
sequence (S1) implies the orbital sequence (S2), we
say that (S1) forces (S2) and we note (S2) ≺2 (S1)
where ≺2 is the forcing order. The orbital sequence
which forces all orbital sequences of an attractor is
called the kneading sequence. The unimodal order
may be generalized to the case N > 2 [Dutertre,
1995].

When dealing with experimental data, the pe-
riodic orbits are extracted from a time series by us-
ing a close return method in a reconstructed phase
space. Due to the limited amount of data and
the influence of external noise, the determination
of the kneading sequence is rather inaccurate for
short time series [Tufillaro et al., 1995]. An empiri-
cal procedure may however allow one to determine
the kneading sequence [Tufillaro et al., 1995; Fang,
1994] as described below.

A chaotic trajectory forms a string S =
· · ·σ−3σ−2σ−1σ0σ1σ2σ3 · · · where σ0 is the present,
σ−i the past and σi the future (i > 0). Symbolic
coordinates spanning a symbolic plane are then de-
fined on the future and on the past by:

xσ(s) =
D∑
i=1

bi
N i

where bi =
i∑

j=1

σj (mod 2)

yσ(s) =
D∑
i=1

ci
N i

where ci =
i−1∑
j=0

σ−j (mod 2)

(5)
where

s = σ−D · · ·σ−3σ−2σ−1σ0σ1σ2σ3 · · ·σD (6)

If s is an infinite string generated by a chaotic
orbit, then D is infinity. For finite data sets, the

symbolic plane coordinates are approximated by
taking D = 16 [Tufillaro et al., 1995]. We can then
use a finite symbol string from a chaotic trajectory
to generate a sequence of points in the symbolic
plane. This symbolic plane exhibits a maximum
symbolic coordinate Xσ which is associated with
the kneading sequence.

In the case of a unimodal map, the chaotic at-
tractor may be divided into two strips, one with
an even number of half-twists (rotations by π) as-
sociated with the increasing branch of the first-
return map and the other with an odd number of
half-twists corresponding to the decreasing branch.
The topological organization of strips may be syn-
thetized by a template defined in [Mindlin et al.,
1991; Mindlin & Gilmore, 1992].

The template may be algebraically described
by using a linking matrix [Tufillaro et al., 1992].
Diagonal elements Mii are equal to the number of
half-twists of the ith strip and off-diagonal elements
Mij (i 6= j) are given by the algebraic number of in-
tersections between the ith and the jth strips. One
example is the horseshoe template defined by the
linking matrix:

M ≡
[

0 0

0 +1

]
(7)

Next, linking numbers are defined as follows:

Definition 3. Let α and β be two knot diagrams.
Let α u β denote the set of crossings of α with β.
The linking number reads as:

lk(α, β) =
1

2

∑
p∈αuβ

ε(p) (8)

where ε(p) is the sign of the crossing p.

The linking numbers may be predicted by construc-
tions on the template or by an algebra based on the
linking matrix [Le Sceller et al., 1994]. The com-
patibiliy of a template with an attractor may be
checked by comparing linking numbers predicted by
the template and the ones counted on plane projec-
tions of couples of periodic orbits extracted from
the attractor.

3. Global Phase Space for the
Duffing Equation

The Duffing equations are usually investigated in
a 3D phase space, i.e. in an extended phase space
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R2 × S1 accounting for the existence of the driving
force. We will show that, when the driving force is
not recorded, a 4D phase space may conveniently
be used.

3.1. Extended phase space

The Duffing equation reads as:

ẍ+ aẋ+ x3 = A cos(ωt+ ϕ) (9)

where a is the dissipative rate of energy, A the am-
plitude of the driving force F (t) = A cos(ωt+ϕ), ω
its frequency and ϕ its phase. This equation may be
rewritten as a set of first-order ordinary differential
equations as follows:{

ẋ = y

ẏ = −ay − x3 +A cos(ωt+ ϕ)
(10)

This nonautonomous system is usually converted to
an autonomous system reading as:

ẋ = y

ẏ = −ay − x3 +A cos(ν)

ν̇ = ω

(11)

