
Analysis of a point-source integrating-cavity
absorption meter

Robert A. Leathers, T. Valerie Downes, and Curtiss O. Davis

We evaluate the theoretical performance of a point-source integrating-cavity absorption meter ~PSICAM!
with Monte Carlo simulations and a sensitivity analysis. We quantify the scattering errors, verifying
that they are negligible for most ocean optics applications. Although the PSICAM detector response is
highly sensitive to the value of the wall reflectivity, the absorption of an unknown fluid can be accurately
determined with a PSICAM if appropriate reference solution~s! are chosen. We also quantify the error
that results if the source is not perfectly isotropic, finding that moderate amounts of source anisotropy can
be tolerated provided that the detector is properly located with respect to the source.

OCIS codes: 010.4450, 030.5260, 030.5620, 120.4640, 300.1030.
1. Introduction

The measurement of light absorption by seawater
and its components is of great interest for oceanog-
raphy and for optical remote sensing of the ocean.
Biological oceanographers measure the absorption of
light by phytoplankton to quantify photosynthesis;
chemical oceanographers are concerned with the ab-
sorption of light by organic compounds and the photo-
oxidation of those compounds; and physical
oceanographers measure the absorption of energy by
surface waters and its role in the heating of the sur-
face layer and the formation of the thermocline. Op-
tical oceanographers are concerned about all these
processes as well as use of spectral absorption mea-
surements to identify and quantify optically active
components in the water.

There are several methods for determining the ab-
sorption coefficient of ocean waters. The most
widely used approach is the quantitative filter tech-
nique,1 in which water samples are concentrated onto
glass-fiber filters and the absorption of the resulting
filters and filtrate are measured separately in a spec-
trophotometer. This method requires corrections
for scattering errors associated with the filter and for
scattering errors in the spectrophotometric measure-
ment of the filtrate. Because of its convenience com-
pared with the quantitative filter technique, use of in
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situ absorption meters, in particular the ac-9 ~WET
Labs, Inc., Philomath, Oregon!,2,3 is becoming in-
creasingly popular. These instruments measure the
attenuation of an active light source through a vol-
ume of seawater, but, like a spectrophotometer, must
be corrected for scattering errors. A third approach
to determining the absorption coefficient of seawater
is to measure the natural light within the water col-
umn and to invert the radiative transfer equation to
calculate the values of the water’s optical properties
that are consistent with the observed light measure-
ments.4,5 The primary difficulty with this approach
is the need to remove numerically or analytically the
effects of the boundary conditions on the light field.

An alternative to these three approaches is use of
an integrating-cavity absorption meter ~ICAM!,
which is the focus of this research. The motivation
of this approach is to obtain a measurement that is
insensitive to scattering. The water sample is ac-
tively illuminated in the cavity of the ICAM, the walls
of which are made of a highly reflective material so
that the resulting light field within the cavity is
nearly uniform. The absorption of the sample is
taken to be the power input to the ICAM minus either
the measured or the calculated losses at the cavity
wall.

Elterman6 suggested the use of a highly reflective
Lambertian cavity to obtain a scattering-insensitive
measurement of the absorption coefficient of a solid
material. A small sample of the material was placed
in an otherwise empty cavity, and the light source
and detector were placed at the cavity walls. Fry
and Kattawar7,8 later adapted this approach for de-
termining the absorption coefficient of seawater.
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Their configuration consists of a cavity completely
filled with the water sample and a second integrating
cavity surrounding the first. An isotropic light field
is generated between the two cavities that diffuses
into the inner cavity, providing to the inner cavity a
diffuse light source that is uniform over the cavity
walls. Kirk9 proposed that the two cavities be made
spherical and concentric, making it possible to model
the relationship analytically between the absorption
coefficient and the ICAM detector response.

Kirk10 later proposed a different arrangement in
which the spherical cavity containing the water sam-
ple is illuminated with an isotropic source at the
center of the sphere. The primary advantage of this
point-source integrating-cavity absorption meter
~PSICAM! over the concentric cavity design is the
limination of the outer cavity, which is difficult to
onstruct. Kirk10 provides equations for obtaining
he absorption coefficient with a PSICAM and in-
ludes some analysis of the design.

Here we extend Kirk’s PSICAM analysis in prepa-
ation for the construction of a prototype instrument
hat will be used at the U.S. Naval Research Labora-
ory for the investigation of coastal ocean waters.
irk’s9,10 equations for the operation of a PSICAM,

which ignore scattering effects, are reviewed in Section
2. The errors in these equations that are due to scat-
tering are quantified in Section 3, and a sensitivity
analysis of the equations is provided in Section 4. In
Section 5 we investigate the error that is introduced
when the light source is not perfectly isotropic. A
summary of our conclusions is provided in Section 6.

