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Abstract: An analysis of single server preemptive priority retrial queue with at 
most J vacations where two types of customers called (priority customers and 
ordinary customers) are considered in this paper. The priority customers do not 
have queue and they have higher priority to receive their services over ordinary 
customers. If negative customer is arriving during the service time of any 
positive customer (priority customer or ordinary customer), it will remove the 
positive customer from the service. If the interrupted customer is an ordinary 
customer, he may join the orbit and the priority customer will leave the system. 
As soon as the system is empty, the server takes at most J vacations. The 
probability generating functions for the system/orbit size in steady state is 
obtained using supplementary variable method. Some important system 
measures and the stochastic decomposition are discussed. Numerical examples 
are presented to picturise the effect of parameters on system performance 
measures. 
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1 Introduction 

Queueing theory is recognised as an important research area due to many applications in 
different areas like communication networks, transportation networks, operation systems 
and production lines. Gomez-Corral (2006) is given the general models of queueing in 
various aspects. Retrial queues are defined as the repeated trials such that the new 
customer who found the server busy upon arrival is requested to leave the service area 
and join a trial group, called orbit. After some time (retrial time) the customer in the orbit 
can repeat their request for service according to FCFS. Any arbitrary customer in the 
orbit who repeats the request for service is independent of the other customers in the 
orbit. Upon the arrival of a customer, if the server is busy or under repair or on vacation, 
the customer will join the orbit and try his luck again for some time later. This kind of 
(retrial) queue plays a superior role in computer networks, telecommunication, telephone 
systems communication protocols, retail shopping queues, etc. 

In the earlier years, retrial queues with two varieties of customers have been widely 
studied by many of the researchers, Artalejo et al. (2001), Wang (2008) and Liu and Gao 
(2011). The high priority customers are formed in the queue or not in the queue and 
served according to the discipline of preemptive or non-preemptive. If blocked pool of 
customers, low priority customers (called as ordinary customers) leave the system and 
join the retrial group to retry its service after some time when the server is free. Mostly, 
in many systems, an arriving higher priority customer will push out the lower priority 
customers from the service to the queue or into the orbit. According to the above 
concepts, Choi and Chang (1999) first studied a priority retrial queue, in which priority 
customers do not preempt the ordinary customers and are queued in FCFS discipline. 
Krishnakumar et al. (2002) deliberated a single server retrial queueing system with 
preemptive resume and two-phase service. Liu and Wu (2009) considered a Markovian 
arrival process of queues with preemptive resume, negative customers, and multiple 
vacations which present the importance of a preemptive resume in practical situations. In 
recent times, Wu and Lian (2013) studied a single-server retrial G-queue with priority 
and unreliable server under Bernoulli vacation schedule. For a comprehensive analysis of 
priority queueing models, the reader may refer Liu and Gao (2011), Senthilkumar et al. 
(2013). Peng (2016) have discussed the discrete-time Geo/G/1 retrial queueing system 
with preemptive resume. Gao (2015) have analysed about the preemptive priority queues 
with general times. Yuvarani and Saravanarajan, (2015) have discussed the preemptive 
priority retrial queue with single vacation and server breakdown. 

The concept of the positive and negative customer is widely discussed by many 
researchers recently, due to their several extensive applications such as communications 
networks, server breakdown, and manufacturing system. The positive customer who 
comes to the system will get the service in the normal manner. The negative customer 
arrives at the system only when the positive customer is in service. This type of negative 
customer do not form any queue and they do not get any type of service. After some 
repair the negative customer will vanish from the system and reduce one positive 
customer may in service, then the positive may leave the system or join the queue again 
for another service. Negative customers have been considered as a virus, inhibitor 
signals, system or server disaster in communication, and operation mistakes. Wang and 
Zhang (2009) discussed retrial queues with negative customers and unreliable server. 
Some authors like Gao (2014), Yang et al. (2013) and Wu and Lian (2013) discussed 
different types of queueing models dealing with the presence of negative customers. 
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Dimitriou (2013) have considered a preemptive resume priority retrial queue with State 
dependent arrivals, unreliable server and negative customers. Kirupa and Chandrika 
(2015) have analysed the concepts of batch arrival queue with negative customer, 
feedback and multi-optional service. 

