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Abstract

Mechanisms underlying speciation in plants include detrimental (incompatible) genetic interactions between parental
alleles that incur a fitness cost in hybrids. We reported on recessive hybrid incompatibility between an Arabidopsis thaliana
strain from Poland, Landsberg erecta (Ler), and many Central Asian A. thaliana strains. The incompatible interaction is
determined by a polymorphic cluster of Toll/interleukin-1 receptor-nucleotide binding-leucine rich repeat (TNL) RPP1
(Recognition of Peronospora parasitica1)-like genes in Ler and alleles of the receptor-like kinase Strubbelig Receptor Family 3
(SRF3) in Central Asian strains Kas-2 or Kond, causing temperature-dependent autoimmunity and loss of growth and
reproductive fitness. Here, we genetically dissected the RPP1-like Ler locus to determine contributions of individual RPP1-like
Ler (R1–R8) genes to the incompatibility. In a neutral background, expression of most RPP1-like Ler genes, except R3, has no
effect on growth or pathogen resistance. Incompatibility involves increased R3 expression and engineered R3
overexpression in a neutral background induces dwarfism and sterility. However, no individual RPP1-like Ler gene is
sufficient for incompatibility between Ler and Kas-2 or Kond, suggesting that co-action of at least two RPP1-like members
underlies this epistatic interaction. We find that the RPP1-like Ler haplotype is frequent and occurs with other Ler RPP1-like
alleles in a local population in Gorzów Wielkopolski (Poland). Only Gorzów individuals carrying the RPP1-like Ler haplotype
are incompatible with Kas-2 and Kond, whereas other RPP1-like alleles in the population are compatible. Therefore, the
RPP1-like Ler haplotype has been maintained in genetically different individuals at a single site, allowing exploration of
forces shaping the evolution of RPP1-like genes at local and regional population scales.
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Introduction

Understanding the processes by which new species arise is an

important evolutionary question [1]. In plants, polyploidy is one

of the best known mechanisms in speciation, together with other

pre-zygotic and post-zygotic barriers [2]. However, more

discrete and often cumulative changes in plant genomes can

lead to reproductive barriers and, potentially, isolation [3].

Intrinsic to speciation is the divergence of populations, which

allows accumulation of genetic differences as a result of drift,

local adaptation or coevolution. Such evolutionary processes

may create novel alleles or genes that, when combined with

other forms from divergent populations, cause hybrid failure to

various degrees [3,4]. These alleles and the resulting hybrids are

referred to as ‘incompatible’ and they have been documented in

plant breeding programs e.g. [5], although incompatibilities are

not limited to crops, as demonstrated by their occurrence

in Arabidopsis thaliana [6] and Mimulus guttatus [7]

populations.

In some genetically recessive hybrid incompatible (HI) interac-

tions, parental lineages may have experienced alternate loss-of-

function of duplicated genes required for viability as a result of

relaxed purifying selection [8,9]. Other more complex dominant

and recessive hybrid incompatibilities in plants involve allelic

mismatches between immune-related genes that trigger constitu-

tive activation of defenses in the absence of pathogen challenge.
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Hybrid necrosis is often a symptom of resistance deregulation and

its cost on growth and reproduction [10].

Plants are frequently attacked by microbial pathogens which

cause disease by deploying virulence factors (effectors) that

interfere with plant host defenses [11]. Pathogen effectors are in

turn recognized, directly or indirectly, by intracellular nucleotide

binding-leucine rich repeat (NLR) receptors to induce effector-

triggered immunity, which is a rapid host cellular resistance

response often associated with localized programmed cell death

[11]. NLRs broadly fall into two structural sub-classes carrying

either an N-terminal Toll/Interleukin1-receptor domain (known

as TNLs) or a coiled-coil domain (CNLs). Consistent with their

role as sensors at the molecular interface with rapidly evolving

pathogen effector arsenals, there has been massive expansion and

diversification of NLR gene families across plant lineages [12,13].

Nevertheless, the rate of NLR variation is unlikely to keep pace

with microbial change, and therefore maintenance of diverse NLR
alleles within a population might be an important determinant of

host-pathogen coevolution [14]. Accordingly, some TNL genes

exhibit molecular signatures consistent with patterns of balancing

selection [14–16] which would contribute to the standing genetic

variation present in nature. Further evidence suggests that plants

also extend their resistance spectrum by intercepting actions of

multiple effectors on a limited set of cellular targets [17]. There are

examples of NLRs monitoring or ‘guarding’ the status of an

effector target (the guardee) [11]. Maintaining appropriate ‘guard-

guardee’ associations while tolerating NLR variation presents a

challenge because even small molecular rearrangements might

disturb NLR homeostasis, leading to autoimmunity and impaired

growth. Such mismatches would be particularly exposed in

interactions in which protein pairs have diverged independently

in populations and natural variants arisen that mimic effector

modifications [18].

TNLs are highly polymorphic genes in Arabidopsis and many

reside in clusters [12,19]. Their characteristic three-domain

composition and within-gene sequence repetition can further

promote high levels of polymorphism through non-allelic homol-

ogous recombination [12,20,21] and TNLs are among plant genes

with the highest naturally occurring sequence variation, closely

followed by receptor-like kinase (RLK) genes [9,12,22].
Several cases have been reported in which autoimmunity results

from allelic interactions involving TNL or RLK genes. Intraspe-

cific incompatibilities in Arabidopsis involve interactions between

TNL genes [6], TNLs with RLKs [23], or TNLs with a gene

encoding a cysteine biosynthetic enzyme [24]. Interspecific HI

between crossable species has been reported to involve the CNL

receptor-guarded effector target RIN4 in lettuce [25] and NLR/
RLK combinations in rice [26,27]. The nature of the epistatic

interaction is therefore not entirely predictable, although the

frequency with which a polymorphic cluster of NLR and/or RLK
genes is involved likely reflects the occurrence of high genetic

variation at these loci, or lower phenotypic buffering capacity for

NLR and/or RLK variation [12,28]. In Arabidopsis accession Ws-

0, TNL genes within the Recognition of Peronospora parasitica1
(RPP1) resistance locus confer specific resistance to infectious

downy mildew Hyaloperonospora arabidopsidis (Hpa) isolates

(formerly Peronospora parasitica) [29,30]. Interestingly, an

Arabidopsis RPP1-like locus with no known pathogen recognition

specificity underlies three independent autoimmune interactions

[6,24,31], two of which involve the RPP1-like Landsberg erecta
(Ler) haplotype [24,31]. This suggests that the RPP1-like locus is

predisposed to immune-related hybrid incompatibility in this

species.