2. Basic Equations

The outwardly directed irradiance F0 at the inner
wall of a perfectly symmetrical PSICAM is propor-
tional to the average number of times a photon col-
lides with the wall, NC, before being absorbed either
by the fluid in the cavity or by the cavity wall.9,10

The transmittance TAB that is the ratio of the mea-
sured values of F0 when the cavity is filled with sam-
ples A and B, respectively, is therefore

TAB 5
F0

A

F0
B 5

NC
A

NC
B . (1)

Note that the effects of the source strength and de-
tector gain on F0 cancel out when forming the ratio
TAB. The value of NC depends on three quantities:
~1! the probability P0 that a photon leaving the source
at the center reaches the wall ~i.e., without being
absorbed by the fluid!, ~2! the wall reflectivity r, and
~3! the probability Ps that a photon leaving the wall
will return to the wall. The value of NC equals the

umber of photons reaching the wall directly from
he source plus the number of photons colliding with
he wall for a second time plus the number colliding
ith the wall for a third time, etc.:

NC 5 P0 1 P0rPs 1 P0r
2Ps

2 1 . . . 5 P0 (
n50

`

~rPs!
n

5 P0y~1 2 rPs!. (2)
2

Therefore

TAB 5
P0

A~1 2 rPs
B!

P0
B~1 2 rPs

A!
. (3)

For a central point source the value of P0 for a non-
scattering solution is10

P0~a, r! 5 exp~2ar!, (4)

where a is the absorption coefficient of the sample
and r is the inner radius of the PSICAM cavity.
However, if the source is generated with a diffusing
sphere that has a radius rs that is significantly large
compared to the cavity radius, then we should take P0
to be

P0~a, r0! 5 exp~2ar0!, (5)

here r0 5 r 2 rs. For diffuse light leaving the
spherical cavity wall the value of Ps for a nonscatter-
ing fluid is9

Ps~a, r! 5
1

2a2r2 @1 2 exp~22ar!~2ar 1 1!#. (6)

The size of the source is unlikely to be significant for
Ps provided that the source material is nonabsorbing.
For very small values of ~ar!, for which Ps ' 1, Eq. ~6!
s difficult to evaluate; however, the power series9

Ps~a, r! 5 1 2
4
3

~ar! 1 ~ar!2 2
8
15

~ar!3

1 · · · 2~22ar!nF 1
~n 1 1!!

2
1

~n 1 2!!G 1 · · ·

(7)

onverges rapidly for very small values of ~ar!.
rom Eqs. ~3!, ~5!, and ~6!, the transmittance of a
onscattering fluid in a PSICAM with a diffuse cavity
all is

TAB 5 exp@2r0~aA 2 aB!#F1 2 rPs~aB, r!

1 2 rPs~aA, r!G , (8)

with Ps~a, r! given by Eq. ~6!.
Kirk10 indicates that both P0 and Ps are insensitive

to the presence of scattering for most practical ocean
optics purposes and that Eqs. ~6! and ~8! can therefore
e applied to seawater samples even though scatter-
ng was ignored in their derivation. In Section 3 we
uantify the magnitude of the scattering error in
hese equations for a large range of physical param-
ters.
Equation ~8! can be used in two ways. First, when

he absorption coefficients of samples A and B are
nown the wall reflectivity can be determined from
he measurement of TAB with the solution10 of Eq. ~8!:

r 5
TAB exp~2aB r0! 2 exp~2aA r0!

TAB exp~2aB r0!Ps~aA, r! 2 exp~2aA r0!Ps~aB, r!
.

(9)
0 November 2000 y Vol. 39, No. 33 y APPLIED OPTICS 6119
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Second, from Eq. ~8! we can express the transmit-
tance T of a fluid of interest with unknown absorption
coefficient a with respect to a reference sample R with
known absorption coefficient aref:

T 5 exp@2r0~a 2 aref!#F1 2 rPs~aref, r!

1 2 rPs~a, r! G . (10)

The value of a can therefore be determined from the
easurement of T with an iterative solution of Eq.

10!.
In summary, we can determine the unknown ab-

orption coefficient a of a sample of interest by ~1!
easuring the irradiance values at the PSICAM cav-

ty wall with the cavity filled with solutions A and B
of known absorption coefficients aA and aB!; ~2! form-
ng the ratio TAB from these two measurements @Eq.

~1!#; ~3! computing r with Eq. ~9!; ~4! measuring the
rradiance at the PSICAM cavity wall both with the
avity filled with the sample of interest ~with un-
nown absorption coefficient a! and with the cavity
lled with reference solution R ~with known absorp-
ion coefficient aref!; ~5! forming the ratio T of these
wo measurements; and ~6! solving Eq. ~10! for a.

Note that the required number of reference solutions
with the known absorption coefficient can be reduced
from three ~R, A, and B! to two ~R and A! if solutions
B and R are taken to be the same. Furthermore, if
the value of r is known from direct measurement,
only steps ~4!–~6! are needed and we require only one
reference solution ~R!.

3. Scattering Effects

Equations ~5! and ~6! for the probabilities of photon
survival P0 and Ps were derived for nonscattering
absorbers. In Monte Carlo simulations, Kirk9,10

found P0 and Ps for seawater to be insensitive to the
alue of b. However, in general, the presence of
cattering decreases the value of P0 by increasing the

effective path length of each photon from the source
to the wall. Scattering also alters the effective path
length of a photon as it travels from the wall back to
the wall. Therefore there must be limits on the val-
ues of a, b, and r for which the application of Eqs. ~5!
and ~6! is valid.