A vacation queueing model is considered as an extension of the standard queueing 
system in which server may not be available for a period of time due to many reasons, 
like being checked for maintenance, any damage occurred to the server or simply it is 
taking a break. The period of time taken to come out of the server absence is considered 
as a server vacation. The server vacation models are essential for the systems in which 
server wants to utilise the idle time for many purposes. Various authors have analysed 
queueing models of server vacations with many combinations. A literature survey on 
queueing systems with server vacations is done by Doshi (1986). Most vacation models 
deal with the exhaustive policy that is the system must be empty when the server starts a 
vacation. Chang and Ke (2009) examined a batch arrival model with J vacations in 
which, if the orbit is empty, the server takes at most J vacations repeatedly until at least 
one customer in the orbit upon returning from vacation. Jain and Bhagat, (2014) 
developed the concepts of bulk retrial queues with delayed repairs and modified vacation 
policy. Recently, Dimitriou (2013), Ke and Chang (2009), Rajadurai et al. (2015a, 2015b) 
and Wang and Zhang (2009) have analysed about the retrial queue with J vacations. Yang 
et al. (2016) have discussed the concepts of unreliable retrial queue with general repeated 
attempts and J vacations. 

In most of the literature survey related to queueing theory, it is assumed that the 
server is available always in the system. The server is assumed to be liable in most of the 
cases and always available for the customers to be served. Sometimes we come across the 
cases where the server may breakdown and resume its service after repair. In an instance, 
in manufacturing systems, the machine may break down due to Mechanical or job-related 
problems. Ke and Chang (2009) discussed a batch arrival retrial queueing system with 
two phases of service using the concept of Bernoulli vacation and server breakdown due 
to starting failure. Ke and Chang (2009) has analysed about the M[x]/ (G1, G2)/1 retrial 
queue with general attempts under Bernoulli vacation schedules and starting failures. 
Sumitha and Chandrika (2012), have discussed the concept of a single server with single 
vacation and starting failure and orbital search. Rajadurai et al. (2014) have analysed the 
repairable M[x]/(G1, G2)/1 retrial G-queue with balking and starting failures under at 
most J vacations. Yang et al. have discussed the concepts of retrial queue with unreliable 
server and J vacations. Retrial queues are mostly used in real-time systems, 
manufacturing system, operating systems and simulations. The application of server 
vacation system can be found in production systems, designing of local area networks, 
data communication systems. Queueing systems with breakdown are very common in 
manufacturing systems and computer priority networks. 

To the authors best of Knowledge, there are many works existing in the model of 
retrial queueing system with negative customer, at most J vacation and starting failure, 
but there is no work published in the queueing survey with the combination of 
preemptive priority retrial queueing system with negative customer, at most J vacation 
and starting failure by using the supplementary variable technique. Mathematical results 
and concepts of queues dicussed in this model provide a wide application in the 
telecommunications, computer processing and production and manufacturing system. 

rest of this paper is structured as follows. The detailed mathematical description of 
the model and practical applications is given in Section 2. The stability condition of the 
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model is analysed in this Section 3. In Section 4, the steady state joint distribution  
of the server state and the number of customers in the orbit/system are obtained.  
Some system performance measures are discussed in Section 5. The stochastic 
decomposition is shown good for our model in Section 6. Important special cases are 
derived in Section 7. In Section 8, the effects of various parameters on the system 
performance are discussed numerically. In Section 9, Conclusion and summary of the 
paper are discussed. 

2 Description of the model and its practical applications 

In this subdivision, we consider a preemptive priority retrial queue with two types of 
customers, J vacations, and negative customer where the server is subject to starting 
failure repair. The detailed description of model is given as follows: 

• There are two types of customers like priority customers and ordinary customers, 
arrives at the system. Priority customers have higher priorities over ordinary 
customers in service time of the busy server. We assume that both priority customers 
and ordinary customers arrive at the system according to two independent Poisson 
processes with rates λ and δ respectively. 

• Newly arriving (priority or ordinary) customer will commence its service 
immediately if the server is free. If a priority customer is in service, then the newly 
arriving priority customer will depart the system directly without service. While the 
server is busy with working an ordinary customer, the arriving priority customer will 
disturb the service of the ordinary customer. Then the server begins priority 
customer’s service immediately. We imagine that when an ordinary customer is 
preempted by a priority customer, the ordinary customer who was just being served 
before waits in the service area for the remaining service to complete. 

• If the server is being busy or on vacation, the arriving customers will join the pool of 
blocked customers called an orbit with FCFS discipline. Here, only one customer at 
the head of the orbit queue can access to the server. Also retrial times have an 
arbitrary distribution R(t) with corresponding Laplace Stieltjes-transform 
(LST)R*(ϑ). 

• If the server is free, any arriving customer is allowed to receive their service and the 
startup time of server could be negligible. Moreover, the server may have a starting 
failure with a probability 1 ,= −α α  and then the server has to be repaired 
immediately. The customer is in service must leave the service area. The probability 
of successful commencement of service for a new customer is. Here, the repair time 
of the failure server is of random length H with distribution function, LST H*(ϑ) and 
finite kth moment h(k)(k = 1, 2). 

• The negative customers always arrive only at the service time of the positive 
customers from outside the system according to a Poisson rate δ. Once the negative 
customer comes into the system it will remove the positive customer (priority 
customer or ordinary customer). The interrupted ordinary customer either enters into 
the orbit with probability θ (0 ≤ θ ≤ 1) or leave the system forever with the 
probability (1 – θ) and the priority customer will leave the system. 
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• Once the negative customer comes into the system, it will remove the positive 
customer (priority customer or ordinary customer). The interrupted ordinary 
customer either enters into the orbit with probability θ (0 ≤ θ ≤ 1) or leave the system 
forever with the probability (1 – θ ) and the priority customer will leave the system. 

• Whenever the orbit is empty, the server leaves for a vacation of random length V. 
When the server returns from a vacation and if there is no customer in the orbit then 
it leaves again for another vacation with the same length. This pattern continues until 
it returns from a vacation to find at least one customer in the orbit or it has already 
taken J vacations. At the end of the Jth vacation, if the orbit is empty then the server 
remains idle for new arrivals in the system. At a vacation completion epoch, if the 
orbit is empty, the server waits for the customers in the orbit or for a new arrival. 
During the vacation period, the service time follows a general random variable V 
with distribution function and LST and finite kth moment v(k) (k = 1, 2). 

• As soon as the breakdown occurs the server is sent for repair during that time it stops 
providing service to the customers till service channel is got repaired. The customer 
just being served before server breakdown will be waiting on the server, to complete 
th remaining service. The repair time (denoted by G) of the server is generally 
distributed with d.f G(y), LST G*(ϑ), and finite kth moment g(k) (k = 1,2). 

• In the normal busy period, there is a single server which provides regular service. 
The service time of priority customers follows a general distribution and denoted by 
the random variable Sp with distribution function Sp(t), having LST * ( )pS ϑ  and the 

first and second moments are (1)
pβ  and (2) .pβ  The service time of ordinary customers 

follows a general distribution and denoted by the random variable Sb with 
distribution function Sb(t) having LST *( )bS ϑ  and the first and second moments are 

(1)
bβ  and (2) .bβ  

• Various stochastic processes involved in the system are assumed to be independent 
of each other. 

• Throughout the rest of the paper, we denote by ( ) 1 ( )F x F x= −  the tail of 

distribution function F(x). We also denote *

0

( ) ( ),sxF s e dF x
∞

−= ∫  the Laplace-Stieltjes 

transform F(x) of 
0

( ) ( ) ,sxF s e F x dx
∞

−= ∫�  and to be the Laplace transform of F(x) and 

we assume the notation 
*

* 1 ( )( ) .F sF s
s

−
=  
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2.1 Practical justification of the model 

The suggested model has potential application in the field of telecommunications, 
computer processing, production and manufacturing system, inventory control system 
and operating systems. We consider a telecommunications system for an example. In 
telecommunications, call centres play a vital role. The customers contact the call centres 
through the agent or a customer service representative over the telephone (the regular 
server). In addition to contacting over the phone (priority customer), the customer can 
contact the call centre through the internet via e-mail, fax or live chat sessions (ordinary 
customer). If the customer service representative is idle then he can attend the voice call 
or e-mail immediately. Suppose, at the time of voice calling, if the agent is busy with 
other calls then the arriving voice call will lose its service. If the agent is busy with the  
e-mail or message, the arriving voice call has a preemptive priority over the e-mail 
service and the preempted service (e-mail) will wait to complete its service. If the 
arriving e-mail or message found the customer care representative is busy with the voice 
call then they are temporarily stored in retrial buffer called orbit and they will be served 
after some time (retrial time) according to FCFS. When the agent finds no voice calls or 
mail services, it will perform a sequence of maintenance jobs such as virus scan or server 
maintenance (J vacation). Sometimes, the server will have a starting problem due to a 
network problem or electronic failure (starting failure), then the voice call or mail 
services have to wait till the server get repaired. Meanwhile, the working server may 
receive a flow of virus (negative customer), which will stop the service of the system and 
the voice call or mail services which are in service will lose their service and it will force 
to leave the system. 

3 Stability condition 

In this section, we will carry out the discussion of the stability condition of the system by 
using embedded Markov chain technique. Let {tn; n = 1, 2, …} be the sequence of epochs 
of the regular service completion times for priority customers, ordinary customers, a 
vacation period completion occurs or starting failure repair period ends. Then the state of 
the queueing system can be described by the bivariate Markov process {C(t), N(t); t > 0} 
where C(t) denotes the server state (0,1,2,3,4, …, J + 4,5) depending on the server is free, 
busy on priority customers, busy on preemptive priority customers, busy on ordinary 
customers, on first vacation, on jth vacation, on repair due to starting failure. N(t) denotes 
the number of ordinary customers in the orbit. 

In addition, let 0 0 0 0 0( ), ( ), ( ), ( ) and ( )p jbR t S t S t V t H t  be the elapsed retrial time, 
elapsed service time of the priority customer, elapsed service time of the ordinary 
customer, elapsed vacation time of any customer and elapsed repair time on starting 
failure of any customer respectively at time t. Further, we introduce the random variable, 
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0, if the server is idle at time 
1, if the server is busy with a priority customer without preempting

an ordinary customer and in regular service period at time ,
2, if the server is busy with a pri

( )

t

t

C t =

ority customer with preempting
an ordinary customer and in regular service period at time ,

3, if the server is busy with an ordinary customer
and in regular service period at time ,

4, if the server is o

t

t
n first vacation at time ,

4 if the server is on   vacation at time ,
5, if the server is on repair due to starting failure at time 

th

t

j j t
t

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪ +
⎪
⎩

#

 

If C(t) = 0 and N(t) > 0, then R0(t) represent the elapsed retrial time. If C(t) = 1 and  
N(t) ≥ 0 then 0 ( )pS t  corresponding to the elapsed service time of the priority customer 
being served in the regular busy period. If C(t) = 2 and N(t) ≥ 0 then 0 ( )pS t  corresponding 
to the elapsed service time of the preemptive priority customer and 0 ( )bS t  corresponding 
to the elapsed service time of the interrupted ordinary customer being served in the 
regular busy period. If C(t) = 3 and N(t) ≥ 0 then 0( ) b S t corresponding to the elapsed 
service time of the ordinary customer being served in the regular busy period. If C(t) = 4 
and 0 ( )bS t  then corresponding to the elapsed first vacation time of any customer. If  
C(t) = j + 4 and N(t) ≥ 0 then 0 ( )jV t  corresponding to the elapsed jth vacation time of any 
customer. If C(t) = 5 and N(t) ≥ 0 then H0(t) corresponding to the elapsed time of server 
being repaired. 

Let {tn; n = 1, 2 …} be then the sequence of epochs at which is either a vacation 
period ends, service completion occurs or a repair period ends. Then the sequence of 
random vectors { ( ), ( )}n n nZ C t N t= + +  forms a Markov chain which is embedded in the 
retrial queueing system. It follows from Appendix that {Zn; n ∈ N} is ergodic if and only 
if ρ < R*(λ + δ) then the system will be stable where 

[ ] ( )

[ ] ( )

*
* * * *

*
* * *

1 ( )
( ) ( ) ( ) ( )

1 ( )
( ) ( ) ( )

p
p

b
b

S
R λ δ λR λ δ δR λ δ δ

τρ
S τ

R λ δ λR λ δ δ τ
τ

⎡ ⎤⎡ ⎤−
+ + + + + +⎢ ⎥⎢ ⎥

⎣ ⎦⎢ ⎥= ⎢ ⎥⎡ ⎤−⎢ ⎥+ + + + +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

β
α α β

α

 

4 Steady state analysis of the system 

In this section, we develop the steady state difference-differential equations for the retrial 
queueing system by treating the elapsed retrial times, the elapsed service times, the 
elapsed vacation time and the elapsed repair times as supplementary variables. Then we 
derive the probability generating function (PGF) for the server states, the PGF for a 
number of customers in the system and orbit. 
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In steady state, we assume that R(0) = 0, R(∞) = 1, Sp(0) = 0, Sp(∞) = 1, Sb(0) = 0, 
Sb(∞) = 1, Vj(0) = 0, Vj(∞) = 1, G(0) = 0, G(∞) = 1 are continuous at x = 0. So that the 
functions a(x), μp(x), μb(x), γ(x) and ξ(x) are the conditional completion rates (hazard rate) 
for retrial, service of a priority customer and ordinary customer, vacation completion rate, 
repair completion rate of a customer respectively. 

( )( ) ( )i.e., ( ) ; ( ) ; ( ) ;
1 ( ) 1 ( ) 1 ( )

( ) ( )       ( ) ; ( )
1 ( ) 1 ( )

p b
p b

p b

dS xdR x dS xa x dx μ x dx μ x dx
R x S x S x

dV x dH xγ x dx η x dx
V x H x

= = =
− − −

=
− −

 

For the process, we define the limiting probabilities P0(t) = P{X(t) = 0, N(t) = 0} and the 
probability densities 

{ }0( , ) ( ) 0, ( ) , ( ) , for 0, 0 and 1.nP x t dx P C t N t n x R t x dx t x n= = = < ≤ + ≥ ≥ ≥  

{ }0
1,Π ( , ) ( ) 1, ( ) , ( ) , for 0, 0 and 0.n px t dx P C t N t n x S t x dx t x n= = = < ≤ + ≥ ≥ ≥  

{ }0 0
2,Π ( , , ) ( ) 2, ( ) , ( ) , ( ) ,

                                                                       for 0, 0 and 0, 0.
n p bx y t dx P C t N t n x S t x dx y S t y dy

t x y n
= = = < ≤ + < ≤ +

≥ ≥ ≥ ≥
 

{ }0
3,Π ( , ) ( ) 3, ( ) , ( ) , for 0, 0 and 0.n bx t dx P C t N t n x S t x dx t x n= = = < ≤ + ≥ ≥ ≥  

{ }0
,Ω ( , ) ( ) 3, ( ) , ( ) ,

                                    for (1 ), 0, 0 and 0.
j n jx t dx P C t j N t n x V t x dx

j J t x n

= = + = < ≤ +

≤ ≤ ≥ ≥ ≥
 

{ }0( , ) ( ) 5, ( ) , ( ) , for 0, 0 and 0.nQ x t dx P C t N t n x H t x dx t x n= = = < ≤ + ≥ ≥ ≥  

We assume that the stability condition is fulfilled in the sequel and so that we can set 
0 0lim ( );

t
P P t

→∞
=  and limiting densities for t ≥ 0, x ≥ 0 and n ≥1. 

1, 1, 2, 2,

3, 3, , ,

( ) lim ( , ); Π ( ) limΠ ( , ); Π ( ) limΠ ( , , );

Π ( ) limΠ ( , ); Ω ( ) limΩ ( , ); ( ) lim ( , );

n n n n n n
t t t

n n j n j n n n
t t t

P x P x t x x t x x y t

x x t x x t Q x Q x t
→∞ →∞ →∞

→∞ →∞ →∞

= = =

= = =
 

4.1 The steady state equations 

By using the method of supplementary variable technique, we formulate the system of 
governing equations of this model as follows: 

0 ,0

0

( ) Ω ( ) ( )Jλ δ P x γ x dx
∞

+ = ∫  (4.1) 

( )( ) ( ) ( ) 0, 1n
n

dP x λ δ a x P x n
dx

+ + + = ≥  (4.2) 
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( )1,0
1,0

Π ( )
( ) Π ( ) 0, 0,p

d x
λ μ x x n

dx
+ + + = =β  (4.3) 

( )1,
1, 1, 1

Π ( )
( ) Π ( ) Π ( ), 1n

p n n
d x

λ μ x x λ x n
dx −+ + + = ≥β  (4.4) 

( )2,0
2,0

Π ( , )
( ) Π ( , ) 0, 0p

x y
λ μ x x y n

x
∂

+ + + = =
∂

β  (4.5) 

( )2,
2, 2, 1

Π ( , )
( ) Π ( , ) Π ( , ), 1,n

p n n
x y

λ μ x x y λ x y n
x −

∂
+ + + = ≥

∂
β  (4.6) 

( )3,0
3,0 2,0

0

Π ( )
( ) Π ( ) Π ( , ) ( ) , 0b p

d x
λ δ μ x x y x μ y dy n

dx

∞

+ + + + = =∫β  (4.7) 

( )3,
3, 3, 1

2,

0

Π ( ) ( ) Π ( ) Π ( )

 Π ( , ) ( ) , 1

n
b n n

n p

d x λ δ μ x x λ x
dx

y x μ y dy n

−

∞

+ + + + =

+ ≥∫

β

 (4.8) 

( ),0
,0

Ω ( )
( ) Ω ( ) 0, 0j

j
d x

λ γ x x n
dx

+ + = =  (4.9) 

( ),
, , 1

Ω ( )
( ) Ω ( ) Ω ( ), 1j n

j n j n
d x

λ γ x x λ x n
dx −+ + = ≥  (4.10) 

( )0
0

( ) ( ) ( ) 0, 0Q x λ ξ x Q x n
x

∂
+ + = =

∂
 (4.11) 

( ) 1
( ) ( ) ( ) ( ), 1n

n n
Q x λ ξ u Q x λQ x n

x −
∂

+ + = ≥
∂

 (4.12) 

To solve the equations (4.2) to (4.12), the stead state boundary conditions at x = 0 and  
y = 0 are followed, 

, 3, 1
1 0 0 0

3, 1, 3,

0 0 0

(0) Ω ( ) ( ) ( ) ( ) Π ( )

           (1 ) Π ( ) Π ( ) ( ) Π ( ) ( ) ,

            1

J

n j n n n
j

n n p n b

P x γ x dx Q x η x dx θ x dx

θ x dx x μ y dy x μ x dx

n

∞ ∞ ∞

−

=

∞ ∞ ∞

⎛ ⎞
⎜ ⎟= + +
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟+ − + +
⎜ ⎟
⎝ ⎠

≥

∑∫ ∫ ∫

∫ ∫ ∫

β

β β  (4.13) 

( )1,0 0Π (0) , 0δp n= =α  (4.14) 

1,

0

Π (0) ( ) , 1n nδ P x dx n
∞⎛ ⎞

⎜ ⎟= ≥
⎜ ⎟
⎝ ⎠
∫α  (4.15) 
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2, 3,Π (0, ) Π ( ), 0n nx δ x n= ≥  (4.16) 

3,0 1 0

0

Π (0) ( ) ( ) , 0P x a x dx λP n
∞⎛ ⎞
⎜ ⎟= + =
⎜ ⎟
⎝ ⎠
∫α  (4.17) 

3, 1

0 0

Π (0) ( ) ( ) ( ) , 1n n nP x a x dx λ P x dx n
∞ ∞

+

⎛ ⎞
⎜ ⎟= + ≥
⎜ ⎟
⎝ ⎠
∫ ∫α  (4.18) 

1,0 3,0 3,0

0 0 0
1,

1,0 0

0 0

Π ( ) ( ) Π ( ) ( ) (1 ) Π ( )

Ω (0)

    Π ( ) ( ) ( )

p b

n

y μ y dy x μ x dx θ x dx

x dx Q x η x dx

∞ ