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Analysis of a Porous-Inclined Slider 
Bearing Lubricated with Magnetic 
Fluid Considering Thermal Effects 
with Slip Velocity 
A theoretical model of a porous-inclined slider bearing lubricated with magnetic fluid has 
been considered together with slip velocity boundary condition. Our aim is to study the 
influence of various dimensionless parameters arising out of the analysis of the model. By 
assuming the viscosity ( )[ ]00 exp ttm −−= βµµ  of magnetic fluid, the expressions for mean 

temperature and load capacity have been obtained. It has been observed that both mean 
temperature field and load capacity are the functions of slip parameter, magnetic parameter, 
thermal parameter and permeability parameter. The dependence of the mean temperature 
field as well as of load capacity on these parameters has been seen graphically. 
Keywords: magnetic fluid, slip velocity, porous inclined-slider bearing, thermal effects, 
load capacity 
 
 
 

Introduction1 

        The lubrication behavior of different Newtonian and non-
Newtonian fluids has been examined and analyzed by many 
researchers recently. It has been noted that the use of non-
Newtonian fluids as lubricants becomes more important than the 
use of Newtonian fluids. It is a well-reported fact that the lubricants 
with stable suspensions of fine particles of insoluble solids having 
different material characteristics can be used as the viscosity index 
improver so that the viscosity variation with temperature may be 
prevented. It has been revealed that the behavior of such fluid is not 
Newtonian but non-Newtonian (Pal et al., 2002). For understanding 
frictional behavior and also for defining the physical conditions met 
by the oil in its passage through the conjunction of the disks, the 
knowledge of the temperature in the lubricant film is required. Due 
to the shearing of the oil in the film, the frictional heat exists 
(Crook, 1961). Because of the strong dependence of the viscosity 
on temperature, the temperature generated inside the film by the 
frictional heating causes an effective change in lubricant viscosity. 
Consequently, the viscosity must be assumed to be a function of 
temperature (Rodkiewicz and Dayson, 1974). Furthermore, in a 
heavily loaded system under hydrodynamic or EHD conditions, 
where high pressure exceeding 107

 dyne cm−2 is encountered, the 
lubricant viscosity is no longer insensitive to the pressure. Crook 
(1963) observed a 1000-fold increase in the viscosity ratio on 
raising the load from 2.5 × 107 to 19.7 × 107 dyne cm−1. Archard et 
al. (1961) and Dowson and Whitaker (1965), among the pioneers in 
this field, also emphasized the need to consider the variation in 
viscosity with pressure. It is therefore necessary to consider the 
effect of pressure and temperature on the lubricant viscosity (Cheng 
and Sternlicht, 1965; Kannel and Walowit, 1971; Rohde and Ezzat, 
1974). In addition, the classical theory of hydrodynamic lubrication 
implicitly assumes that the lubricant behaves, essentially, as a 
Newtonian viscous fluid. This assumption, however, is not valid for 
fluids such as molten plastics, pulps, slurries, emulsions, greases, 
etc. These fluids exhibit non-Newtonian behavior and are widely 
used as lubricant in various lubrication flows. Therefore, the non-
Newtonian behavior of the fluid in lubrication is also of 
considerable interest (Prasad et al., 1987). 

The use of magnetic fluids has led to the development of 
many new energy devices and instruments. Magnetically cooled 
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high-fidelity speakers, computer disc drives and semiconductors 
are already commercially available. Magnetic fluids are prepared 
by suspending ferromagnetic grains in non-magnetic non-
conducting liquids such as dieters, kerosene, hydrocarbons and 
fluorocarbons. Ferromagnetic fluids, the non-conducting colloidal 
suspension of solid magnetic particles of sub-domain size in 
carrier liquids, are responsible for the development of several 
mechanical and electronic devices based on them (Ram and 
Verma, 1999). A typical magnetic fluid is prepared by suspending 
Fe3O4 particles of size 100 Å which are coated with oleic acid in 
a diester. The most important property of magnetic fluids is that 
they can be made to adhere to any desired surface with the aid of 
magnets. When a magnetic field is applied, each particle 
experiences a force which causes it to move. When all the 
particles start moving, they cause the colloidal homogeneous 
suspension to move en masse (Agrawal, 1986). 
      Ochonski (2007) considered sliding bearings lubricated with 
magnetic fluids and suggested a new design of magnetic fluid-
based sliding bearings. Patel (1980) studied the effect of slip 
velocity on the behavior of a squeeze film between two circular 
disks, the upper disk having a porous facing backed by solid 
housing, in the presence of a uniform transverse magnetic field. 
These investigations show that the effect of slip velocity reduces 
the load capacity of the bearing. Patel and Gupta (1983) used this 
slip condition at a porous boundary for hydrodynamic lubrication to 
analyze the problem of an inclined porous slider bearing. They 
suggested that minimization of the slip parameter is essential to 
increase the load capacity. Sinha et al. (2001) studied thermal 
effects in externally pressurized porous conical bearings with 
variable viscosity. Ahmad and Singh (2007a) used slip condition at 
a porous boundary for an inclined slider bearing without thermal 
effect. Further, Ahmad and Singh (2004b) investigated an inclined 
slider bearing with thermal effect.  
     In the present paper, magnetic fluid has been taken as a lubricant 
to study a porous-inclined slider bearing with thermal effect and 
slip velocity. The expressions for pressure and mean temperature 
have been derived. Subsequently, the formula for load has been 
obtained and the effect of various dimensionless parameters has 
been studied. Using Simpson’s 1/3 rule the values of the mean 
temperature and load capacity for randomly chosen values of the 
magnetic parameter, slip parameter and thermal parameter have 
been computed to read the influence of these graphically.   
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Nomenclature 

a  = inlet-outlet ratio 

0B  
= non-dimensional coefficient of temperature  

pc
 

= specific heat 

E  = Eckert number 

h   = dimensional film height   

H
r

 = external magnetic field 

h  = non-dimensional film height  

0h
 

= minimum film thickness     

1h  = maximum film thickness          

 k  = porosity of the porous matrix   

 k  = thermal conductivity 

 l   = bearing wall thickness 

L  = bearing width 

M
r

 = magnetization vector 
∗M   = co-rotational derivative of M

r

 

M  = magnitude of the magnetization vector 

M  = non-dimensional coefficient of viscosity 
 p     = fluid pressure 
P  = non-dimensional fluid pressure 

rP  = Prandtl number 

s1  = non-dimensional slip parameter 

 s    = 2
1

kα , slip parameter   

 t   = temperature of the fluid 

 0t  = temperature at p = 0 (i.e., ambient pressure) 

 mt  = mean temperature across the film thickness  

mT  = non-dimensional mean temperature 

T   = non-dimensional temperature field           
u    = velocity component along the x-axis 
U  = uniform sliding velocity component along the x-axis                                      

0u  = non-dimensional velocity component along the x-axis                                                                                     

V
r

  = fluid velocity 

W  = non-dimensional load capacity 
 x, y  = Cartesian coordinates 
x   = non-dimensional x-coordinate 
α    = slip coefficient 

∗α   = material constant     

β  = coefficient of temperature 

β  = permeability parameter 

µ   = coefficient of viscosity 

0µ   = free space permeability  

∗µ  = non-dimensional magnetic parameter 

µ    = magnetic susceptibility     

Formulation of the Problem 

     The configuration of a porous-inclined slider bearing lubricated 
with an incompressible magnetic fluid is shown in Fig. 1. 

 
 

        

 

 

 

 

   

 

 

 

       

 
 

Figure 1. A porous-inclined slider bearing lubricated with magnetic fluid. 

 
According to Agrawal (1986), the equations governing the flow 

of incompressible magnetic fluid in ( ){ }hyLxyxD ≤≤≤≤= 0,0:,  

are as follows: 
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where pV ,
r

, ρ , µ , ∗α , M
r

, M, M *, H
r

 and 
0µ  are the fluid 

velocity, the pressure, the density, the coefficient of viscosity, a 
material constant, the magnetization vector, the magnitude of the 
magnetization vector, the co-rotational derivative of M

r

, the 
external magnetic field and the free-space permeability, 
respectively. 

Because of magnetic fluid, we have the following relations 
based on Maxwell’s equations: 
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where µ  is the magnetic susceptibility. 

The equation of continuity in the porous region is given by 
 

0=
∂
∂+

∂
∂

y

v

x

u                                                                             (6) 

 
       Under the normal conditions of lubrication theory and 
neglecting the self-field due to magnetization, we get the simplified 
forms of Eqs. (1) through (5) as: 
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   POROUS MATRIX 
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Substituting Eqs. (10) and (11) into Eq. (6), one obtains 
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      The relevant boundary condition for the velocity field in the 
lubricant region is 
 

hyatUu ==                                                        (13) 

                                                                
where U  is the uniform sliding velocity component along the x-axis 
and h is the dimensional film height. 
      As the slip velocity at the porous matrix is being introduced, the 
slip velocity due to Patel and Gupta (1983) is given by 
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where k is the porosity of the porous matrix and a is the slip 
coefficient which depends on the structure of the porous material. 
      For pressure, the appropriate boundary conditions are 
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    (15) 

                                     
where L is the width of the bearing. 
       Solving Eq. (7) and applying the boundary conditions (13) and 
(14), we have the velocity component as 
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where 

2
1

k
s

α=   is the slip parameter.   

       Using Eqs. (8), (12) and (15), one can get the Reynolds 
equation in the following form: 
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where A is the constant of integration and l  is the bearing wall 
thickness. 

Heat Transfer Problem 

     We assume that the flow of lubricant is thermally active while 
surfaces are not. Under these assumptions, the energy equation is 
simplified to get 
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      Let the viscosity µ be variable and it varies with temperature 
raised by frictional heat generated by flow of fluid having thermal 

conductivity k . The expression µ due to Prasad et al. (1987) is 
 

( )[ ]00 exp tt m −−= βµµ                                                 (19) 

                                

where 0µ  and 
0t  are, respectively, the viscosity coefficient and 

temperature when p = 0 (ambient pressure). β  is the thermal 

coefficient and 
mt

 
is the mean temperature across the film 

thickness  h , which is defined as 
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     The boundary conditions for the temperature field in the 
lubricant region are  
 

0 0t t at y and y h= = =                                                (21) 

                                                                            
     Introducing the following dimensionless variables:  
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where pc , h , 
0h , 

1h  and β  are the specific heat, the non-

dimensional  film height, the minimum film thickness, the 
maximum film thickness and the permeability parameter, 
respectively.  
     The non-dimensional forms of Eqs. (16), (18), (19) and (20) are 
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where P, ∗µ , s1 , M , Pr, E, B0, Tm and Pr.E are, respectively, 

the non-dimensional fluid pressure, magnetic parameter, slip 
parameter, coefficient of viscosity, Prandtl number, Eckert number, 
coefficient of temperature, mean temperature and thermal 
parameter. 
       Using Eqs. (22), (23) and boundary conditions T = 1 at 0=y  

and at hy = , we obtain the temperature field 
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       Putting this value of T into Eq. (25) and on simplifying, we 
obtain mean temperature as 
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 The dimensionless form of Eq. (17) is 
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where the film thickness )(xh  of the inclined slider bearing is 

given by ( )xaaxh 1)( −−= , where a = 01 hh , 10 ≤≤ x  .  

In particular, we take the inlet-outlet ratio 
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      To compute load capacity, we use the formula  
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      Now, using Eqs. (27) and (29), we obtain load capacity of the 
bearing as 

 

( )

( ) ( )( )

( ) ( )
( ) ( )

( )
xd

hshs
hhh

s

hAhAh
s

s
EPh

hsTe

shshshh
xW

r

m
Tm

∫

























+



















+−+

−+−
−

−
−−

+−+
−=

−

∗
1

0
22

3333

2

2

217.0

3223

1010
4

1

612
1

20
.

11240

51266

1

12

ββ

µ

                                                                                                       (30)                                                        

Discussion and Results 

On the basis of the analysis and computation carried out for this 
problem, we recommended the following findings: 
1. Figure 2 is a graph of mean temperature versus permeability 

parameter. It is seen that the mean temperature of the bearing 
increases as the permeability parameter increases. It has been 
noticed that mean temperature is increasing exponentially for 0〉β . 
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Figure 2. Mean temperature vs. permeability parameter at 6.0,2.1.,31 === xEPs r . 

 
2. Figure 3 shows a graph of mean temperature versus slip 

parameter. As the slip parameter increases, the mean temperature 
decreases. Physically, introduction of slip velocity reduces 
frictional between fluid and boundary due to which production 
heat may be reduced. This results in a fall in temperature. 
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Figure 3. Mean temperature vs. slip parameter at 6.0,2.1.,3.1 === xEPrβ . 

 
3. Figure 4 shows a graph of mean temperature versus thermal 

parameter. According to this graph, the mean temperature 
increases with the increase of the thermal parameter. The graph 
recommends the linear relation between Tm and Pr.E. This 
result supports the statement of Hughes and Yong (1966). 
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Figure  4. Mean temperature vs. thermal parameter at 6.0,3.1,31 === xs β . 

 
4. Figure 5 clarifies the behavior of mean temperature against 

magnetic parameter. According to this graph, mean temperature 
increases with the increase of the magnetic parameter. The 
figure shows that Tm is the linear function of µ . 
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Figure 5. Mean temperature vs. magnetic parameter at 6.0,2.1.,31 === xEPs r

. 

 
5. In Fig. 6, the slip parameter and the thermal parameter have 

been fixed and a graph of load capacity versus permeability 
parameter has been drawn to read the influence of the magnetic 
parameter. According to this graph, the impact of the 
permeability parameter is almost nil. It has also been noted that 
as the magnetic parameter increases, the load capacity also 
increases. This trend of dependence of load capacity on the 
magnetic parameter is also supported by the researches done by 
Agrawal (1986) and Ahmad and Singh (2007a). 
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Figure 6. Load capacity vs. permeability parameter for different values of 
the magnetic parameter at 2.1.,31 == EPs r

. 

 

6. In Fig. 7, a graph of load capacity versus slip parameter has 
been plotted for different values of the magnetic parameter, 
while the permeability and thermal parameters are taken as 
constant. It is seen that the influence of the slip parameter is not 
remarkable, but the magnetic parameter boosts the load 
capacity. 
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Figure 7. Load capacity vs. slip parameter for different values of the 
magnetic parameter at 3.1,2.1. == βEPr

. 

 
7. Figure 8 exhibits the variation of the load capacity with respect 

to the thermal parameter as well as the magnetic parameter. It is 
concluded that the load capacity decreases slightly when the 
thermal parameter increases from 0.8 to 1.0, and then it is 
almost constant beyond that. Therefore, the load capacity of the 
bearing is optimized when the thermal parameter is 0.8. 
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Figure  8. Load capacity vs. thermal parameter for different values of the 
magnetic parameter at 3.1,31 == βs . 

Conclusions 

     A theoretical model of lubrication theory has been analyzed 
where magnetic fluid has been considered as lubricant with slip 
velocity effects. It has been recommended that permeability of the 
porous matrix accelerates mean temperature while slip velocity 
decelerates it. It has been concluded that mean temperature increases 
linearly with the thermal parameter. 
     The load capacity W  has been studied in respect of the slip 
parameter, permeability parameter and thermal parameter. We see 
that the effect of slip and permeability parameters is not remarkable 
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on load capacity W  while the thermal parameter Pr.E has an 
influence within 0.1.8.0 〈〈 EPr  only. 

    The magnetic parameter boosts the load capacity W of the slider 
bearing. 
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