We examined the effect of scattering on the values
of P0, Ps, and NC with Monte Carlo simulations.
These simulations were performed for both isotropic
scattering and for scattering given by the average of
Petzold’s seawater measurements in San Diego Har-
bor.11 The Petzold scattering phase function is
highly peaked in the forward direction, with back-
scattering representing only approximately 2% of the
total scattering ~as opposed to 50% for isotropic scat-
tering!. The values of P0 and Ps were computed sep-
arately, and Eq. ~2! was used to determine NC for
specific values of r. The key equations for the Monte
Carlo simulations are given in Appendix A.

Because the value of P0 decreases with increasing
alues of b, Eq. ~5! overestimates the true value of P0.
he percentage error in Eq. ~5! was found to increase
pproximately linearly with respect to b and to be
120 APPLIED OPTICS y Vol. 39, No. 33 y 20 November 2000
reatest for large values of a and r0. The error for
Petzold scattering was much smaller than that for
isotropic scattering because for Petzold scattering the
photons are scattered predominantly in the near-
forward direction. For example, the percentage er-
ror in P0 determined from Eq. ~5! is shown versus b
log scale! in Fig. 1 for radius r0 5 r 5 0.05 m, wall

reflectivity r 5 0.99, and absorption coefficient a 5 1
m21. For isotropic scattering, the error in Eq. ~5! is
approximately 0.9% and 11% for b 5 10 m21 and b 5
100 m21, respectively, whereas for Petzold scattering
the error in Eq. ~5! is only approximately 0.04% and
.6%, respectively. For a 5 0.1 m21, the errors were

only approximately one tenth of those for a 5 1 m21.
When a photon traveling from the wall back to the

wall is scattered, its effective path length may be
smaller or larger than it would have been if unscat-
tered, depending on where, and into which direction,
it is scattered. For small values of a, b, and r it was
ound that the overall ~statistical! scattering effect is
egligible. For large values of a, b, or r, however, it

is more likely that a photon will be scattered back to
the wall near where it left, thus increasing the value
of Ps, than it is that its path length will be increased
by scattering. Equation ~6! therefore underesti-
mates the true value of Ps for large values of a, b, or
r. Even if the scattering error in Ps appears to be
insignificantly small, it may nonetheless have a sig-
nificant effect on the total PSICAM response through
the term 1y~1 2 rPs!. The percentage error in
1y~1 2 rPs! is shown in Fig. 1 for r 5 0.05 m, r 5 0.99,
and a 5 1 m21. Its magnitude increases approxi-
mately linearly with increasing values of b but is
approximately one third that of the error in P0.

Because scattering affects P0 and Ps in opposite
ways, the percentage error in F0 ~which equals the
percentage error in NC! is smaller than that in either
P0 or Ps. The error in the PSICAM response pre-
dicted by Eqs. ~2!, ~4!, and ~6! is shown in Fig. 2 for
sotropic scattering and in Fig. 3 for Petzold scatter-
ng. The scattering effect on F0 was found to be

Fig. 1. Percentage scattering errors in P0 and 1y~1 2 rPs! for
isotropic and Petzold scattering when the probabilities of source-
to-wall photon survival ~P0! and wall-to-wall photon survival ~Ps!
are computed with Eqs. ~5! and ~6! with a 5 1.0 m21 and r 5 r0 5
.05 m.
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insignificant for most oceanic problems; even for the
extremely large value of b 5 100, the error in F0 for
Petzold scattering is less than 0.35% when a , 1 m21.
However, the scattering effects may be important for
the infrared wavelengths ~for which a . 1 m21! or for
ther PSICAM applications that have a less anisotro-
ic scattering phase function than water or have sig-
ificantly larger values of a, r, or b than those used in
ig. 3.

4. Sensitivity Analysis

The determination of the absorption coefficient of a
fluid sample with Eq. ~10! requires several measure-
ments, the uncertainties of which result in a total
uncertainty in the estimate of a. Here we examine
the sensitivities of the determined value of a to these
measurements. We first conduct this analysis for
the mode of PSICAM operation in which the cavity-
wall reflectivity r is assumed to be known from direct
measurement. We then focus on the mode of oper-
ation in which r is instead determined from PSICAM
measurements of two nonscattering samples of
known absorption coefficient values @i.e., with Eq.
~9!#.

Fig. 2. Percentage error in the PSICAM response predicted by
Eqs. ~2!, ~4!, and ~6! that is due to the presence of isotropic scat-
tering for r 5 0.05 m and r 5 0.99.

Fig. 3. Percentage error in the PSICAM response predicted by
Eqs. ~2!, ~4!, and ~6! that is due to the presence of seawater scat-
tering for r 5 0.05 m and r 5 0.99.
2

The analytical forms of the sensitivity coefficients
derived in this section are valid for any PSICAM
application; however, the ranges of the physical pa-
rameters in our examples, figures, and discussions
are chosen to be consistent with applications to
coastal ocean waters, visible wavelengths, and a PSI-
CAM cavity made with Spectralon ~Labsphere, Inc.,

orth Sutton, N.H.!. The value of the absorption
oefficient of pure seawater for light in the 400–
00-nm range has a minimum value of 0.014 m21 ~at
30 nm! and a maximum value of 0.65 m21 ~at 700

nm!. The value of a in this wavelength range for
natural ocean waters is typically between 0.1 and 1.0
m21, depending on the wavelength and the concen-
trations of phytoplankton, suspended sediments, and
suspended and dissolved organic material. The re-
flectivity of Spectralon is approximately r 5 0.99.

A. Known r

If the values of r, r, and aref are known, we can
determine the absorption coefficient of a fluid sample
by measuring T @Eq. ~1!# and then numerically solv-
ing Eq. ~10!. Here we examine the sensitivity of the
value of a obtained from Eq. ~10! to the four quanti-
ties T, r, r, and aref. In general the values of the four
sensitivity coefficients ]ay]T, ]ay]r, ]ay]r, and ]ay
]aref depend on the four physical parameters r, r, aref,
and a.

For T given by Eq. ~10! and Ps given by Eq. ~6!,

T
a

]a
]T

5

2
2a2r2 2 r@1 2 ~2ar 1 1!exp~22ar!#

2a3r3 2 r@~2a2r2 1 3ar 1 2!exp~22ar! 2 2 1 ar#
,

(11)

where we have ignored the size of the source. Note
that on the right-hand side of Eq. ~11! the parameters

and r exist only as the product ~ar!. We show the
ormalized form of the sensitivity coefficient in Eq.
11! because it is conveniently independent of aref.

e can find the value of ]ay]T by multiplying Eq. ~11!
by ~ayT! with T replaced by the expression in Eq. ~10!,
which introduces a dependence on aref. The sensi-
tivity coefficient of a with respect to r can be found
rom Eq. ~10! with

]a
]r

5 2
]Ty]r

]Ty]a
. (12)

Likewise

]a
]r

5 2
]Ty]r
]Ty]a

,
]a

]aref
5 2

]Ty]aref

]Ty]a
. (13)

Table 1 gives the values of the four sensitivity co-
efficients in both their unnormalized and their nor-
malized form for the example cases of a 5 0.2 m21,
aref 5 0.02 m21, r 5 0.05 m, and r 5 0.99. We
verified these coefficients with MAPLE V ~Waterloo Ma-
ple, Inc., Waterloo, Ontario! by solving Eq. ~10! with
0 November 2000 y Vol. 39, No. 33 y APPLIED OPTICS 6121
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Table 1. Sensitivity Coefficients for the Determination of a with
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and without a small error in each parameter. Each
unnormalized sensitivity coefficient gives the ratio of
the absolute error in a to the absolute error in the
parameter causing the error in a, whereas each nor-
malized sensitivity coefficient gives the ratio of the
percentage error in a to the percentage error in the
given parameter. It can be seen from Table 1 that
the value of a is most sensitive to r; for the parameter
alues used in Table 1, a 1% error in r would cause
early an 80% error in a. The values of the sensi-

tivity coefficients of a with respect to T, aref, and r are
uch smaller but nonetheless potentially significant.
etting DT represent the uncertainty in the measure-

ment of T and Dr represent the uncertainty in the
easurement of r, etc., the total uncertainty in our

omputed value of a is12

Da 5 FS]a
]TD

2

~DT!2 1 S]a
]rD

2

~Dr!2 1 S]a
]rD

2

~Dr!2

1 S ]a
]aref

D2

~Daref!
2G1y2

. (14)

If, for the example used in Table 1, we measure r
~0.050 m! to 60.1 mm, r ~0.990! to 60.002, aref ~0.020
m21! to 60.005 m21, and the corresponding value of
T ~0.486! to 1% ~i.e., F0 is measured to 60.5%!, then
from Eq. ~14! and Table 1

Da 5 $@~0.71!~0.00486!#2 1 @~16!~0.002!#2 1 @~3.2!

3 ~0.0001!#2 1 @~2.1!~0.005!#2%1y2 m21

5 ~1.2 3 1025 1 1.0 3 1023 1 1.0 3 1027

1 1.1 3 1024!1y2 m21

5 0.034 m21. (15)

herefore our computed value of a would be 0.200 6
.049 m21, with the uncertainty due primarily to the
easurements of r and aref and the uncertainty in r

being insignificant.
We are perhaps more interested in the absolute

uncertainty in a that is due to the relative ~percent-
ge! uncertainty in T, which is quantified by the term
T!~]ay]T!, than in either ~]ay]T! or ~Tya!~]ay]T!.

We can find ~T!~]ay]T! by simply multiplying Eq. ~11!
by a, and the term is shown versus a in Fig. 4. It is
negative, indicating that the value of a will be under-

Eqs. ~6! and ~10! when r is Knowna

Coefficient Value

]ay]T 20.72 m21

]ay]r 216 m21

]ay]r 23.2 m22

]ay]aref 2.1
~Tya!~]ay]T! 21.7
~rya!~]ay]r! 279
~rya!~]ay]r! 20.79
~arefya!~]ay]aref! 0.21

aa 5 0.2 m21, aref 5 0.02 m21, r 5 0.05 m, and r 5 0.99.
122 APPLIED OPTICS y Vol. 39, No. 33 y 20 November 2000
estimated if the measured value of T is greater than
the true value and vice versa. It can be seen from
Fig. 4 that uT~]ay]T!u increases approximately lin-
early with increasing values of a and decreases with
increasing values of r and r. It was found that
uT~]ay]T!u is relatively insensitive to the value of r for
r greater than approximately 0.02 but increases rap-
idly with decreasing r for r , 0.02. The increase in
uT~]ay]T!u with decreasing r is approximately linear.

The value of ]ay]r ~Fig. 5! equals zero when a 5 aref
and decreases approximately linearly with increas-
ing a. Increasing aref or decreasing r moves the
slope of the ~]ay]r! curve versus the a curve toward
zero. Increasing r also moves the slope toward zero;
however, the effect is small and is not illustrated in
Fig. 5. Similarly the value of ]ay]r ~Fig. 6! equals
zero when a 5 aref and decreases approximately lin-
early with increasing a. The slope of ~]ay]r! versus
a is steepest for small values of aref. The value of
]ay]aref ~Fig. 7! equals unity when a 5 aref, increases
approximately linearly with a, and is largest for
small values of aref. It was found that the slope of
the ~]ay]aref! curve versus the a curve increases when
the value of r or r increases.

It is important to note from Figs. 5–7 that the value
of aref has a dramatic effect on the overall uncertainty

Fig. 4. Seminormalized sensitivity coefficient ~T!~]ay]T! ~m21!
ersus a ~m21!.

Fig. 5. Sensitivity coefficient ]ay]r ~m21! versus a ~m21! for r 5
0.05 m.
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Table 2. Sensitivity Coefficients for the Determination of a with Eqs.
in a. In particular, we can reduce both sensitivity
coefficients ]ay]r ~Fig. 5! and ]ay]r ~Fig. 6! to values
near zero by taking aref ' a. Although the values of
r and r are generally fixed once a PSICAM is con-
tructed, we can control the value of aref by varying

the concentration of a nonscattering dye. We could
obtain the most precise determination of a by first
measuring F0 for the unknown sample and then by
djusting the dye concentration in the reference so-
ution as many times as necessary until T 5 1 ~i.e.,
ref 5 a!. In this way a reference solution would be

produced that has the same absorption coefficient as
the sample of interest but presumably has a much
smaller scattering coefficient. We could then mea-
sure the value of a 5 aref by placing the reference
solution in a spectrophotometer. The total uncer-
tainty in a would be approximately equal to that in
aref ~]ay]aref 5 1 when aref 5 a! plus that due to the
uncertainty in the measurement of T@T~]ay]T! is in-
dependent of the value of aref#. If aref in the example
in Eq. ~15! were changed to aref 5 a, the uncertainty
in a would be reduced from 0.034 m21 to

Da 5 $@~0.71!~0.00486!#2 1 0 1 0 1 @~1!

3 ~0.005!#2%1y2 m21 5 0.0061 m21. (16)

Fig. 6. Sensitivity coefficient ]ay]r ~m22! versus a ~m21! when r
s known for r 5 0.05 m and r 5 0.99.

Fig. 7. Sensitivity coefficient ]ay]aref when r is known for r 5
.05 m and r 5 0.99.
2

Admittedly, however, it may be prohibitively difficult
to produce many reference solutions. Also note that,
although ]ay]r is theoretically zero when a 5 aref, the
slope of ]ay]r versus a ~Fig. 5! is in some cases so
steep that the uncertainty in aref introduces a signif-
icant uncertainty in ]ay]r.

B. Unknown r

If the value of r to be used in Eq. ~10! is unknown it
can be determined with Eq. ~9!. In this case our
stimate of a ultimately depends on the measure-
ents of r, aA, aB, TAB, aref, and T. The value of the

sensitivity coefficient ]ay]T is the same as that given
in Subsection 4.A @Eq. ~11! and Fig. 4#. The value of
]ay]aref, on the other hand, is the same as that given
n Subsection 4.A only if the reference sample B used
n the determination of r @Eq. ~9!# is not chosen to be
he same as the reference sample R used in the de-

termination of a @Eq. ~10!#. Because the measure-
ent TAB depends on r, the value of ]ay]r is not the

same as that given in Subsection 4.A. We therefore
need to determine the new sensitivity coefficients ]ay
]r, ]ay]aA, ]ay]aB, ]ay]TAB, and, when R and B are
the same fluid, ]ay]aref. Each new sensitivity coef-
ficient depends in general on the six physical param-
eters r, r, aA, aB, aref, and a.

We know from Subsection 4.A that for the special
case of aref 5 a the values of r and r in Eq. ~10! have
no effect on the estimate of a. Because the values of
aA, aB, and TAB affect a only through r, these three
measurements are unimportant, and therefore inef-
fective, when aref 5 a. Therefore we no longer want
to set aref ' a when using Eqs. ~9! and ~10! in com-
ination. Instead we take advantage of the fact that
q. ~9! is the inverse of Eq. ~10!. The measurement

error in r tends to cancel when these equations are
used in combination. Likewise, if we take R and B
to be the same solution, then the estimate of a will be
relatively insensitive to the measurement of aref.