However, let us assume that we only know a sin-
gle scalar time series x(t) and that the existence
of a driving force is not identified. The embed-
ding dimension may then be estimated by using a
false nearest neighbor method. This method has
been introduced in [Abarbanel & Kennel, 1993]
but a recent algorithm [Cao, 1997] is here pre-
ferred. The embedding dimension is thus found to
be equal to 4 rather than 3 (Fig. 1), as would be
expected from Eqs. (11). Such a result may be un-
derstood as follows. A representation on a space
R2 × (Rmod (2π/ω)) provides a compact attractor
but such a representation requires a prior knowledge
of ω which is here assumed to be unknown. This is
also in agreement with the fact that, if a model is
searched by using the global modeling technique de-
scribed in the previous section, no model is obtained
by using a 3D reconstructed state space spanned by
derivative coordinates (X, Y, Z) = (x, ẋ, ẍ).

When a global system involving the driving
force is to be modelized in R3, the cos(ν) term
of Eq. (11) must be approximated directly on the
chosen basis. This leads to a slow convergence
and to a rather poor approximation [Crutchfield &
McNamara, 1987]. The existence of terms explicitly
involving the time t is a signature of the fact that
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Fig. 1. Embedding dimension computed from the x-variable
of the Duffing equations. In the method proposed by Cao,
the ordinates saturate when the embedding dimension is suf-
ficiently large. The embedding dimension is greater than 3
and may be well estimated to be equal to 4. The control
parameters (a, b) = (0.05, 7.5). The time step δt is equal to
0.02 s and the time delay is equal to 18 δt.

there are some dynamical processes generating the
driving force which are not explicitly described by
the vector field (11). In other words, the driving
force is described by kinetic terms rather than by a
dynamical model. Other dynamical variables must
be added as indicated by the embedding dimension
being equal to 4. Indeed, the driven system may
be extended to a larger autonomous system by in-
cluding additional equations describing the driving
force. The extended phase space is then replaced
by a global phase space.

3.2. Global phase space

The external sinusoidal driving force A cos(ωt−ϕ)
is generated by a second-order differential equation.
The nonautonomous Duffing system may then be
rewritten as an autonomous four-variable system
reading as: 

ẋ = y

ẏ = −ay − x3 + u

u̇ = v

v̇ = −ω2u

(12)

which is in agreement with the value of the embed-
ding dimension obtained from false nearest neigh-
bors. An important difference with respect to
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Fig. 2. Four of the six plane projections of the phase portrait generated by the four-variable Duffing system.

usual autonomous systems is that the two dynami-
cal variables (u, v) are associated with a conserva-
tive dynamical process having a Hamiltonian func-
tion H(u, v) = (1/2)[ω2u2 +v2]. Therefore, strictly
speaking, there is no attractor in the global phase
space because, if we change (u0, v0), the asymptotic
motion changes too. Since the two other dynamical
variables (x, y) remain associated with dissipative
processes, we are facing a continuum of attractors.
The global system is a mixed one.

Relying on the embedding dimension dE be-
ing equal to 4, a model is attempted by using a
4D reconstructed space spanned by (X, Y, U, V ) =
(x, ẋ, ẍ,

...
x). The model takes the form given by

Eq. (3). A successful model is obtained with mod-
eling parameters (Nv, Np, NK) = (30, 20, 20). The
model portrait is obtained by integrating the model
and is displayed in Fig. 2(b), to be compared with
the original phase portrait displayed in Fig. 2(a).
In such a case, the exact function F (X, Y, U, V )
may be analytically derived to check the model and
reads as:

Ẋ=Y

Ẏ =U

U̇=V

V̇ =−aV −6XY 2−ω2U−aω2Y −ω2X3−3X2U

=F (X, Y, U, V )
(13)

The estimated function F̃ (X, Y, U, V ) obtained by
the global modeling technique has coefficients which
differ from the exact coefficients involved in sys-
tem (13) with a relative error less than 0.004%.

No other validation is therefore required. Never-
theless, a validation without any knowledge about
the original set of equations could be given as de-
scribed in [Gilmore & McCallum, 1995]. The global
modeling technique has therefore been successfully
applied by using an additional variable, i.e. by de-
scribing the dynamics in a 4D global phase space
rather than in a 3D extended phase space. The use
of a global phase space also allows one to get rid of
the double status of time exhibited in the extended
system (11).

4. Characterization of the Driven
Rössler System

The Duffing system is phase synchronized with the
driving force and therefore constitutes a very favor-
able case. Our aim is now to investigate a more
complicated case for which the phase synchroniza-
tion between the system and the driving force is
not always guaranteed. A modified Rössler system
in which a driving force is applied to the third equa-
tion is used. It reads as:

ẋ = −y − z
ẏ = x+ ay

ż = b+ z(x− c) +A cos(ωt+ ϕ)

(14)

where the control parameters (a, b, c) are fixed to
(0.398, 2.0, 4.0). The additional control parameter
ω is set to 2π/T0 where T0 ≈ 6.2 s is the pseudo-
period of the original Rössler system. The ampli-
tude A of the driving force F (t) is in the range
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[0.0, 2.0]. Beyond the upper value of the range,
the trajectory crosses the plane defined by the sta-
ble manifold of the outer fixed point of the Rössler
system. Because this plane defines a boundary of
the attraction basin, the trajectory is then ejected
to infinity being driven along the eigenvector asso-
ciated with the positive eigenvalue.

4.1. Embedding dimension

We assume that only the time evolution of the y-
variable is recorded and that no other knowledge
from the dynamics is available. We then start with
an estimation of the embedding dimension by using
a false-neighbor algorithm [Cao, 1997]. Depending
on the amplitude A of the driving force (which is
not assumed to be known), different values of the
embedding dimension are found (Fig. 3). The phase
portrait can be embedded in a 3D space for ampli-
tudes up to 0.45. Beyond this value of the ampli-
tude, the embedding dimension is found to be equal
at least to 4. For A = 1.0 and A = 1.25, the embed-
ding dimension is equal to 5 and, for A further in-
creasing, it decreases back to 4. This nonmonotonic
evolution of the embedding dimension versus the
amplitude may arise from resonances between the
driving force and the original Rössler system. We
however conclude that the 5D driven Rössler system
is close to a 3D system in the low amplitude case,
the driving perturbations being efficiently damped
by the driven system while a higher-dimensional
embedding space must be used for larger amplitude.

One may remark that the dimension 5 is in fact
the natural one since, as for the Duffing system, the
driven Rössler system may be rewritten as an au-
tonomous system by increasing its dimension by 2:

ẋ = −y − z
ẏ = x+ ay

ż = b+ z(x− c) + u

u̇ = v

v̇ = −ω2u

(15)

Here, the driving force is a sinusoidal force. Never-
theless, a generalization to any kind of driving force
may obviously be provided by using a sufficiently
large number of additional dynamical variables to
describe the processes generating the driving force.
This number may be considered as being estimated
with the aid of a false nearest neighbor method,
i.e. dE = 3 + dF where 3 refers to the dimension of
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A=1.25
A=1.5
A=1.75

Fig. 3. Evolution of the embedding dimension dE versus
the amplitude A of the driving force applied to the Rössler
system. Index E1(d) measures the relative change in the av-
erage distance between two neighbor points in Rd and their
respective images in Rd+1 when the embedding dimension is
increased from d to d + 1. The quantity E1 stops changing
when the embedding dimension is sufficiently large.

the Rössler system and dF to the number of vari-
ables required to describe the driving force. We
chose to apply the driving force to the third equa-
tion of the original Rössler system because, in this
case, starting from the y-variable which is the best
variable of the Rössler sytem [Letellier & Goues-
bet, 1996], the function F is a second-order poly-
nomial with 17 monomials. Therefore, F and F̃
have the same form, leading to an easy modeling.
This will facilitate the interpretation of our results.
In particular, departures between the model and
the original systems will only arise from the kind
of information contained in the time series, and not
from the modeling technique itself. Also, the map

(x, y, z, u, v)
φ→ (X, Y, Z, U, V ) defines a diffeo-

morphism, i.e. the best kind of equivalence that we
may obtain by a global modeling [Letellier & Goues-
bet, 1996]. Moreover, the fact that F and F̃ share
the same structure helps to reduce the sensitivity of
the analysis to noise contamination which may in-
crease the number of coefficients NK to be retained
in the estimation of the function F [Letellier, 1994].
Nevertheless, when a global model is obtained from
a noisy dynamics, the model usually generates a
behavior corresponding more or less to a behavior
which would be generated by a dynamics with a
reduced noise level as discussed in [Letellier et al.,
1995], i.e. the modeling process acts as a noise fil-
tering process.
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Fig. 4. First-return maps to a delay Poincaré section for different values of the amplitude A. Abscissae are in the range
[−4.5; 6.0] and ordinates in the range [−6.0; 3.0].

4.2. Analysis of the dynamics

In this subsection, we investigate the dynamics in
the original phase space R5 to later help us to inter-
pret the results obtained with the global modeling
technique. All information about the system is as-
sumed to be known in this subsection, i.e. the set
of equations is available.

Since a 3D embedding space is sufficient to an-
alyze the Rössler system under the action of a low
amplitude driving force (A = 0.35), the most natu-
ral space is the space spanned by the coordinates
(x, y, z) of the original Rössler system since the
trajectory in the 2D subspace associated with the
Hamiltonian subsystem generating the forcing term
corresponds to a periodic orbit, more specifically
to a trivial knot which is a very poor object from
a topological point of view. We then use a delay
Poincaré section in which the behavior depends on
the pseudo-period T0 of the attractor with respect
to the period TF of the driving force. We precisely
say that the Rössler and the driving systems are
phase synchronized when T0 and TF are equal. In
Fig. 4, top row, the amplitude is small and there is
no phase synchronization. The delay Poincaré sec-
tions then provide a picture of the whole attractor.

For larger amplitudes (middle row), phase synchro-
nization occurs and the pictures approach a single
line as it would happen for the unforced Rössler sys-
tem. This line is however slightly broadened by the
effect of the driving force. When the amplitude still
increases (bottom row), the dynamics loses its 3D
character and is driven to a 5D space. The Poincaré
sections then extend again, and present a fuzzy as-
pect in which some structures may nevertheless be
observed. They are however very different from the
ones at the top row of Fig. 4.

For A = 0.35, the driven Rössler system is
characterized by a kneading sequence encoded by
(1000) associated with a symbolic coordinate (com-
puted with N = 3) equal to 0.6585 to be compared
with the kneading sequence (10111101010) and its
symbolic coordinate 0.6109 for the undriven sys-
tem. The population of periodic orbits extracted
from the driven Rössler system is reported in
Table 1. Many linking numbers have been evalu-
ated on plane projections of pairs of periodic orbits
and are well predicted by a linking matrix reading
as:

M ≡
[

0 −1

−1 −1

]
(16)
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Table 1. Population of periodic orbits
with i period less than 7 for A = 0.35.
They are identified by their orbital se-
quence (W ). The population for the mod-
els are also reported. • indicate that a pe-
riodic orbit is embedded within the corre-
sponding attractor.

Original 3D 5D

(W ) System Model Model

(1) • • •
(10) • • •

(1011) • • •
(101110) • • •
(101111) • • •
(10111) • • •
(10110) • • •
(101) • • •
(100) • •

(100101) • •
(10010) • •
(10011) • •
(100111) • •
(100110) • •
(1001) • •
(1000) • •

For a larger amplitude (A = 0.6), the dissipa-
tion rate of the system is not sufficient any longer to
damp the effect of the driving force along the stable
manifold during one revolution on the attractor and
the embedding dimension is greater than 3. The
chaotic trajectory cannot any more be viewed as
traveling on a very thin stretched and folded band.
A signature of this fact may be perceived in Fig. 5
where one observes that the structure of the fold-
ing seems to be diffused. The trajectory actually
evolves within a band whose thickness is exhibited
by a first-return map to a Poincaré section (Fig. 6).

For such a first-return map, the generating par-
tition is not well defined by a single critical point
but rather by a partition line determined from
the tangencies of forward and backward foliations
[Flepp et al., 1991; Fang, 1995; Grassberger et al.,
1989]. Such a determination is not trivial and out
of the scope of this paper. We then use partition
lines defined by extrema of the first-return map as
displayed in Fig. 6.

The first-return map exhibits a third (increas-
ing) monotonic branch inducing a third strip on the
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Fig. 5. Plane projection of the driven Rössler system for
A = 0.6.
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Fig. 6. First-return map to a Poincaré section of the driven
Rössler system for A = 0.6.

template. Its linking matrix reads as:

Mij ≡

 0 −1 −1

−1 −1 −2

−1 −2 −2

 (17)

All linking numbers computed in the (x, y, z) space
have been found to be in agreement with link-
ing numbers predicted by the three-strip template.
Topological properties are therefore not deeply
modified by the driving force, at least for low pe-
riodic orbits. The population of periodic orbits
in the space spanned by (x, y, z) is reported in
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Table 2. Population of periodic orbits for the driven Rössler system with A = 0.6. They
are identified by their orbital sequence (W ). Populations of 3D- and 5D-models are also
reported.

Original 3D 5D Original 3D 5D

(W ) System Model Model (W ) System Model Model

(0) • • (10001) • •
(1) • • • (10000) • •
(10) • • • (100001) • •

(1011) • • • (200000) • •
(101110) • • • (200001) • •
(101111) • • • (20000) • •
(10111) • • • (20001) • •
(10110) • • • (200011) • •
(101) • • • (2000) • •
(100) • • • (2001) • •

(100101) • • • (200110) • •
(10010) • • (200111) • •
(10011) • • (20011) • •
(100111) • • (20010) • •
(100110) • • (200101) •
(1001) • • (200100) •
(1000) • • (200100) • •

(100020) • • (200) • •
(100011) • • (201) • •

Table 2. The kneading sequence is encoded by (201)
associated with a symbolic coordinate xσ = 0.7142.
Increasing the amplitude of the driving force there-
fore develops the population of periodic orbits.

In previous cases, periodic orbits are found to
be well encoded by a partition estimated by us-
ing lines associated with the extrema of the first-
return map. Conversely, for very large amplitudes
(A = 1.00), specific problems are encountered. As
an example, for an amplitude A = 1.00, a period-2
orbit, encoded (10) with the above generating par-
tition, has been extracted from a 5D model. A sim-
ple visual inspection (Fig. 7) however shows that it
rather corresponds to a period-1 orbit encoded by
1 (compare it with the period-2 orbit also encoded
(10) and extracted from the driven Rössler system
displayed in Fig. 8). Another example of problem-
atic features has been observed, namely the case
of a periodic orbit which looks very similar to the
correct one but whose periodic points are not cor-
rectly located in the Poincaré section. This happens
for a period-2 orbit encoded (10) which is displayed
in Fig. 9, together with a period-4 orbit encoded

(1011). According to the unimodal order, we should
have:

0111 ≺1 01 ≺1 1101 ≺1 1110 ≺1 10 ≺1 1011

Conversely, we observe

0̃1 ≺1 0111 ≺1 1101 ≺1 1110 ≺1 1011 ≺1 1̃0

as displayed in Fig. 9. Indeed, on a Poincaré section
(for instance using Y = 0 in Fig. 9), the periodic
points of the orbit (10) are located outside of the
range spanned by the periodic points of the orbit
(1011). Here, 0̃1 and 1̃0 designate the badly located
periodic points. Such discrepancies with respect to
the unimodal order have only been observed for very
large amplitudes, and actually are a signature of
strong structural modifications induced by a suffi-
ciently big forcing.

4.3. Global modeling

The increase in dimension observed in Sec. 4.1 im-
plies that we now have to model the input and the
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Fig. 7. Period-2 orbit extracted from the 5D model. The
two intersections with the Poincaré section are located on
each side of and close to the critical point and are there-
fore encoded 0 and 1, respectively. It however looks like a
period-1 orbit. But such an orbit could not be close to the
critical point since it is located, for a standard dissipative
case, at the intersection between the first-return map and
the first bissectrix.

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4
X

-0.10

-0.05

0.00

0.05

0.10

Y

Fig. 8. Period-2 orbit extracted from the driven Rössler sys-
tem for A = 1.00. It is encoded (10).

system as a whole. The model then involves the in-
put. Such an approach is possible when the input is
sufficiently simple to be modeled. Of course, when
the system is driven by a nonstationary input which
cannot be modeled, the analysis discussed here is
not practical. In our description, since the input
is incorporated in the model, the analysis can only
be carried out for attractors of the whole system,
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Fig. 9. A period-2 orbit encoded (10) together with a
period-4 orbit encoded (1011). The location of periodic
points does not satisfy the unimodal order.

i.e. generating the system driven by the input. In
particular, an investigation of the change of the out-
put when the input is varied cannot be done with a
single model. Indeed, a global model is obtained for
a given input and, consequently, generates a single
attractor. On the contrary, when an input/output
model is estimated, such a model can generate a
continuum of attractors by varying the input ap-
plied to this model.

We now return to the case when only a sin-
gle scalar time series is known, i.e. when the input
is not measured. Global models in 3D, 4D and in
5D phase spaces are attempted for different ampli-
tude values. In any case, no successful model is
obtained by working in a 4D phase space whose
dimension is not a natural dimension of the sys-
tem under study. Indeed, a 3D description cor-
responds to the undriven system while a 5D de-
scription is associated with the driven system. For
an amplitude A = 0.35, the phase portraits ob-
tained by integrating the 3D and 5D models are
displayed in Figs. 10 and 11, respectively. The
populations of periodic orbits are reported in Ta-
ble 1. All evaluated linking numbers are found to
be in agreement with those predicted by the link-
ing matrix of Eq. (16). The 3D model is charac-
terized by a kneading sequence encoded by (101)
located at xσ = 0.6154 which is very close to the
one of the undriven Rössler system (xσ = 0.6109).
It means that the population of periodic orbits is
slightly different from the one extracted from the
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Fig. 10. Plane projection of the phase portrait obtained by
integrating the three-variable model (A = 0.35). Modeling
parameters are (Nv, Ns, NK) = (11, 9, 11).
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Fig. 11. Plane projection of the phase portrait obtained by
integrating the five-variable model (A = 0.35). Modeling
parameters are (Nv, Ns, NK) = (34, 20, 21).

undriven Rössler system (a few periodic orbits not
extracted from the original Rössler system are em-
bedded within the model attractor). By forcing
the model to be 3D, the global vector field mod-
eling technique provides a model which does not
properly take into account the action of the exter-
nal driving force on the dynamics. This actually
works however pretty well because the driving force
has a sufficiently small amplitude. In contrast, the
5D model is found to be perfectly equivalent to the
driven Rössler system, having in particular the same
population of periodic orbits (Table 1).

Fig. 12. Evolution of the kneading coordinate of the 3D
and 5D models versus the amplitude A. Comparisons with
the driven system.

For A = 0.6, the 3D-model obtained with mod-
eling parameters (Nv, Np, NK) = (31, 24, 30) is
still close to the undriven Rössler system. Its popu-
lation of periodic orbits is defined by a kneading or-
bit (100101) with symbolic coordinate xσ = 0.6438
which is not very far from the symbolic coordi-
nate xσ = 0.6109 of the kneading sequence for
the undriven Rössler system. Nevertheless, one
may remark that the number of monomials in-
volved in the estimated function F̃ (X, Y, Z, U, V )
has significantly increased. Although the 3D mod-
els mainly capture the dynamics of the undriven
system, i.e. filter the action of the driving force,
14 monomials are added in the estimated function
F̃ (X, Y, Z, U, V ) with respect to the 17 monomi-
als involved in the exact function F (X, Y, Z, U, V ).
These extra-monomials are required to obtain a suc-
cessful model. One may then expect that, when the
amplitude of the driving force increases too much,
the filtering of the action of the driving force be-
comes inefficient. The validity of this statement
may be appreciated by examining the evolution of
the kneading sequences of the 3D and 5D models
and of the driven system versus the amplitude as
displayed in Fig. 12.

In particular, for A = 0.5, the populations of
the 3D and 5D models obtained with modeling pa-
rameters (Nv, Np, NK) identical to (14, 14, 12) and
(34, 11, 21) respectively, are both equal to the pop-
ulation of the driven system. Consequently, the
population of periodic orbits of the 3D model is
different from the one of the undriven system. 3D
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models may then capture some effects of the driv-
ing force when the amplitude is sufficiently large,
i.e. the modeling algorithm cannot be used to filter
the action of the driving force when its amplitude
is too large.

For A = 0.6, a 5D model, with modeling param-
eters set to (35, 10, 21), generates a chaotic behav-
ior very similar to the one generated by the driven
system, i.e. both behaviors are characterized by the
same kneading sequence, as exhibited by the popu-
lation of periodic orbits reported in Table 2. Two
period-6 orbits are however lacking in the popula-
tion of the 5D model. Such (minor) discrepancies
are likely to arise from the limited amount of data
used to extract periodic orbits. In fact, the agree-
ment between kneading sequences of 5D models and
of the driven system holds for all studied amplitudes
(Fig. 12). Also, first-return maps for 5D models are
always very similar to the one of the driven sys-
tem. In particular, they always exhibit a thickness
which compares very favorably to the one exhibited
in Fig. 6. Nevertheless, for sufficiently large ampli-
tude values, no 3D model can be obtained. Such a
feature is in agreement with the previously evalu-
ated embedding dimension since, for amplitude val-
ues greater than 0.5, the embedding dimension is at
least equal to 4.

5. Conclusion

By investigating systems embedded in Rm, driven
by an external force A cos(ωt+ϕ), we have demon-
strated that the natural phase space (global phase
space) of the driven systems has a dimension m+ 2
rather than m + 1 for the usual extended phase
space. The use of such a global phase space presents
many advantages, one of them is that it enables to
estimate successful global models. The present ap-
proach corresponds to a description of the processes
generating the dynamics including those involved
for generating the driving force. This description
is particularly convenient when the driving force is
not known or cannot be measured but it requires the
input to be stationary in the sense that its main fea-
tures can be described by a fixed model. Moreover,
it has been exemplified, in the case when a sinu-
soidal force is applied to the third equation of the
Rössler system, that the driven system is not always
phase synchronized with the driving force. Deep
consequences arise from such a feature. In particu-
lar, a Poincaré section cannot be conveniently iden-
tified to a stroboscopic representation of the dynam-
ics as usually used in the analysis of driven systems.

In such a case, the global phase space appears to be
very convenient for analyzing such systems.

When the number of variables involved in
the model corresponds to the number of variables
spanning the global phase space, a global model-
ing technique provides models whose quality does
not depend on the amplitude of the driving force.
Conversely, when the number of variables involved
in the model corresponds to the number of vari-
ables spanning the phase space associated with the
undriven system, the obtained models rather re-
produce the dynamics of the unforced system, al-
though the driving force develops the observed dy-
namics of the driven system. In other words, when
such a lower-dimensional model is attempted, the
action of the driving force is not correctly cap-
tured by the model. The modeling technique acts
like a sophisticated filter. Such a filtering effect is
only observed up to a certain value of the ampli-
tude (A = 0.6) beyond which no 3D model can
be obtained.

Indeed, by using a global modeling technique in
the global phase space starting from a y-time series
of the driven Rössler system, we obtain successful
5D models for any amplitude value of the driving
force. Although some difficulties (encoding peri-
odic orbits) have been encountered when perform-
ing the topological characterization for large ampli-
tudes, mainly due to the rough generating partition
used, each model has been found to be topologi-
cally equivalent to the driven Rössler system. More-
over, we demonstrated that a topological analysis,
only available in 3D spaces in utmost rigor, may
be used for almost all amplitudes. Such a result
may be understood by realizing that the additional
two dimensions associated with the driving force
correspond to an isolated 2D Hamiltonian subsys-
tem, i.e. are only required to generate a limit cycle
which is a trivial knot with a poor topological struc-
ture. Also, this topological characterization is ac-
tually achieved by projecting the 5D global phase
space in a 3D subspace associated with the non-
Hamiltonian process. In addition to that, one may
be ensured that the results are not a consequence
of the “reduced-dimension topological analysis” be-
cause it is performed for the original system and for
the model in the same subspace of the 5D global
phase space.

Acknowledgments

Oliver Ménard is supported by the Région de
Haute-Normandie. We wish to thank the



1772 O. Ménard et al.

anonymous referee who helped us to improve the
quality of this paper.

References
Abarbanel, H. D. I. & Kennel, M. B. [1993] “Local false

nearest neighbors and dynamical dimensions from ob-
served chaotic data,” Phys. Rev. E47(5), 3057–3068.

Aguirre, L. A. & Billings, S. A. [1994] “Validating iden-
tified nonlinear models with chaotic dynamics,” Int.
J. Bifurcation and Chaos 4(1), 109–125.
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