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Abstract. We describe the modelling of a post-translational oscillator
using a process algebra and the specification of complex properties of
its dynamics using a spatio-temporal logic. We show that specifications
in the Logic of Behaviour in Context can be seen as hypotheses about
oscillations and other biochemical behaviours, to be tested automatically
by model-checking software. By using these techniques we show that the
theoretical model behaves in a manner in keeping with known properties
of biological circadian oscillators.

1 Introduction

In this paper we describe the encoding of a post-translational oscillator (PTO)
model in the Continuous Pi-calculus process algebra (cπ)[12, 11] and the results
of computational experiments made on the model including the use of a novel
spatio-temporal logic, the Logic of Behaviour in Context (LBC)[4], to specify
and check complex properties of the model. The spatio-temporal logic LBC can
be seen as a formal logical language for expressing properties of biochemical sys-
tems. There is a long-standing problem of how to express properties of oscillation
in temporal logic and one contribution of this paper is to neatly define a temporal
logic specification for both general and more specific oscillatory behaviour.

PTOs generate sustained oscillations in the absence of transcription and
translation. Such oscillators are of particular interest in the circadian clock
field, where PTOs have recently been postulated to generate endogenous 24-
hour rhythms in diverse organisms [15]. Here, we investigate a minimal model
of a PTO due to Jolley et al. [10]. This model has a simple structure—it con-
sists only of a kinase, a phosphatase, and a substrate—but can exhibit robust
oscillatory behaviour similar to that observed in circadian clocks.

The purpose of our study is to further examine the behavioural properties
of the PTO when it is coupled with other PTOs, other reaction pathways, and
inhibitors. We examine these properties using both simple computational exper-
iments and more complicated, higher-order experiments defined by LBC proper-
ties and performed by model checking. The ultimate goal being to evaluate LBC
as a useful logical tool to perform these sorts of analyses and also to draw some



conclusions about the behaviour of the theoretical PTO in relation to real cir-
cadian oscillators. In particular circadian clock mechanisms must interact with
other systems in an organism; this includes the control of metabolic processes
and coupling with the classical transcription-translation feedback loop (TTFL)
circadian clocks [1]. This potential to robustly interact with other systems is, to
date, unexplored for this model.

A key benefit of using process algebra here is the ability to readily build
complex models of interaction through combining simpler components. This
composition can be challenging, particularly where components are shared or
linked; and this is important as such sharing can be source of significant new
behaviours [16]. In this study we compose oscillators through shared enzymes.

The advantage of using a formal logical language to specify and check prop-
erties of the model, and its composition with other models, is that it gives us a
concise and precise means of expressing the hypothesis we wish to test. Model-
checking software then gives us the means to test this. This is especially true
where we have a mixture of temporal and spatial behaviour we wish to test; e.g.
if we wish to know if the introduction of an inhibitor (spatial change) has a given
effect regardless of the time at which it is applied (temporal change).

Using these techniques we show that the Jolley PTO model does indeed ex-
hibit some of the properties that would be expected of a biological PTO. The
oscillator is robust when coupled with other oscillators, using different coupling
mechanisms, and crucially when coupling at any point in the oscillation cycle.
We also show that the oscillator is robust when perturbed by other simple mech-
anisms. Finally we demonstrate that LBC has the potential to specify, at least
the qualitative aspects of, even more complex properties of oscillators, such as
phase response—that is, how the oscillation is affected by a small perturbation
at different points in its cycle.

2 The Jolley PTO model

Jolley, Ode, and Ueda present their model as a set of coupled ODEs. In their
paper [10], sets of parameters are identified which give distinct patterns of os-
cillation in the system. The model aims to provide a framework for analysing
and synthesising PTOs and they provide evidence that it is a viable candidate
for a minimal circadian clock. However, to date, little further analysis of the
properties of the complex behaviour of this oscillator has been done.

The model arose from the observation that PTOs and other oscillatory sys-
tems which exist in nature are commonly mediated by multi-site phosphoryla-
tion, these include evidence from observations and existing models of the KaiC
circadian oscillator [14, 9, 17], the MAP Kinase signalling pathway [6, 13], and
others [10]. This motivated the search for the simplest possible phosphorylation-
mediated oscillator, to serve as a design principle.