Table 2 gives the values of the sensitivity coeffi-
cients, both in their unnormalized and in their nor-

~6!–~10! when r is Unknowna

Coefficient Value

]ay]T 20.72 m21

]ay]aref ~B Þ R! 2.1
]ay]TAB 0.83 m21

]ay]aA 4.2
]ay]aB ~B Þ R! 25.3
]ay]r 20.0026 m22

]ay]aref ~B 5 R! 21.2
~T!~]ay]T! 20.35 m21

~arefya!~]ay]aref! 0.21
~TAB!~]ay]TAB! 0.56 m21

~aAya!~]ay]aA! 2.1
~aBya!~]ay]aB! 22.6
~rya!~]ay]r! 26.5 3 1024

~arefya!~]ay]aref! 20.12

aa 5 0.2 m21, aref 5 0.02 m21, r 5 0.05 m, r 5 0.99, aA 5 0.1 m21,
and aB 5 0.05 m21.
0 November 2000 y Vol. 39, No. 33 y APPLIED OPTICS 6123
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malized form, for the case of a 5 0.2 m , aref 5 0.02
m21, aA 5 0.1 m21, aB 5 0.05 m21, r 5 0.05 m, and
r 5 0.99. Note that all the sensitivity coefficients
have relatively small values compared with that of
]ay]r from Eq. ~10! alone ~Table 1!. Also note in
Table 2 that ]ay]r is now 20.0026 m22, compared
with 23.2 m22 in Table 1, verifying that the precision
of the measurement of r is even less important when

is determined with Eqs. ~9! and ~10! together than
hen a is found from Eq. ~10! alone. ~The uncer-

ainty of r is unlikely to be important in either case.!
urthermore, we can see from Table 2 that ]ay]aref

when B 5 R is smaller than either ]ay]aref or ]ay]aB
when B Þ R, confirming that we should let B and R
be the same solution. Accordingly, we assume that
B 5 R for the remainder of this subsection. Ignoring
Dr, we obtain the uncertainty in a from

Da 5 FST
]a
]TD

2SDT
T D2

1 S ]a
]aref

D2

~Daref!
2

1 STAB

]a
]TAB

D2SDTAB

TAB
D2

1 S ]a
]aA

D2

~DaA!2G1y2

.

(17)

If, for the example used in Table 2, we measure aref
~0.02 m21! and aA ~0.1 m21! each to 60.005 m21 and
he corresponding values of T and TAB each to 61%,

then from Eq. ~17! and Table 2 we obtain

Da 5 $@~0.35!~0.01!#2 1 @~1.2!~0.005!#2 1 @~0.56!

3 ~0.01!#2 1 @~4.2!~0.005!#2%1y2 m21

5 ~1.2 3 1025 1 3.6 3 1025 1 3.1 3 1025

1 4.4 3 1024!1y2 m21 5 0.023 m21. (18)

Here the uncertainty in a is due mostly to the uncer-
tainty in aA. The calculated value of a ~0.200 6
.036 m21! is an improvement over the example
iven in Eq. ~15!, indicating that even if the value of
is known from direct measurement it may be pru-
ent to use Eq. ~9! to determine the value of r for use
n Eq. ~10! rather than the measured value of r. Be-
ause the experimental setup is the same for Eqs. ~9!
nd ~10!, the uncertainties in the physical parame-
ers are far less important when a combination of
qs. ~9! and ~10! is used than when Eq. ~10! is used
lone. Even if the directly measured value of r is

more accurate than the value of r obtained from Eq.
~9!, it generally will not lead to a more accurate value
of a when used in Eq. ~10!.

The derivation of general expressions for the sen-
sitivity coefficients for Eqs. ~9! and ~10! is outlined in
Appendix B. The value of ]ay]r was found to be
negligibly small over a wide range of physical param-
eters and is identically zero when a 5 aA. Although
an error in r results in an error in r with Eq. ~9!, the
errors in r and r are such that their effects cancel
each other in the determination of a with Eq. ~10!.
The value of ]ay]aref is also zero when aA 5 a.

herefore the estimate of a from Eqs. ~9! and ~10!
124 APPLIED OPTICS y Vol. 39, No. 33 y 20 November 2000
depends only on the measurements of T, TAB, and aA
when aA ' a.

As illustrated in Fig. 8 the value of ]ay]aA is ap-
proximately linearly dependent on a and equals zero
when a 5 aref. The slope of the ]ay]aA curve versus
the a curve is larger for small values of aA ~i.e., aA .
a! than for large values of aA. It is positive when
aA . aref and negative when aA , aref. Similarly, as
shown in Fig. 9, the value of TAB~]ay]TAB! is approx-
mately linearly dependent on a and equals zero
hen a 5 aref. The slope of ~TAB]ay]TAB! versus a is
ositive when aA . aref and negative when aA , aref.
We conclude that it is desirable for aA to be at least

as large as a. For aA . a, we are faced with a trade-off:
ncreasing aA generally decreases the sensitivity of a

to both aA and TAB but increases its sensitivity to aref.

5. Nondiffuse Source

Up to this point in our analysis we have assumed that
the PSICAM is illuminated with a perfectly isotropic
source. However, a small isotropic source is techni-
cally difficult to construct. Therefore in this section
we evaluate the performance of a PSICAM when the
source is anisotropic. Three-dimensional Monte

Fig. 8. Sensitivity coefficient ]ay]aA for r 5 0.05 m and r 5 0.99.

Fig. 9. Seminormalized sensitivity coefficient ~TAB!~]ay]TAB! ver-
sus a ~m21! for r 5 0.05 m and r 5 0.99.
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Carlo simulations were performed for several differ-
ent types of centrally located source, and the wall
irradiance was determined at various sections of the
PSICAM wall. It is important to note that the total
irradiance incident on the entire cavity wall is inde-
pendent of the shape of the source function; however,
the irradiance at a particular location on the wall,
and therefore at the detector, does depend on the
source shape.

Shown in Fig. 10 is the percentage error in PSI-
CAM detector irradiance for central light sources
that are characterized by the Henyey–Greenstein
function @analogous to Eq. ~A4!# for asymmetry factor
values of g 5 0, 0.2, and 0.5 and for r 5 0.05 m, r 5
.99, a 5 0.3 m21, and b 5 0.7 m21. The error is

plotted against the position of the detector, expressed
in terms of the angle ud between the forward direction
of the light source and the radius from the center to
the detector. ~For example, ud 5 0 when the source
is pointed straight at the detector.! If the source is
perfectly isotropic, the irradiance is identical at all
positions on the cavity wall and the error that is due
to the source is zero everywhere. For a source char-
acterized by the Henyey–Greenstein function, the ir-
radiance is stronger than that for an isotropic source
at small values of ud, whereas the irradiance is

eaker than that for an isotropic source at large val-
es of ud. For a source with g 5 0.2, 65% of the total

source light is projected in the forward 180 deg, most
of which is concentrated in the near-forward direc-
tions, and 35% is projected in the backward 180 deg.
However, because of the large number of wall reflec-
tions, in this case 33, the error in the wall irradiance
is less than 2.5% at all locations. It can be seen from
Fig. 10 that it would be best to place the detector at
approximately a right angle to the sensor, where the
error that is due to the source is near zero. For a
source with g 5 0.5, 83% of the source light is

Fig. 10. Percentage error in the PSICAM detector response as a
function of detector location for anisotropic light sources. The
detector position is given by angle ud with respect to the forward
direction of the source. The source angular distribution is the
Henyey–Greenstein function with asymmetry factors g 5 0, 0.2,
nd 0.5. The results shown are for a 5 0.3 m21, b 5 0.7 m21, r 5

0.05 m, and r 5 0.99.
2

projected in the forward 180 deg and 17% in the
backward directions. Although this extremely
anisotropic source would not be practical, we con-
clude from Fig. 10 that, theoretically, it could be used
if the detector were placed near ud 5 60°.

It is important to note that the error in T or TAB
may be much smaller than the error in the detector
response. If the detector receives more source light
than it would with a perfectly isotropic source, it will
do so both with the reference fluid and with the sam-
ple of interest. The error will not completely cancel
out, however, because the amount of scattering and
the average number of wall reflections will be differ-
ent in the reference than in the sample.

In summary we conclude that, although it is not
critical to construct the light source to be perfectly
isotropic, the error that is due to this anisotropy
should be minimized when the irradiance sensor is
positioned at a location where the source strength is
near its average value.

If a sufficiently isotropic source cannot be obtained,
it may be preferable to replace the plane irradiance
sensor with a radiance sensor that is positioned such
that the source is not within the detector’s field of
view. In this case Eq. ~2! would be replaced with

NC 5
rP0 Ps

1 2 rPs
, (19)

an approximation that ignores the scattering of light
during its first pass from the source to the wall. We
will quantify the accuracy of Eq. ~19! in a future paper.

6. Conclusions

Consistent with Kirk,9,10 we found that the scattering
errors in Eqs. ~4! and ~6! are insignificant for most
ocean optics problems. However, as demonstrated
in Figs. 1–3, the scattering errors may be important
for near-IR light or for other PSICAM applications.

If the value of the PSICAM wall reflectivity is
known, the absorption coefficient of a sample can be
determined @with Eq. ~10!# from PSICAM measure-
ments of the sample and of a reference solution. Be-
cause of the high sensitivity of a to r, however, the
uncertainty in the result may be unacceptably large
unless r is known to high precision and a ' aref. On
the other hand, we can obtain a precise determina-
tion of a by producing a nonscattering dye solution
uch that T 5 1 and by determining the value of aref

with a spectrophotometer.
Alternatively, we can obtain a generally more pre-

cise result by including the PSICAM measurement of
at least one additional reference solution, eliminating
the need to know the value of the wall reflectivity a
priori. Even if the value of r is known from direct
measurement, it may be preferable to determine it
with Eq. ~9! because this tends to eliminate errors
associated with the measurements of r, r, and aref.

A prototype PSICAM is currently under construc-
tion, and we intend to publish a description of the
instrument design and laboratory experiments once
they have been completed. We will also present an
0 November 2000 y Vol. 39, No. 33 y APPLIED OPTICS 6125
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analysis of a PSICAM in which a radiance sensor is
used @with Eq. ~19!# in place of a plane irradiance
sensor. A radiance sensor is easier to implement
and may reduce errors associated with a nonisotropic
light source; however, it also introduces a new source
of scattering error. The significance of the scatter-
ing error must be evaluated for the range of ocean
water types before one can safely adopt the radiance
approach.

Appendix A: Monte Carlo Techniques

In the Monte Carlo simulations photons were traced
one at a time and the light field was taken to be the
superposition of all the photon paths. The path of
each photon was determined by random numbers 5
evenly distributed in the range @0, 1#. The photon

ath length s was found from

s 5 2~1yc!ln~1 2 5!, (A1)

where c is the attenuation coefficient ~1ym!. At each
scattering event, the azimuthal scattering angle with
respect to the incident direction was found with

F 5 2p5. (A2)

For isotropic scattering, the cosine of the polar scat-
tering angle with respect to the incident direction ms
was found with

ms 5 1 2 25. (A3)

For Henyey–Greenstein scattering13,14

b̃~g; ms! ;
1

4p

1 2 g2

~1 1 g2 2 2gms!
3y2 , (A4)

where g is the scattering asymmetry factor. The
corresponding cumulative distribution function is

C~ms! 5
1
2 *

ms

1 1 2 g2

~1 1 g2 2 2gms!
3y2

5
1 2 g2

2g F 1
1 2 g

2
1

~1 1 g2 2 2gms!
1y2G . (A5)

etting 5 equal to the cumulative distribution func-
ion and solving for ms, we found ms with

For Petzold scattering, we solved for ms with

C~ms! 5 5, (A7)

here the cumulative distribution function C~ms! was
aken to be the average of those provided by Petzold11

for the three samples from San Diego Harbor.
For each scattering event, the new direction co-

ms 5
2g 1 1 2 25g 2 25 1 25

~2g 2
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sines of the photon ~a9, b9, g9! were computed from the
nitial photon direction cosines ~a, b, g! and scatter-
ng angles ~polar angle Q, azimuthal angle F! with

3a9
b9
g94 5 3agyÎ1 2 g2 2byÎ1 2 g2 a

bgyÎ1 2 g2 ayÎ1 2 g2 b

2Î1 2 g2 0 g
4

3 3as

bs

gs
4 , ~g2 , 1!, (A8)

Fa9
b9
g9
G 5 sign~g!Fas

bs

gs

G , ~g2 5 1!, (A9)

here

as 5 sin~Q!cos~F!, bs 5 sin~Q!sin~F!, gs 5 cos~Q!.

(A10)

Appendix B: Sensitivity Coefficients when r is Known

Let T4 designate T~a, aref, r, r! as given by Eq. ~10!:

T4 ; T~a, aref, r, r!. (B1)

The derivatives ]ay]T and ]ay]aref ~B Þ R! are the
same as those given in Subsection 4.A:

]a
]T4

~a, aref, r, r! 5 1YS]T4

]a D , (B2)

]a
]aref

~a, aref, r, r! 5 2S ]T4

]aref
DYS]T4

]a D , ~B Þ R!. (B3)

he other sensitivity coefficients, however, depend on
ix parameters: interchangeably ~a, aref, r, aA, aB,

TAB! or ~a, aref, r, aA, aB, r!. Let r~aA, aB, r, TAB! be
given by Eq. ~9! and TAB~aA, aB, r, r! be given by Eq.
~3!. We can substitute r~aA, aB, r, TAB! into the
xpression for T~a, aref, r, r! and thereby express T in

terms of six parameters:

T6 ; T~a, aref, r, aA, aB, TAB!. (B4)

ach of the sensitivity coefficients can be determined

ither directly from T6 or from a combination of T4
and r as follows:

]T
]r

~a, aref, r, aA, aB, r! 5
]T6

]r

5
]T4

]r
1

]T4

]r

]r

]r
, (B5)

g2 2 2g35 2 25g2 1 2g352

1 25g!2 . (A6)

2g 1

1



]a
]r

~a, aref, r, aA, aB, r! 5 2~]T6y]r!y~]T6y]a!

5 2S]T4

]r
1

]T4

]r

]r

]rDY~]T4y~]a!, (B6)

]a
]aA

~a, aref, r, aA, aB, r! 5 2~]T6y]aA!y~]T4y]a!

5 2@~]T4y]r!~]ry]aA!#y~]T4y]a!, (B7)

]a
]aB

~a, aref, r, aA, aB, r! 5 2~]T6y]aB!y~]T4y]a!

5 2@~]T4y]r!~]ry]aB!#y~]T4y]a!, (B8)

]a
]TAB

~a, aref, r, aA, aB, r! 5 2~]T6y]TAB!y~]T4y]a!

5 2@~]T4y]r!~]ry]TAB!#y~]T4y]a!, (B9)

If the same reference solution is used in Eqs. ~9!
and ~10! ~i.e., B 5 R!, then T can be expressed in
terms of five parameters:

T5 5 T~a, aref, r, aA, TAB!, (B10)

and the sensitivity coefficient for aref becomes

]a
]aref

~a, aref, r, aA, r! 5 2S ]T5

]aref
DYS]T4

]a D
5 F ]T4

]aref
1 S]T4

]r DS ]r

]aref
DGYS]T4

]a D . (B11)
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