We reported the occurrence of HI between Ler and individuals

from Central Asian populations (Kas-2 and Kond). Incompatible

Ler/Kas-2 and Ler/Kond hybrids exhibit dwarfism and sterility at

moderately low temperature (14–16uC) typical for ambient

temperatures during the natural growing season of many A.
thaliana accessions, and these phenotypes are suppressed at higher

temperature (20–22uC) [23,31]. Ler/Kas-2 and Ler/Kond

incompatibilities are caused by a common recessive genetic

interaction between the RPP1-like Ler locus and Kas-2 or Kond

alleles of RLK Strubbelig Receptor Family 3 (SRF3). The RPP1-
like locus in Ler contains eight tandemly arranged TNL genes

(R1–R8, including R6 which is a truncated form). Col-0 has only

two RPP1-like genes at this locus (At3g44630 and At3g44670),
similar to its close relative Arabidopsis lyrata [32], suggesting that

Ler carries a derived RPP1-like haplotype. An RPP1-like
structural variant in accession Uk-1 likely triggers incompatibility

with Uk-3, an accession from the same local population [6].

Strikingly, different genetic determinants underlie the RPP1-like
Uk-1 and Ler incompatibilities [31]. The Uk-1 RPP1-like locus is
incompatible with a Uk-3 allelic form of the TNL gene, SSI4
(suppressor of salicylic acid insensitivity of npr1-4) [6], but not with
Kas-2 or Kond alleles of SRF3 [31]. Hence, independent epistatic

networks underlie these incompatibilities.

Incompatible SRF3 alleles are frequently found in Central Asia

and exhibit molecular patterns consistent with signatures of a

recent selective sweep, suggesting that incompatibility with Ler has
arisen as a by-product of selection [23]. By contrast, little is known

about the natural distribution of the RPP1-like Ler haplotype in

Central Europe or the potential benefit or cost of carrying it. Here,

we have examined the genetic basis of the RPP1-like Ler
incompatibility and the occurrence of the RPP1-like Ler
haplotype worldwide. We find that it has been maintained in a

local Central European natural population over at least seven

decades. We tested for involvement of individual RPP1-like Ler
genes in HI between Ler and Kas-2 using artificial microRNA

(amiRNA) silencing and analysis of RPP1-like Ler transgenes in

neutral or incompatible Arabidopsis backgrounds. We establish

that individual RPP1-like Ler genes contribute differently to the

trade-off between growth and disease resistance. Incompatibility

Author Summary

In plants, naturally evolving disease resistance (R) genes
can cause autoimmunity when combined with different
genetic backgrounds. This phenomenon, called immune-
related hybrid incompatibility (HI), leads to growth
inhibition and fitness loss due to inappropriate activation
of defense. HI likely reflects different evolutionary paths of
immune-related genes in nature. We have examined the
genetic architecture of a complex R locus present in a
Central European accession (Ler) which underlies HI with
Central Asian accessions of Arabidopsis. We show that
expression of one gene (R3) within the Ler cluster of eight
tandem R genes (R1–R8) controls the balance between
growth and defense but that R3 needs at least one other
co-acting member within the R locus to condition HI. We
traced the R1–R8 haplotype to a local population of Ler
relatives in Poland where it also underlies HI with Central
Asian accessions. Occurrence of the incompatible haplo-
type in ,30% of genetically diverse local individuals,
suggests that it has not arisen recently and has been
maintained through selection or drift. Co-occurrence in the
same population of individuals containing different R
genes that do not cause HI provides a basis for
determining genetic and environmental forces influencing
how plant immunity genes evolve and diversify.

Genetic Analysis of the RPP1-Like Ler locus
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between Ler and Kas-2 is associated with higher expression of the

RPP1-like R3 gene and engineered R3 over expression causes

autoimmunity. However, individual RPP1-like Ler gene members

are insufficient to condition HI with Kas-2 and Kond. We

conclude that a minimum expression threshold of two or more

RPP1-like Ler genes in combination with Kas-2 or Kond SRF3
allelic forms is required for autoimmunity and HI. Finally, we

show that the incompatible RPP1-like Ler haplotype is frequent in
a local Central European population where it co-occurs with other

RPP1-like genes not triggering incompatibility with Kas-2 or

Kond. Our study reveals the complex nature and local genetic

diversity of the RPP1-like Ler locus underlying incompatibility

with Central Asian populations of Arabidopsis.

Results

amiRNA silencing of RPP1-like Ler genes
Previously, we mapped the Ler locus causing incompatibility

with Kas-2 and Kond Central Asian accessions (SRF3 forms) to a

large ,87 kb cluster of RPP1-like genes on chromosome 3 [31].

We also established that HI was suppressed by loss-of-function

mutations of the TNL immunity regulator EDS1 or by depletion

of the defense signaling hormone salicylic acid (SA), consistent

with TNL genes driving HI [31]. To ascertain whether HI is due

to one or more RPP1-like Ler genes within the locus, we used

artificial microRNA (amiRNA) silencing of an incompatible Ler/
Kas-2 near isogenic line (NIL) which contains a Ler introgression
spanning the RPP1-like locus in a Kas-2 background [31].

Incompatible NIL plants were transformed with amiRNAs

KB209, KB212 and KB228 originally designed against RPP1-
like genes in Uk-1 (S1 Table). Of the three amiRNAs used, only

KB209 and KB212 have predicted complementarity with RPP1-
like Ler genes. Multiple independent NIL lines transformed with

amiRNAs KB209, KB212 and KB228 (the latter used as a

negative control) were tested for suppression of incompatible

phenotypes at 14–16uC. We observed suppression of incompat-

ibility in all NIL plants transformed with amiRNA KB209, and in

most KB212 transformants (Fig. 1A). As expected, KB228 did not

rescue the incompatible NIL phenotype (Fig. 1A).

Using quantitative RT-PCR (qRT-PCR) with primer pairs that

discriminated between individual RPP1-like Ler genes (S2 Table),

we determined expression of each gene within the RPP1-like Ler
cluster in the amiRNA lines with and without HI suppression, in

the original NIL background, a complemented NIL line (cNIL;

transformed with the compatible SRF3 Ler allele [23]), and the

Ler parental accession (Fig. 1B). Quantitative expression analyses

indicated silencing of most RPP1-like Ler genes by amiRNAs

KB209 and KB212 in suppressed lines (compatible), except for R2

Figure 1. Growth phenotype of amiRNA lines at 14–166C and RPP1-like gene expression. (A) Growth phenotype of 5-week old Ler/Kas-2
NIL plants transformed with amiRNAs effective (KB209 and KB212) or not effective (KB228) suppressing incompatibility. (B) Expression of individual
RPP1-like Ler genes determined by qRT-PCR in suppressed (compatible) amiRNA KB209 lines (KB209-1, KB209-2, KB209-3), KB212 (KB212-1, KB212-2,
KB212-3) and non-suppressed (incompatible) amiRNA lines KB212 (KB212-4, KB212-5), KB228 (KB228-1, KB228-2, KB228-3). Values are relative to Ler
and the mean 6 SD of three biological replicates each using three technical replicates. cNIL (complemented NIL), NIL (incompatible Ler/Kas-2 near-
isogenic line) [23,31]. Significant differences in gene expression between Ler and other genotypes using Student’s t-test are indicated by asterisks:
*P,0.05, **P,0.01, ***P,0.005.
doi:10.1371/journal.pgen.1004848.g001

Genetic Analysis of the RPP1-Like Ler locus
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and R8, which were expressed at wild-type (Ler) levels in KB209

lines (Fig. 1B). These results narrowed the potential RPP1-like
incompatibility determinants down to R1, R3, R4, R5 and R7. In
non-suppressed incompatible lines (KB228, KB212-4 and KB212-

5) and the NIL, we consistently detected higher RPP1-like R3
expression levels ($2-fold) compared to Ler, the cNIL and

compatible amiRNA lines (Fig. 1B). These results show that loss

of HI correlates with reduced expression of multiple RPP1-like
Ler genes, whereas maintenance of HI is associated with enhanced

expression of R3. Thus, R3 might be a key factor in the

incompatibility with Kas-2.

Contribution of RPP1-like Ler genes to the trade-off
between growth and disease resistance
Prolonged activation of defenses bears a fitness cost for the plant

[33,34] and this might shape the genetic composition of Resistance
(R) genes in natural populations [13]. We measured the

contribution of individual RPP1-like Ler genes to the trade-off

between growth and disease resistance by transforming a neutral

(compatible) background, accession Col-0, with genomic con-

structs of each RPP1-like Ler gene under control of its native 59

and 39 sequences. These lines are referred to as ColRPP1Ler. We

also included RPP1-like Ler R1 and R5 genes, which contain stop

codons in their coding sequences (S1 Figure). Expression of the

RPP1-like Ler transgenes in Col-0 was detectable and ranged

from 0.5 to 5.5-fold their native expression levels in Ler (Fig. 2).
Interestingly, ColRPP1Ler R3 lines with higher expression (lines 12,

13 and 27) exhibited dwarfism and sterility at 14–16uC, which

were suppressed at 20–22uC (S2 Figure). By contrast, ColRPP1Ler

R1, R2, R4, R5, R7 and R8 lines did not show obvious growth

defects at 14–16uC regardless of the transgene expression level

(Fig. 2 and S3 Figure). Expression of the defense marker gene

PR-1 was used to monitor defense activation in the different

transgenic lines (Fig. 2). ColRPP1Ler R3 lines with higher

transgene expression also exhibited high PR-1 expression.

Expression of PR-1 remained low in ColRPP1-like Ler R1, R2,
R4, R5, R7 and R8 lines and variation in PR1 transcript levels

between lines did not correlate with transgene expression (Fig. 2).

Cell death lesions were detected in leaves of the stunted ColRPP1Ler

R3 lines at 14–16uC, as observed previously for Ler/Kas-2

incompatible lines [31], but were absent in all other ColRPP1-like

Ler R1, R2, R4, R5, R7 and R8 lines grown under the same

conditions (S4 Figure).

We tested the different ColRPP1 lines for basal immunity to the

virulent Hpa isolate Noco2 (S5 Figure) [23], and for TNL
(RPP2)-mediated immunity to avirulent Hpa isolate Cala2 (S6

Figure). Effector-triggered TNL immunity is often accompanied

by a hypersensitive response (HR) involving localized plant cell

death at infection sites [35]. These pathology assays showed that

RPP1-Ler R1, R2, R4, R5, R7 or R8 genes did not alter Col

basal disease resistance against Hpa Noco2 (S5 Figure) or TNL
resistance against Hpa Cala2 (S6 Figure). The results argue

against a contribution of individual RPP1-like Ler R1, R2, R4,
R5, R7 or R8 to defense, as measured by their Hpa disease

resistance phenotypes. However, overexpression of RPP1-like Ler
R3 in Col-0 caused increased cell death in response to virulent

Hpa isolate Noco2 (S5 Figure) and extended HR-like lesioning in

response to avirulent Hpa Cala2 (S6 Figure). These infection

phenotypes are similar to those observed in incompatible Ler/
Kas-2 lines [31]. Basal and TNL triggered resistance phenotypes

were not altered in transgenic lines with lower R3 expression (S7

Figure). In summary, the results show that overexpression of

RPP1-like Ler R3 causes HI-like autoimmunity and suggest that

RPP1-like Ler R3 expression affects the trade-off between plant

growth and disease resistance.

Effects of RPP1-like Ler R3 expression with different allelic
combinations at SRF3 and QTL5
The RPP1-like Ler locus is incompatible with homozygous

Kas-2 alleles at SRF3 and a third locus (QTL5) involved in HI

with Kas-2 [31]. Because RPP1-like Ler R3 overexpression

causes enhanced immunity in a neutral background, we asked

whether allelic variation at the SRF3 and QTL5 interacting loci

affect expression of genes within the RPP1-like Ler locus. For

this, we measured expression of individual RPP1-like Ler genes

in Ler/Kas-2 recombinant inbred lines (RILs) [36] carrying

incompatible (RPP1-like/SRF3/QTL5: Ler/Kas-2/Kas-2) or

compatible combinations of alleles at RPP1, SRF3 and QTL5

(Ler/Ler/Kas-2 and Ler/Kas-2/Ler) (Fig. 3). Expression anal-

yses showed that RPP1-like Ler R3 transcript levels were

significantly ($2.0-fold) higher in RILs carrying incompatible

alleles (Fig. 3). Also, R3 transcriptional up-regulation did not

occur in an incompatible Ler/Kas-2 line carrying the eds1-2
mutation (Fig. 3). These results underscore the relationship

between incompatibility and RPP1-like Ler R3 expression

inferred from the amiRNA analysis (Fig. 1B), and suggest that

incompatibility involves EDS1-dependent upregulation of RPP1-
like Ler R3.

Contribution of individual RPP1-like Ler genes to
incompatibility
We then examined the contribution of individual RPP1-like Ler

genes to incompatibility with Kas-2 and Kond, by crossing these

accessions with multiple independent ColRPP1 transgenic lines

differing in RPP1-like Ler transgene expression (S3 Table). We

generated and scored an average of 220 F2 plants per population

for the segregation of HI phenotypes at 14–16uC. As expected,

progeny derived from the cross of ColRPP1 R3 dwarf lines (12 and

27) with Kas-2 and Kond segregated for incompatible phenotypes

in the F2 (S3 Table). Incompatible phenotypes were not detected

in crosses of any of the other ColRPP1 lines with Kas-2 and Kond

(S3 Table). F2 populations derived from ColRPP1 R3 lines with

lower transgene expression (14, 21, 24 and 25) also did not display

incompatibility (S3 Table). These results suggest that individual

members of the RPP1-like Ler locus, including R3 under native

expression conditions, are insufficient to condition HI with Kas-2

and Kond.

At least two homozygous copies of RPP1-like Ler genes
are required for incompatibility
We isolated F2 individuals carrying each of the RPP1-like Ler

transgenes and Kas-2 incompatible allele combinations at SRF3
and QTL5 (Fig. 4A). These lines did not exhibit HI phenotypes at

14–16uC. We then studied the effect of adding one copy of the

entire RPP1-like Ler cluster to these lines, maintaining homozy-

gous Kas-2 incompatible alleles at SRF3 and QTL5 (Fig. 4B), or

compatible heterozygous alleles at SRF3 (S8 Figure). These

materials were generated by crossing the above F2 plants and their

controls with the NIL (see Material and Methods). Growing the

RPP1-like Ler hemizygous lines at 14–16uC did not reveal

incompatibility (Fig. 4B). Similar growth phenotypes to the

respective controls carrying compatible heterozygous SRF3 alleles

were observed (S8 Figure). We concluded that immune-related

HI between Ler and Kas-2 requires a minimum expression

threshold of two or more RPP1-like Ler genes in combination

with the Kas-2 allelic forms.

Genetic Analysis of the RPP1-Like Ler locus
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Figure 2. Transgene and PR-1 expression in ColRPP1 lines. Expression of RPP1-like Ler R1, R2, R3, R4, R5, R7 and R8 transgenes (left axis) and PR-1
(right axis) determined in individual homozygous ColRPP1 lines, Ler and NIL plants grown at 14–16uC by qRT-PCR. Values are relative to Ler and the
mean 6 SD of three biological replicates each using three technical replicates. NIL (incompatible Ler/Kas-2 near-isogenic line [31]). Significant
differences in gene expression between Ler and different ColRPP1 lines using Student’s t-test are indicated by asterisks: *P,0.05, **P,0.01, ***P,
0.005.
doi:10.1371/journal.pgen.1004848.g002

Figure 3. Effects of R3 expression with different allelic combinations at SRF3 and QTL5. Expression of RPP1-like Ler genes determined by
qRT-PCR in different Ler/Kas-2 recombinant inbred lines (RIL) carrying homozygous allelic combinations at RPP1-like/SRF3/QTL5 loci: Ler/Ler/Kas-2
(AAB), Ler/Kas-2/Ler (ABA), Ler/Kas-2/Kas-2 (ABB). AAB and ABA represent compatible allele combinations, whereas ABB triggers incompatibility. The
ABB eds1-2 line carrying an EDS1 loss-of-function mutation is described in [31]. Values are relative to Ler and the mean 6 SD of three biological
replicates each using three technical replicates. Significant differences in the gene expression between Ler and different genotypes using Student’s t-
test are indicated by asterisks: *P,0.05, **P,0.01, ***P,0.005.
doi:10.1371/journal.pgen.1004848.g003

Genetic Analysis of the RPP1-Like Ler locus
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Distribution of the RPP1-like Ler haplotype in an
Arabidopsis local population
We reported that the RPP1-like Ler incompatible haplotype is

rare in Europe based on analysis of thirty F2 populations derived

from a cross of Kas-2 with different Central European accessions

[23]. This contrasts with the high frequency of SRF3 incompatible

alleles found in Central Asia [23]. We also reported that the

Landsberg ERECTA (La-0) accession is incompatible with Kas-2,

indicating that the incompatible RPP1-like locus was already

present in the parental Landsberg La-0 background [31]. Through

an optimized PCR screen based on amplification of full-length

RPP1-like Ler R1-R8 genes, we searched for the presence of a

conserved RPP1-like Ler haplotype in 346 A. thaliana accessions

representing a diverse global sample (S4 Table). None of these

shared the RPP1-like haplotype with Ler. Absence of a broad

distribution led us to hypothesize that the RPP1-like Ler
haplotype, if present in the wild, is geographically restricted.

In May 2011, we traced the origin of Ler (Landsberg an der

Warthe, Germany 1939) [37] to the area of Gorzów Wielkopolski

(Poland) (S9 Figure). There we collected 167 individuals (named

Gorzów, Gw), which were genotyped using 149 genome-wide

SNPs [38]. With these markers, we could distinguish at least 44

different multi-locus haplotypes (Figs. 5 and 6A) which shared

58–72% SNPs with Ler. This is well above the mode of ,44%

seen for arbitrary pairs of worldwide accessions [39]. Three Gw

individuals (1.8% of the entire sample) carried heterozygous alleles

at various markers across the genome including the RPP1-like
cluster, suggesting that outcrossing occurs between local acces-

sions, as previously observed [40]. Structure [41] and PCA

analyses of Gw individuals and other accessions originally from

neighboring countries (Austria, Czech Republic and Germany), as

well as more geographically distant accessions (The Netherlands,

Russia and former Soviet Union, and Central Asia), confirmed

that the Gw population is most closely related to other Central

European A. thaliana accessions and that, with K=3 and above,

forms a distinct group (S10 Figure).

The Ler accession derived from plants collected in the same

region in 1939 showed a close genetic relationship with the

modern Gorzów population (Fig. 5 and S10 Figure). About a
third of Gw individuals, representing 14 different multilocus-

haplotypes, shared the RPP1-like incompatibility genes found in

Ler (Fig. 5B and S11 Figure). This finding suggests that the

derived RPP1-like Ler haplotype has been maintained in the

original location over at least 72 generations (assuming a

generation time of one year) since the first sampling of the

population in 1939 [37]. However, the RPP1-like Ler haplotype
has not spread in Central Europe (S4 Table).

For simplicity, we will refer to the accessions with RPP1-like
Ler alleles as Gw+ and those lacking it as Gw2. Both types of

individuals were not differentiated from each other in PCA and

neighbor-joining tree analyses based on genome-wide SNP data

(Figs. 5B and 6A). We also analyzed the genetic diversity of

RPP1-like genes within the Gw2 genetic groups (Fig. 6B). Using

the same primer combinations designed to amplify RPP1-like Ler
genes, we observed variation in the sequence and composition of

the RPP1-like cluster in Gw2 individuals (Fig. 6A). Due to the

variable nature of the cluster, we designed primers annealing to

conserved RPP1-like sequences for cloning RPP1-like genes in

Gw2 individuals. In this way, we isolated RPP1-like genes from

four genetically different Gw2 accessions sharing 61%–70% SNP

with Ler (Gw-31, Gw-44, Gw-55 and Gw-99) and from Kas-2.

Phylogenetic analyses, based on sequencing RPP1-like genes of

isolated clones, showed a high degree of RPP1-like gene variation
between Gw2 accessions (Fig. 6B). RPP1-like Kas-2 genes

clustered together within the same branch of the tree. However,

most branches were formed by RPP1-like genes from different

accessions without an obvious relationship (Fig. 6B). Neighbor-

Net analysis of RPP1-like genes from Gw2 and Gw+ accessions

produced evidence for parallelograms in the network, mostly

between RPP1-like genes from Gw2 accessions, which is

suggestive of recombination (S12 Figure). Notably, nucleotide

diversity flanking the RPP1-like locus was higher in Gw2 than

Gw+ haplotypes, extending from ,250 kb to +150 kb from the

locus (S13 Figure). These results suggest that recombination at

the RPP1-like locus is suppressed in Gw+ accessions but not in

Gw2, in agreement with observations made during the fine-

mapping of the Ler QTL in Ler/Kas-2 heterozygous inbred

families [31]. Based on these observations, we hypothesize that the

derived RPP1-like Ler haplotype has increased in frequency by

introgression to different genetic backgrounds in the Gw

population, and that low recombination has contributed to

maintaining the RPP1-like Ler cluster as an extended haplotype.

The increase in frequency of the derived RPP1-like Ler haplotype
is perhaps the result of a selective advantage, drift or complex

demographic events, but less likely due to a recent bottleneck,

since it was found in diverse genetic backgrounds. The co-

occurrence of different RPP1-like allelic forms in Gw2 individuals

would be expected for Resistance genes in natural populations that

are maintained by negative-frequency dependent selection [14].

We conclude that there is extensive diversity of RPP1-like genes

co-occurring in a local population.

Incompatibility between Gw and Kas-2 or Kond
accessions
Having found that the RPP1-like haplotype is maintained within

genetically different individuals from a local Gorzów population, we

determined whether it also conditions incompatibility with Kas-2

and Kond. Therefore 13 Gw+ individuals belonging to 10

mutlilocus-haplotype groups (Gw-7, Gw-59, Gw-80/81, Gw-87,

Gw-89, Gw-91/92, Gw-98, Gw-108, Gw-117 and Gw-152) and

three Gw2 controls (Gw-31, Gw-99 and Gw-160) were crossed to

Kas-2 and Kond and equal numbers of F2 populations generated

(S5 Table). Approximately 250 F2 plants per population were then

scored for the segregation of incompatible phenotypes at 14–16uC.

We detected the incompatibility in all crosses derived from Gw+

individuals with Kas-2 and Kond (S5 Table; Fig. 7). Incompatible

F2 individuals always carried Gw (Ler) homozygous alleles at the

RPP1-like locus and Kas-2 or Kond homozygous alleles at SRF3
(S5 Table). The data are consistent with involvement of at least two

recessive loci in the Gw+/Kas-2 and Gw+/Kond incompatibilities.

By contrast, F2 plants derived from crosses of Gw2 with Kas-2 did

not display HI at 14–16uC (Fig. 7 and S5 Table). These results

show that Gw+ individuals carrying the RPP1-like Ler haplotype
are incompatible with Kas-2 and Kond. Therefore, the incompat-

ibility reported between Ler/Kas-2 and Ler/Kond can be extended

to a population scale.

Figure 4. Growth phenotype at 14–166C of ColRPP1/Kas-2 plants and RPP1-like Ler hemizygous lines. (A) Growth phenotype of
representative F3 plants derived from the cross of ColRPP1 R1, R2, R3, R4, R5, R7 and R8 transgenic lines with Kas-2, which carry their respective
transgenes in combination with incompatible alleles at interacting loci. (B) Growth phenotype of the F1 progeny derived from the cross of genotypes
in (A) with the incompatible Ler/Kas-2 NIL [31]. Genotypes are shown in the lower panel (A9 and B9).
doi:10.1371/journal.pgen.1004848.g004
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Discussion

The arrangement of NLR genes in clusters is the result of

tandem, ectopic or large-scale segmental duplications that can be

followed by local rearrangements. The clusters may be homoge-

neous, containing structurally similar NLR genes, or complex

when formed by a heterogeneous class of TNL and CNL (Coiled
Coil-NLR) genes [12,42,43]. The RPP1-like Ler cluster is

homogeneous and formed by a sequence of highly related TNL
genes [31]. Different repertoires of RPP genes are known to

recognize effectors delivered by genetically diverse strains of the

Arabidopsis oomycete pathogen Hpa [44], consistent with there

being coevolution between naturally evolving Hpa isolates and

local Arabidopsis populations. Compared to Col-0 and Arabidopsis
lyrata [32], accession Ler contains six additional RPP1-like genes
at this locus, one of which (R6) is a truncated form [31].

Nonreciprocal crossover is a source of copy number variation that

can generate clusters of different sizes which would limit

recombination [45]. Given the larger number of genes within

the cluster, the RPP1-like Ler haplotype appears to be a derived

one. Sequence alignment and exon-intron organization suggests

that RPP1-like genes R3 and R4 are the result of ectopic

recombination and duplication of the At3g44400 TNL (S1

Figure). R2 and R8 RPP1-like Ler are the most closely related

genes to At3g44630 and At3g44670 in Col-0 respectively,

suggesting a common ancestry (S1 Figure).

Activation of defense incurs a cost for the plant, which is often

translated into reduced growth and reproductive fitness [18].

However, naturally occurring alleles that lower the thresholds for

activation of defense have been found at the ACD6 locus together

with wild-type alleles in Arabidopsis natural populations [46]. We

found that the majority of RPP1-like Ler genes, except R3, do not

confer an obvious fitness cost in neutral backgrounds (Col-0)

regardless of their expression levels, nor any clear advantage for

disease resistance to the virulent Hpa isolate Noco2 (S3, S4, S5

Figures). R3 overexpression in ColRPP1 lines enhances resistance

to Hpa Noco2 (S5 Figure) and reduces fitness at 14–16uC (S2

Figure), thus phenocopying Ler/Kas-2 HI [31]. R3 overexpres-

sion in Ler has the same deleterious effect as in Col-0, and is

therefore a background-independent phenotype. Incompatible

and autoimmune phenotypes were not evident in ColRPP1 lines

with wild-type R3 expression levels (S7 Figure). The fitness cost

of R3 overexpression suggests a need for tight R3 transcriptional

regulation to provide balanced growth and defense. Indeed, a

large fraction of the methylation variability in Arabidopsis is

detected in regions containing NLR genes [47,48] and restricting

NLR expression is important for normal plant development

[49,50].

Figure 5. Gorzów population structure. Estimated population structure (A) and principal component analysis, PCA (B), derived from the analysis
of 149 genome-wide SNP in genetically distinct individuals in the Gorzów population (n = 44) and accessions from neighboring countries (Czech
Republic and Austria, n = 33; Germany, n = 88) or more distant regions (Netherlands, n = 21; Russia and former Soviet Union, n = 27; Central Asia,
n = 61). Each accession is colored in segments depicting individual’s estimated membership fractions in six main clusters (optimal K = 6, for lower K
values see S10 Figure). Gw individuals carrying (Gw+) or not (Gw2) the RPP1-like Ler haplotype are represented in different colors in the PCA plot.
doi:10.1371/journal.pgen.1004848.g005
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Crossing R3 lines exhibiting Ler wild-type expression levels with

Kas-2 and Kond failed to reconstitute HI in the F2 generation, nor

did crossing individual ColRPP1 R1, R2, R4, R5, R7 and R8
transgenic lines with the same accessions, or adding one supporting

copy of the RPP1-like Ler cluster to the above lines (Fig 4; S3

Table). These results suggest that minimum expression of at least

two RPP1-like Ler genes is required for incompatibility with Kas-2.

However, non-suppressed NIL amiRNA lines and incompatible

Ler/Kas-2 RILs exhibited higher R3 transcript levels than

suppressed NIL amiRNA lines, Ler/Kas-2 RILs containing

compatible allele combinations or incompatible RILs in an

immunity suppressed eds1-2 background (Fig. 1B and Fig. 3).

Therefore, a strong positive correlation exists between R3
expression and HI. Moreover, R3 overexpression is sufficient to

induce plant stunting (S2 Figure). We conclude that HI between

Ler and Kas-2 likely involves an amplification of RPP1-like Ler R3
expression in an EDS1-dependent manner. Therefore, both RPP1-
like expression and protein differences contribute to HI. The

manner in which specific Kas-2 and Kond SRF3 allelic forms

contribute to this, and a basis for co-action between R3 and at least

one other RPP1-like Ler gene within the locus need to be clarified.

The multigenic nature of an incompatible locus was recently

reported in an interspecific cross in rice that requires the presence of

two tandem RLK genes for immune-related hybrid weakness [27].

Due to their close proximity and likely reduced recombination rate,

genes within the RPP1-like Ler cluster will tend to co-segregate,

thus maintaining the locus. Underscoring this, the incompatible

RPP1-like Ler haplotype is maintained in the wild (Gorzów), and

accessions carrying it are incompatible with Kas-2 and Kond

(Fig. 7 and S5 Table). An arms race based on selective sweeps of

plant R and pathogen effector genes has been proposed to drive the

coevolution between plants and pathogens. However, such

dramatic ‘boom and bust’ cycles do not explain all observations

made for the genetic composition and infection outcomes in wild

populations [51]. Current evidence points to negative-frequency

dependent selection, in which rare R alleles can gain a selective

advantage and mitigate fitness costs, thereby promoting R gene

cyclic dynamics and diversity [51,52]. In addition, the possibility of

neutral evolution when selection is weak, and other non-selective

processes such as isolation-by-distance, might shape the genetic

diversity of wild populations [53].

Here we have studied the natural distribution of the RPP1-like
Ler haplotype in the wild. Our screen in 346 global accessions

shows that the RPP1-like Ler cluster is not geographically

widespread (S4 Table). Rather, we found it in a population of

genetically related Ler individuals in Gorzów Wielkopolski (Po-

land) (Figs. 5 and 6). This pattern contrasts with the wide

distribution of SRF3 Kas-2 and Kond alleles in Central Asian

Figure 6. Genetic diversity of the RPP1-like locus in the Gorzów population. (A) Neighbor-joining tree showing the genome-wide genetic
diversity among Gw accessions, estimated from a set of 149 genome-wide SNPs. Boxes represent genes within the RPP1-like haplotype (R1 to R8, with
R8 the closest to the tree) conserved with Ler (red) differing from Ler (gray), or absent (white), based on amplification and sequencing of RPP1-like
genes with specific primers designed for the RPP1-like Ler cluster. Accessions carrying the RPP1-like Ler haplotype are highlighted in red. Accessions
used for crosses with Kas-2 or Kond and their compatibility/incompatibility outcome are indicated. (B) Neighbor-joining tree of RPP1-like genes in
Gw2 and Kas-2 showing extensive allelic variation. Phylogeny is based in sequencing RPP1-like genes in Gw2 individuals (Gw-31, Gw-44, Gw-55 and
Gw-99) and Kas-2.
doi:10.1371/journal.pgen.1004848.g006
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populations [23]. However, the genetic variation among Gorzów

individuals (Fig. 5B) suggests that it is not a recent population.

Indeed, the original La-0 and La-1 accessions were collected in

1939 [37] and the modern Gorzów population reported here in

2011. Strikingly, Gw individuals carrying the RPP1-like Ler
haplotype (Gw+) are not more genetically related to each other

than to Gw2 individuals not carrying it (Figs. 5B and 6A).

Therefore, it is unlikely that this haplotype increased in frequency

as result of a recent bottleneck. We favor an evolutionary scenario

in which the derived RPP1-like Ler haplotype has increased in

frequency (,30%) by introgression to different Gw genetic

backgrounds (Figs. 5B and 6A), and low recombination has

helped to maintain RPP1-like Ler genes in genetically different

Gw+ individuals (S11 and S13 Figures).

The observed high diversity of RPP1-like genes in Gw2

individuals (Fig. 6B) is a pattern expected for wild populations in

which multiple (rare) alleles are maintained by negative-frequency

dependent selection [14,54]. Phylogenetic network analysis of

RPP1-like genes from Gw+ and Gw2 accessions revealed patterns

suggestive of recombination between RPP1-like genes from Gw2

accessions (S12 Figure). Therefore, recombination between

RPP1-like Gw2 genes might be a source of RPP1-like gene

diversity in the local Gw population (Fig. 6B). However, such

patterns were not evident between Gw+ and Gw2 RPP1-like

genes (S12 Figure). This argues against the high diversity of Gw2

RPP1-like genes observed in the population being derived from

multiple independent recombination/deletion events acting on the

RPP1-like Gw+ (Ler) cluster.
Increased expression of RPP1-Ler R3 might confer a selective

advantage in disease resistance or a fitness cost in terms of growth

and reproduction at moderately low temperature (14–16uC),

highlighting the potential importance of trade-offs and genotype-

by-environment interactions in the evolutionary dynamics of

RPP1-like genes in wild populations. Whether the increase in

frequency of the RPP1-Ler haplotype in Gorzów is due to drift,

demography or selection requires further investigation. Such an

evolutionary study will entail determining the genetic diversity of

R genes and local pathogen populations as well as fitness effects

modulated by local environment. These complex interactions,

involving also beneficial or commensal microbial communities that

might compete with pathogens for resources [55], are likely to

shape how plants and pathogens coevolve in nature.

Materials and Methods

Plant materials and growth conditions
The identity and stock numbers of the Arabidopsis thaliana

accessions used in this study are listed in S4 Table. Seeds were

Figure 7. Incompatible phenotypes derived from the cross of Gw+/Kas-2 and Gw+/Kond accessions. Gw+ individuals were crossed to Kas-
2 and Kond and their F2 progenies screened for the occurrence of incompatible phenotypes at 14–16uC (see S5 Table). Dwarf plants on the left of
each cross carry homozygous Gw (Ler) alleles at RPP1-like locus and homozygous SRF3 Kas-2 or Kond alleles, which are not present in normal sized
sister F2 plants from the same cross (right). Incompatibility is absent in the cross of Gw2 accessions with Kas-2 or Kond (Gw-160 as representative; see
S5 Table).
doi:10.1371/journal.pgen.1004848.g007
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obtained from the Nottingham Arabidopsis Stock Center (NASC)

or collected by the authors. Seeds from the Gorzów population

were harvested in Gorzów Wielkopolski (Poland) in May 2011,

and amplified between June–October 2011 as single seed descent

at the greenhouse facilities of the Max Planck Institute for Plant

Breeding Research (Cologne, Germany). Progeny of Gw individ-

uals was directly used for SNP genotyping (see below). The

genotype of the incompatible Ler/Kas-2 NIL used in this study

has been described before [31]. For growth of plants, seeds were

stratified on wet filter paper at 4uC in the dark for 2 to 4 days, and

transferred to soil for germination. Plants were germinated and

grown under 12 h dark/12 h light cycles, 14uC/16uC and 70%

relative humidity in growth chambers (Percival Scientific, USA).

amiRNA lines
amiRNA constructs in binary vectors targeting RPP1-like genes

used in this study, KB209 (21mer: TGACACATAAACTC-

CATCGGT), KB212 (21mer: TACATTTCAACTGCGAGCG-

TC) and KB228 (21mer: TATATCCGTAATGATTGCGGC)

designed using WMD3 [56], were transformed into Ler/Kas-2

NIL plants by floral dip [57]. For the selection of transgenic lines,

seeds were surface-sterilized and selected on MS K solid media

containing 50 mg/ml kanamycin (Sigma-Aldrich) and 200 mg/ml

ticarcillin/clavulanic acid 15:1 (Duchefa). T1 plants were trans-

ferred to soil at 23uC and T2 homozygous lines isolated by

segregation analyses of T3 seeds on selective media.

Gene expression analyses
Total RNA isolated from 5-week old plants was extracted using

TRIzol reagent (Invitrogen). Two micrograms of RNA was treated

with DNAse I (Invitrogen) and first strand cDNA synthesized using

Superscript II (Invitrogen) and oligo dT. Quantitative real-time

PCR using SYBR Green I dye method was performed on Roche

LightCycler 480 II detector system following the PCR conditions:

95uC 2 min, 40 cycles (95uC, 15 s; 60uC, 30 s; 68uC, 20 s).

Standard curves were performed for quantification. Primers used

for gene expression analyses are listed in S2 Table. The specificity

of RPP1-like Ler oligonucleotides was determined by comparison

of the amplification efficiency using a series of equimolecular

premixes of RPP1-like Ler R1-R8 plasmid DNAs in which the

target genes were absent or present. qRT-PCR analyses were

always performed on at least three biological replicates with three

technical replicates each using UBQ10 (At4g05320) as house-

keeping gene.

Generation of Col-0 RPP1-like Ler transgenic lines
Genomic regions of RPP1-like Ler genes were amplified from

200 ng of freshly extracted genomic DNA (BioSprint Workstation,

Qiagen) of the Ler accession (code number N20), using primer

combinations listed in Table S2 and LA Taq DNA polymerase

(Takara). PCR conditions were: 94uC 5 min, followed by 30 cycles

(94uC, 15 s; 55uC, 30 s; 68uC, 4 min), 68uC 10 min. PCR products

were separated on 1% agarose gel stained with ethidium bromide,

and purified by gel scission (Gel extraction Kit, Qiagen). Purified

fragments were cloned into pGEM T-easy (Promega), and the clones

sequenced using T7, SP6 and primers listed in Table S2. Sanger

sequencing was performed at the Max Planck Genome Center

Cologne (Cologne, Germany). The RPP1-like Ler genes were

released from pGEMT-easy by digestion with Not I and cloned into

the pCambia1300 binary vector (www.cambia.org) modified to

contain the PspOMI site in the MCS. The resulting clones were

transformed into Agrobacterium tumefaciens GV3101 pMP90 strain

[58] for transformation of Col-0 plants [57]. T0 seeds were selected

on MS K media supplemented with hygromycin 15 mg/ml and

200 mg/ml ticarcillin/clavulanic acid 15:1 (Duchefa). Homozygous

lines with single T-DNA insertions were determined by segregation

analyses and selected for further analyses.

Generation of RPP1-like Ler hemizygous lines
To generate RPP1-like hemizygous lines, we isolated multiple

F2 plants from populations described in Table S3 with the

genotypes: RPP1-like Ler transgene (+/+), RPP1-like locus (Col-0/
Col-0), SRF3: Kas-2/Kas-2 or Col-0/Col-0, QTL5: Kas-2/Kas-2.
F3 plants were then crossed to the NIL (RPP1-like: Ler/Ler;
SRF3: Kas-2/Kas-2; QTL5: Kas-2/Kas-2) and isolated F1 plants

carrying one copy of RPP1-like Ler transgene (+/2), the RPP1-
like Ler cluster in hemizygosity (Ler/Col-0) and incompatible

(Kas-2/Kas-2) or compatible (Kas-2/Col-0) alleles at SRF3, and
Kas-2/Kas-2 at QTL5, as confirmed by genotyping using markers

previously reported [23,31].

Histochemical analyses and pathogen infection assays
Cell death was determined by staining with lactophenol trypan

blue [31] and visualization under light microscope (Axioplan, Carl

Zeiss). Images were captured in a Leica DFC490 digital camera.

Infection with Hpa Cala2 and Noco2 isolates was performed as

described [23,31]. Plant cell death and Hpa infection structures

were visualized under light microscope after 4 days of infection.

Screen of RPP1-like Ler haplotype in Arabidopsis

accessions
Genomic DNA from 5-week-old Arabidopsis accessions listed in

Table S4 was extracted using DNA BioSprint Workstation

(Qiagen) and arrayed in 96-well plates including Ler controls on

every plate. 200 ng of freshly extracted DNA was used for

amplification of full-length RPP1-like R1-R8 Ler genes using

primer combinations listed in Table S2 and LA Taq DNA

polymerase (Takara). Amplification of UBQ10 was used as

control. PCR conditions were as described above for cloning

RPP1-like Ler genes. Products of the PCR reaction were

separated on 1% agarose gels stained with EthBr. Amplicons

and sizes were documented using the Gel Doc XR (BioRad)

system.

Genotyping, structure, PCA and phylogenetic analyses
Genomic DNA from Gw accessions was extracted from leaves

of 5-week old plants grown in the greenhouse using the BioSprint

Workstation (Qiagen) platform by following manufacturer’s

instructions. SNP multilocus genotypes [38] were determined

using the genotyping facility services of the University of Chicago

(Chicago, USA). Presence/absence of RPP1-like Ler haplotype in
the Gw population was determined by PCR amplification and

sequencing of RPP1-like genes using specific primers (Table S2).

The population structure of the Gw population was inferred using

the software STRUCTURE [41] and previously described settings

[23]. To adjudicate the correct number of genetic clusters K, we

applied the DK method [59] in combination with the absolute

value of ln P(X|K). Principal component analysis was performed

using R. Neighbor joining-tree was performed from aligned

sequences using Mega6.06 and 5000 bootstrap repetitions.

Neighbor-net was constructed using SplitsTree4 [60]. Nucleotide

diversity was computed using DnaSP (DNA Sequence Polymor-

phism version 5.10) [61].

Cloning of RPP1-like genes in Gw- accessions
Genomic DNA was extracted from leaves of Gw accessions using

DNeasy Plant Mini Kit (Qiagen) according to manufacturer’s
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instructions. RPP1-like genes were amplified by PCR using RA+

RC and RB+RC primer combinations and Phusion High-Fidelity

DNA Polymerase (Thermo Scientific) and the same PCR conditions

as above (Table S2). Amplified fragments were purified by gel

scission (Gel Extraction Kit, Qiagen), ligated into the vector

pSPARKII (Canvax) and transformed into E. coli DH10B

(Clontech). The plasmid DNA from at least 16 independent clones

was extracted using Plasmid MiniPrep Kit (Qiagen) and used for

Sanger sequencing (Table S2) to identify unique clones. Sequences

obtained were assembled usingMacVector 12.7.5 and single contigs

aligned to the A. thaliana genome using BLAST (http://blast.ncbi.

nlm.nih.gov/Blast.cgi) to confirm their identity based on similarity

to known RPP1 and RPP1-like genes. Sequences are deposited in

GenBank under accession numbers KM575915–KM575930.

Supporting Information

S1 Figure Neighbor-joining tree of RPP1-like genes and

schematic exon-intron organization. RPP1-like phylogeny was

determined using gene sequences of RPP1-like Ler members

(accession number FJ446580) and RPP1-like Col-0 genes

(At3g44400, RPP1:At3g44480, At3g44630 and At3g44670).
Exons are represented by gray boxes and introns by horizontal

lines. Leucine-rich repeats, predicted N-myristoylation sites and

stop codons are indicated.

(TIF)

S2 Figure Temperature-dependent incompatible phenotype of

ColRPP1 R3 over expressor lines. Growth phenotype of 5-week old

ColRPP1 R3 over expressor line 12.1 grown at 14–16uC (left) or

20–22uC (right).

(TIF)

S3 Figure Growth phenotype of ColRPP1 lines. 7-week old

ColRPP1 R1, R2, R4, R5, R7 and R8 lines with high RPP1-like
transgene expression and R3 line with wild-type (Ler) transgene
expression levels grown at 14–16uC.

(TIF)

S4 Figure Cell death phenotypes of ColRPP1 lines. Microscopic

examination of cell death (red arrows) revealed by trypan blue

staining of 5-week old ColRPP1 lines grown at 14–16uC. sid2-1,
isochorismate synthase mutant. Scale bar, 500 mm.

(TIF)

S5 Figure Disease resistance phenotypes of ColRPP1 lines to H.
arabidopsidis Noco2. Two week old ColRPP1 lines grown at 14–

16uC were inoculated with the virulent Hpa isolate Noco2. Cell

death (red arrows) and growth of the pathogen mycelium (orange

arrows) was observed by trypan blue staining and microscopic

examination 4 days postinoculation. sid2-1, isochorismate synthase
mutant. Scale bar, 500 mm.

(TIF)

S6 Figure Hypersensitive response (HR) phenotypes of ColRPP1

lines to H. arabidopsidis Cala2. The same lines and growth

conditions in S5 Figure were used for inoculation with the

avirulent Hpa isolate Cala2. Cell death (red arrows) was observed

by trypan blue staining and microscopic examination 4 days

postinoculation. Scale bar, 500 mm.

(TIF)

S7 Figure Cell death and disease resistance phenotypes of

ColRPP1 R3 (line 14.1) to H. arabidopsidis Noco2 and Cala2

isolates. Cell death (red arrows) and growth of the pathogen

mycelium (orange arrows) was observed by trypan blue staining

and microscopic examination four days postinoculation. Growth

and inoculation conditions were performed as in S5 and S6

Figures. Scale bar, 500 mm.

(TIF)

S8 Figure Growth phenotype at 14–16uC of RPP1-like Ler
hemizygous lines which carry compatible (heterozygous) alleles at

SRF3. Genotypes of the lines are shown below.

(TIF)

S9 Figure Collection sites of Arabidopsis individuals in Gorzów

Wlkp. Circles represent the collection sites of unique genotypes in

the Gorzów population. The fraction (%) of SNP shared with/

differing from Ler is shown in blue/red. Individuals carrying the

RPP1-like Ler haplotype are circled in yellow. GPS positions of

collection sites are indicated.

(TIF)

S10 Figure Gorzów population structure analyses at lower K

values. Population structure of Gorzów and other accessions from

neighboring countries (Czech Republic, Austria and Germany)

and from more distant regions (Netherlands, Russia and former

Soviet Union, Central Asia) determined at K=2 to K=5.

(TIF)

S11 Figure Neighbor-joining tree of RPP1-like genes in Gw+.

Phylogeny is based in sequencing the polymorphic LRR domain

except R6 (TIR) of RPP1-like genes in 12 Gw+ individuals: Gw-7,

Gw-59, Gw-81, Gw-87, Gw-89, Gw-91, Gw-95, Gw-98, Gw-108,

Gw-117, Gw-152 and Gw-159.

(TIF)

S12 Figure Phylogenetic analysis of RPP1-like genes. Neighbor-

net representation of RPP1-like genes in Gw2 (blue), Gw+/Ler (red),
Col-0 (At3g44400, At3g44480, At3g44630 and At3g44670) and
Ws-0 (RPP1-WsA, RPP1-WsB and RPP1-WsC) (black). Parallelo-
grams in the network may indicate recombination events.

(TIF)

S13 Figure Nucleotide diversity across the RPP1-like locus in

Gw+ and Gw2. The data were obtained from sequencing flanking

genes in Gw+ (Gw-7, Gw-59, Gw-81, Gw-87, Gw-89, Gw-91, Gw-

95, Gw-98, Gw-108, Gw-117, Gw-152 and Gw-159) and Gw2

(Gw-2, Gw-19, Gw-23, Gw-31, Gw-44, Gw-55, Gw-69, Gw-99,

Gw-119, Gw-140, Gw-144 and Gw-160) accessions at indicated

intervals. Lower nucleotide diversity in Gw+ compared to Gw2

accessions suggests that recombination is suppressed in accessions

carrying the RPP1-like Ler cluster (Gw+).

(TIF)
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