The structure of Jolley’s PTO (jPTO), described diagrammatically in Fig-
ure 1a, is one molecule with two phosphorylation sites. Therefore the molecule
has four states (S00, S01, S10, S11) depending on which of its sites are phos-



phorylated. Two opposing enzymes, a kinase (E) and a phosphatase (F), act to
phosphorylate or dephosphorylate a site, respectively.
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(a) Structure of jPTO, showing the
four substrate molecule states, the
kinase E, and the phosphatase F.
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(b) Oscillatory dynamics of jPTO.

Fig. 1: Structure and dynamics of the Jolley PTO.

The parameters for this model were found by using computational parame-
ter fitting techniques. They then used a clustering algorithm to determine two
distinct clusters of parameter sets which produced two different patterns of os-
cillation. In this study we use one of these; Figure 1b shows the behaviour of the
model given these parameters.

3 Process algebra model construction

Model construction in cπ is species-centric. That is the biochemical species, or
reagents, are the focus of the modelling process. We first define each species and
its binding sites and actions. We then define how different species can interact
with each other. Then we define the initial conditions of our mixture, which
species are present and in what concentrations. The model can then be executed
to determine the behaviour, using numerical simulation. The remainder of this
section gives an overview of the construction and execution of the model in cπ.
We omit the finer details of cπ syntax and semantics as these are described by
Kwiatkowski and Stark [12] and in Kwiatkowski’s thesis [11].

3.1 Species

The species in our model are the kinase E, the phosphatase F , and the substrate
molecule which has four phosphorylation states S00, S01, S10, and S11. The



simplest of these are the two enzymes; they are defined as follows:

E , e(x).x.E

F , f(x).x.F

The kinase E has a site e and the phosphatase F has a site f . Each can interact
on its site with another molecule, perform some other function which depends
on the molecule it is bound to, then return to its original state—from which it
can perform the same action again. This directly corresponds to the definition
of an enzyme.

In our cπ model we represent each of the four states of the substrate as
a distinct species. This is simply to break down the syntactic description into
smaller parts. In this model a change of state is essentially a change of species,
but to the observer these species can be considered as one. The substrate can
be defined as follows:

S00 , (νM00) s00a〈be〉.(u.S00 + ra.S01)

+ s00b〈be〉.(u.S00 + rb.S10)

S01 , (νM01) s01e〈be〉.(u.S01 + r.S11)

+ s01f〈bf 〉.(u.S01 + r.S00)

S10 , (νM10) s10e〈be〉.(u.S10 + r.S11)

+ s10f〈bf 〉.(u.S10 + r.S00)

S11 , (νM11) s11a〈bf 〉.(u.S11 + ra.S01)

+ s11b〈bf 〉.(u.S11 + rb.S10)

Here each of the states is defined, each containing a definition of the behaviour
at each of the two phosphorylation sites. Each of these definitions is similar
in structure, reflecting that they in fact represent distinct states of the same
molecule. For example, let us examine the definition of S01.

One of the two states where one site is phosphorylated, but not the other,
is S01. The term begins with a ν-term. The ν-term defines a local affinity net-
work M01; this governs the local interactions of unbinding or reacting in the
same way as the global affinity network which will be defined below and defines
the internal interaction potential of the complexes formed between substrate and
enzyme to unbind (u) or react (r).

The structure of S01 is then defined as having two sites s01e and s01f ,
each with some behaviour which follows from another molecule binding on that
site. Once we have defined which molecules can interact on which sites (below),
s01e will accept the kinase E and s01f will accept the phosphatase F . The
behaviour which follows binding is defined by the next part of the term; in this
case the bound enzyme can either unbind and the substrate returns to state S01
or the reaction can occur, changing the substrate either to state S00 or to S11,
depending on whether F or E is bound.



The definition of each of the other states of the substrate follow the same
pattern. Full details of definitions, the affinity networks, and their rates can be
found in Appendix A.

3.2 Interactions

Now we have the definitions of the molecules and their interaction sites, we
need to define which molecules can bind to which sites and at what rate these
reactions occur. This is done by means of an affinity network M :

M = {s00a↔ e, s00b↔ e, s01e↔ e, s10e↔ e,

s01f ↔ f, s10f ↔ f, s11a↔ f, s11b↔ f}

Here we state that each of the substrate sites interacts with either site e of
the kinase or site f of the phosphatase. Each of these interactions has a given
reaction rate (see Appendix A).

3.3 Mixture

Having now defined the structure and rate parameters of the model, all that
remains to be able to execute the model is a definition of the initial conditions
we wish to simulate. Here we define a process Π which lists the species present
and their initial concentrations.

Π , cS · S00 ‖ cE · E ‖ cF · F

Here we have some concentration cS of substrate in its unphosphorylated state S00
and likewise some concentrations cE and cF of E and F (see Appendix A).

3.4 Validation

From this description the cπ tool generates a vector-space model of species con-
centrations over time. This is then compiled into a set of model ODEs and an
initial value problem, suitable for numerical simulation. In this case the model
description generates precisely the set of ODEs which were defined by Jolley et
al. and therefore precisely the same behaviour; as shown in Figure 1b.

4 Basic time series analysis

In this section we describe a number of computational experiments which were
performed, aided by the compositional nature of the cπ description of the model.



4.1 Coupled jPTOs

The first experiment determines the behaviour of two identical jPTOs when
coupled. The coupling is achieved by the two jPTOs sharing a pool of enzymes
E and F .

We achieve the coupling in our cπ model in the following way. First we make
a copy of the substrate species, call it T as shown in Appendix B. The process
term can then be updated to include our new copy:

Π , cS · S00 ‖ cT · T00 ‖ cE · E ‖ cF · F

and the global affinity network M can then allow E and F to interact with the
sites of T .

The behaviour of the coupled jPTOs can be seen in Figure 2a. The result of
coupling two identical jPTOs is that the two act in synchrony, but the period
is doubled. It is clear that the doubling of the period is due to each jPTO
only having half the concentration of enzymes available, the other half of the
concentration being sequestered by the other jPTO—each is competing equally
for the same pool.

4.2 Weaker coupling

It is possible to consider other schemes for coupling. For example, if the coupling
was made weaker by only sharing one of the enzymes, does synchronisation still
occur?

Here we take two jPTOs in a similar manner to above, however we only
share the kinase E. This is achieved in the model simply by having a separate
phosphatase for each jPTO, FS and FT :

Π , cS · S00 ‖ cT · T00 ‖ cE · E ‖ cFS
· FS ‖ cFT

· FT

Here we set cFS
= cFT

= cE and we then set the global affinity network accord-
ingly. See Appendix C.

We can see, in Figure 2b, that indeed the jPTOs still synchronise when
coupled less strongly. We can also see that each jPTO, given its own pool of
phosphatase, spends more time in the less phosphorylated states as it can de-
phosphorylate at a greater rate than it can phosphorylate. If the concentration
of each enzyme was adjusted accordingly, so cFS

+cFT
= cE , then the system be-

haves as the coupled jPTOs sharing both kinase and phosphatase (as Figure 2a).

4.3 Coupling out of phase

This experiment determines the behaviour of coupling a jPTO with an identical
jPTO, but out of phase—that is, when the models are coupled with oscillators
beginning at different points in their cycle. To achieve this we take two jPTO
models of identical structure, but the second is shifted by a quarter of its cycle,
we call this jPTO-90.
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(a) Coupling two identical jPTOs.
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(b) Weaker coupling by sharing kinase
only.

Fig. 2: jPTO composition dynamics.

When the two models are composed we can see that, after a transient period,
the cycles of the two jPTOs begin to synchronise as shown in Figure 3a. For com-
parison we also coupled jPTOs in various phase states. Synchronisation appears
to occur in a number of selected phases. This suggests that the synchronisation
of two jPTOs is quite robust. Figure 3b shows synchronisation when jPTOs are
coupled in anti-phase: jPTO-180.
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(a) jPTO + jPTO-90
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(b) jPTO + jPTO-180

Fig. 3: Coupling of two identical clocks, sharing an enzyme pool, starting out of
phase.

4.4 Perturbation

Another useful property of a circadian oscillator is that it is robust to some
perturbations—although others may disrupt it. In this experiment we determine
the behaviour of the jPTO when perturbed by a pulse of some inhibitor.



To construct a model for this we first construct an inhibitor molecule which
rapidly appears in the system and decays rapidly. The mechanism for inhibitor
appearing in the system is to have another molecule which is initially present
and autonomously becomes the inhibitor. The inhibitor then decays. We will use
the inhibitor to bind and sequester components of the jPTO. See Appendix E.

Figure 4a shows the effect of inhibiting the kinase; there is a transient
period—about as long as the pulse—and then the jPTO settles back into its
normal oscillation. This shows that the jPTO is somewhat robust to temporary
sequestration of its enzymes.

Figure 4b shows the result of the inhibitor sequestering the doubly phos-
phorylated substrate molecule S11. Here the fact that S11 itself is only present
in pulses and the fact that the inhibitor does not decay when it is bound to
S11 means that the inhibitor remains in the system for longer. We can see echo
pulses as the inhibitor binds and unbinds the fluctuating concentration of S11.
However, overall, the inhibitor eventually decays and the system stabilises. This
shows that the substrate is also robust to this kind of perturbation.
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Fig. 4: Perturbation of a jPTO with a pulse of inhibitor.

5 Model-checking experiments

The experiments in the previous section show a number of properties which
are mostly amenable to analysis by conventional techniques. The compositional
nature of cπ models aids greatly in the model construction for models where
we are looking at compositions of two models or composition with an inhibitor;
something which is much more difficult to do by working directly with ODEs.
However the analysis of these models is little more than the inspection of time
series for a relatively small set of models and initial conditions.

We will see that we can use the model checking of LBC specifications to
automate the process of inspecting time series for a given behaviour. Moreover,



and most importantly, we can define higher-order experiments which require
many models and many initial conditions. We gain a means to precisely express
a set of computational experiments, which in a conventional setting would require
case-specific programming, and to have them automatically checked.

5.1 Behaviour under composition

The spatial aspects of LBC [4] directly take advantage of model compositionality.
Specifications about the behaviour of a model when it is composed with another
model can be made using the context modality. We can make use of this in
analysing the behaviour of coupled oscillators.

A basic assertion in LBC has the form P |= φ, meaning that system P satisfies
property φ. A property of the form Q.ψ is a guarantee: if Q is introduced to the
system, then the resulting mixture satisfies ψ. For example: PTO1 |= PTO2 .
φ states that when we couple PTO1 and PTO2 we have some behaviour φ.
Likewise we could state PTO |= Inhib . φ meaning that our PTO has some
behaviour φ when we introduce an inhibitor (Inhib).

However, the most interesting properties are those which make a statement
about introducing something over time. For example: PTO1 |= Gt(PTO2 . φ)
which uses the temporal operator G (for globally true) to declare PTO1 has the
property that for any time up to t, if we add PTO2 then the system from that
point will satisfy φ.

5.2 Complex dynamics

LBC also has the power to express complex dynamics, such as periodicity and
oscillation. Numerous bodies of work have attempted to express oscillation prop-
erties in standard temporal logic [3, 2, 5], but all fall short of a general formula
for oscillation. It is possible to express oscillation, however, with some prior
knowledge of the type of oscillation. Following the idea in Calzone et al. [5] and
extending it to a time-bounded logic, we can express oscillation in the temporal
fragment of LBC as follows:

PTO |= G[0,t](F[0,p](([S]′ > 0) ∧ F[0,p]([S]′ < 0)))

where [S]′ is the first derivative of [S] with respect to time. The formula
states that at any time up to t the concentration of S will, within a further time
p, be rising and then within another additional time p be falling. This describes
a repeated rising and falling with period at most p. Whilst this is not a general
formula, it does cover a large class of sustained oscillation. However, its weakness
is that it does not distinguish from noise—although noise is not a problem when
studying ODE models.

It has been shown that more expressive logics can express more general for-
mulae for oscillation; for example Dluhoš et al. [7] show that one can use a
“freeze operator” to do this. In fact, it is possible to give a general formula for



sustained—and not necessarily regular—limit cycle periodicity using LBC. The
formula:

PTO |= F[pmin,pmax](P̂TO . (F[0,s]G[0,t](|[S]− [Ŝ]| < ε))) (1)

where P̂TO is a copy of PTO , S is the species being observed, Ŝ is the copy of S

in P̂TO , and s is a maximum transient period before reaching the limit cycle.

The formula states that if we introduce P̂TO after some period in [pmin, pmax]

then, within s, [S] and [Ŝ] will synchronise to within ε for at least time t. This
essentially takes a copy of the model, shifts it forward in time by pmin ≤ t ≤
pmax, and determines if it matches up with the original model. If it does, allowing
for some initial transient period, then the model is periodic in species S.

In the context of our case study, we can now check if coupled PTOs still
oscillate:

PTO1 |= G[0,c](PTO2 . Osc)

where c is the end of the first cycle of PTO1 and Osc is one of our oscillation
formulae from above. If coupling the PTOs at any time within the first cycle
of PTO1 gives a system which still oscillates—with some period bounds, as
above—then the formula will be true.

5.3 Perturbation response

LBC can be used to express properties of a system under perturbation. For
example, one might wish to determine if some perturbation causes a greater
peak concentration in a species S. The formula:

PTO |= F[0,t](P . F[0,r]([S] > pk))

states that some peak value pk is exceeded under some perturbation P , within
time t, where r is the maximum expected time of the peak after the perturbation.
As the perturbation P could be any model, it could simply be a quantity of some
species, a constant amount of inhibitor, a pulse of inhibitor, etc.

Of particular interest in the study of oscillators are the phase response [8]
characteristics of system. That is, given a short perturbation, at any point in
the cycle, what is the effect on the phase of the oscillation? Biologists often
plot a phase response curve, using a large number of experiments, to visualise
the phase response. LBC cannot give such a precise and quantitative account
of phase response as this, however it is certainly possible to formulate some
more qualitative—or even semi-quantitative—properties of phase response. For
example:

PTO |= P̂TO . F[c1,c2](P . (G[t1,t2]([Ŝ]′ > 0 =⇒ F[s1,s2][S]′ > 0)))

states that some perturbation P applied within [c1, c2] will cause a forward phase
shift in [s1, s2]. t1 is a known max transient period after introducing P , t2 is a
sensible maximum time to simulate for, and the formula assumes that we know
the perturbed system still oscillates.



5.4 Results

The following results of verifying the above LBC properties against the cπ models
of Jolley’s PTO were obtained by using the reference implementation of the LBC
signal-based model checker4. First we show a number of formulae which give the
same results as the experiments performed above, albeit without the need to
manually inspect a simulation trace. These results serve to verify the use of the
model checker. Finally we show the results of checking formulae which describe
higher-order computational experiments, i.e. those which check properties which
would require the inspection of a great number of simulation runs.

Oscillation Our first test was to check for oscillation using Formula 1. We let:

Osc = F[pmin,pmax](ĵPTO . (F[0,s]G[0,t](|[S00 ]− [Ŝ00 ]| < ε)))

where: we know that the period is around 24000 so we set pmin = 23000 and
pmin = 25000; we know the system will reach limit cycle within s = 10000; we
must choose an oscillating species and so choose S = S00 ; a reasonable time to
simulate for is t = 80000—a few cycles; and we choose ε = 1 as our concentration

accuracy. The copy model ĵPTO can be constructed in the same manner as the
copy model in Section 4.1 or by using the appropriate function in the reference
implementation.

Upon checking jPTO1 |= Osc we find that it returns True. This confirms
what we have been able to determine manually from inspecting the simulation
traces in Figure 1b. Moreover, it shows that the LBC formula is a succinct
and precise means of expressing the oscillation property and the model checker
provides an automatic means for testing such a hypothesis.

Coupled oscillators The next step is to test coupled oscillators for oscilla-
tion, as in Section 4.1. First we take identical PTOs: jPTO1 and jPTO2 . Upon
checking jPTO1 |= jPTO2 . Osc using the same formula parameters as above,
we find that the result is False. This is because, as seen in Figure 2a, the period
of the coupled oscillators is doubled. Therefore, upon relaxing the desired period
range to pmin = 23000 and pmax = 49000 we find the formula is satisfied and
the checker returns True.

Out-of-phase coupling In Section 4.3 we showed that for a limited number
of out-of-phase couplings of jPTO1 and jPTO2 the two systems did indeed
synchronise and oscillate together after an initial transient period. This however
does not confirm whether this is the case for all phase shifts.

Using the test jPTO1 |= G[0,c](jPTO2 . Osc) we can use the model checker
to give a greater guarantee that coupling the oscillators in any phase shift, up
to c times the length of one cycle. Here we know that the length of one cycle is
no more than, say, c = 26000.

4 Part of the CPiWorkBench: http://banks.ac/software/



Upon checking, again with the above formula parameters and the relaxed
period range, we find that the result is False. This is because we have not ac-
counted for the lengthened transient period when coupling out of phase. If we
increase the parameter s to 120000 we find the formula is now satisfied, the
result is True. This higher-order property gives a much stronger guarantee that
all out-of-phase couplings oscillate than a limited number of manually inspected
simulation traces would give.

Phase response Another higher-order property is the phase response charac-
teristic. Using the inhibitor pulse model in Section 4.4—except using a pulse
which lasts for fewer than 2000 time units to match the kind of pulse which
would be used to plot a phase response curve—and the formula in Section 5.3
we can place some bounds on the phase response characteristics of the model:

jPTO |= ĵPTO . F[c1,c2](Pulse . (G[t1,t2]([Ŝ00 ]′ > 0 =⇒ F[s1,s2][S00 ]′ > 0)))

where: [c1, c2] = [10000, 34000] which is roughly one cycle, this limits the com-
putation; the maximum expected transient period is t1 = 10000; the maximum
time to compare oscillations is t2 = 80000; and [s1, s2] = [0, 1000] ensures that
the whole formula states that: “there is always a forward phase response of no
more than 1000 time units”.

The model checker confirms that this statement is true for this model. So
our small pulse may delay the cycle, but only by a relatively small time; it does
not speed up the cycle.

6 Conclusions

We have shown that, using a combination of cπ and LBC, we can express a variety
of complex properties of biochemical models. We have shown that precise and
succinct statements of complex properties can be built up in a modular fashion.
One can even think of higher-order LBC properties as precise statements of an
experimental hypothesis, to be tested by the model checker.

We have also shown that the Jolley PTO model does indeed interact robustly
with other oscillators and inhibitors. This includes showing that the oscillator
can be coupled at any point in its cycle and that it shows a robust inhibitor
response at any point in its cycle. These latter properties are shown using LBC
statements describing higher-order experiments; these are automatically tested
by the model checker without any human intervention nor the necessity to write
explicit programs for the necessary inspection of large numbers of simulation
runs. Extensions to this work could readily include investigating the results of
coupling with oscillators of a different type and of coupling with downstream
networks.
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A Basic Jolley model

The basic Jolley PTO model is constructed in cπ as follows:

E , e(x).x.E

F , f(x).x.F

S00 , (νM00) s00a〈be〉.(u.S00 + ra.S01)

+ s00b〈be〉.(u.S00 + rb.S10)

S01 , (νM01) s01e〈be〉.(u.S01 + r.S11)

+ s01f〈bf 〉.(u.S01 + r.S00)

S10 , (νM10) s10e〈be〉.(u.S10 + r.S11)

+ s10f〈bf 〉.(u.S10 + r.S00)

S11 , (νM11) s11a〈bf 〉.(u.S11 + ra.S01)

+ s11b〈bf 〉.(u.S11 + rb.S10)

Π , cS · S00 ‖ cE · E ‖ cF · F

where

cS = 105, cE = 1, cF = 1.

M00 = {be ↔ u : 10.02,

be ↔ ra : 163.31,

be ↔ rb : 0}

M01 = {be ↔ u : 10.02,

be ↔ r : 40.83,

bf ↔ u : 10.02,

bf ↔ r : 8.17}

M10 = {be ↔ u : 10.02,

be ↔ r : 8.17,

bf ↔ u : 10.02,

bf ↔ r : 40.83}

M11 = {bf ↔ u : 10.02,

bf ↔ ra : 0,

bf ↔ rb : 163.31}

M = {s00a ↔ e : 818.18,

s00b ↔ e : 0,

s01e ↔ e : 13.64,

s10e ↔ e : 4903.17,

s01f ↔ f : 4903.17,

s10f ↔ f : 13.64,

s11a ↔ f : 0,

s11b ↔ f : 818.18}

B Coupled jPTOs model

The coupled model is constructed from the same substrate and enzyme species
as the basic model in Appendix A. The second jPTO is a copy of the original



substrate, renamed so it forms a distinct species:

T00 , (νM00) t00a〈be〉.(u.T00 + ra.T01)

+ t00b〈be〉.(u.T00 + rb.T10)

T01 , (νM01) t01e〈be〉.(u.T01 + r.T11)

+ t01f〈bf〉.(u.T01 + r.T00)

T10 , (νM10) t10e〈be〉.(u.T10 + r.T11)

+ t10f〈bf〉.(u.T10 + r.T00)

T11 , (νM11) t11a〈bf〉.(u.T11 + ra.T01)

+ t11b〈bf〉.(u.T11 + rb.T10)

The process term is the same as above, but with the addition of the new (copy)
substrate:

Π , cS · S00 ‖ cT · T00 ‖ cE · E ‖ cF · F

where

cS = 105, cT = 105, cE = 1, cF = 1,

and the global affinity net is then extended to allow the new substrate to interact
with the enzymes:

M = {s00a ↔ e : 818.18,

s00b ↔ e : 0,

s01e ↔ e : 13.64,

s10e ↔ e : 4093.17,

s01f ↔ f : 4093.17,

s10f ↔ f : 13.64,

s11a ↔ f : 0,

s11b ↔ f : 818.18,

t00a ↔ e : 181.18,

t00b ↔ e : 0,

t01e ↔ e : 13.64,

t10e ↔ e : 4093.17,

t01f ↔ f : 4093.17,

t10f ↔ f : 13.64,

t11a ↔ f : 0,

t11b ↔ f : 818.18}.

C Weaker coupled jPTOs

For the weaker coupled model we have a separate phosphatase for each substrate.
The model in Section B is extended by replacing species F with the following:

FS , fs(x).x.FS

FT , ft(x).x.FS

and the process term is extended:

Π , cS · S00 ‖ cT · T00 ‖ cE · E ‖ cFS
· FS ‖ cFT

· FT



where

cS = 105, cT = 105, cE = 1, cFS
= 1, cFT

= 1,

and the affinity net is altered so each substrate only has affinity for one of the
phosphatases:

M = {s00a ↔ e : 818.18,

s00b ↔ e : 0,

s01e ↔ e : 13.64,

s10e ↔ e : 4093.17,

s01f ↔ fs : 4093.17,

s10f ↔ fs : 13.64,

s11a ↔ fs : 0,

s11b ↔ fs : 818.18,

t00a ↔ e : 181.18,

t00b ↔ e : 0,

t01e ↔ e : 13.64,

t10e ↔ e : 4093.17,

t01f ↔ ft : 4093.17,

t10f ↔ ft : 13.64,

t11a ↔ ft : 0,

t11b ↔ ft : 818.18}.

D Driving other reactions

To construct the model which drives another phosphorylation reaction, we first
construct P which is the molecule to be phosphorylated:

P , (νMP ) p〈x 〉.(u.P + r.P ′)

P ′ , τd.P

where d = 10−4 and MP = {x↔ u : 1, x↔ r : 1}.
The model is then the same as the basic model in Appendix A, but with a

new site, which interacts with the P molecule, added to the S11 state of the
substrate:

S11 , (νM11) s11a〈bf 〉.(u.S11 + ra.S01)

+ s11b〈bf 〉.(u.S11 + rb.S10)

+ s11p(x).x.S11

the new molecule added to the process:

Π , cS · S00 ‖ cE · E ‖ cF · F ‖ cP · P

where

cS = 105, cE = 1, cF = 1, cP = 105



and the affinity net is extended with

M = {s00a ↔ e : 818.18,

s00b ↔ e : 0,

s01e ↔ e : 13.64,

s10e ↔ e : 4903.17,

s01f ↔ f : 4903.17,

s10f ↔ f : 13.64,

s11a ↔ f : 0,

s11b ↔ f : 818.18,

s11p ↔ p : 3× 10−4}.

E Perturbation

To construct the model with a pulse of inhibitor, we take the model in Ap-
pendix D and replace the driven species P with an inhibitor In which decays
and a species ProdIn which autonomously produces the inhibitor:

In , (νMIn) p〈x 〉u.In+ τd.0

ProdIn , τd.P

where MIn = {x↔ u : 0.1} and d = 5× 10−3 and the inhibitor producer added
to the process:

Π , cS · S00 ‖ cE · E ‖ cF · F ‖ cP · ProdIn

where
cS = 105, cE = 1, cF = 1, cP = 105

In this model the inhibitor binds to the substrate in its S11 state. The models
where the inhibitor binds to one or the other of the enzymes is constructed
in a similar way, with a corresponding new site on the enzyme instead of the
substrate. When binding to the enzyme, however the rate should be adjusted
from 3× 10−4 to 5.


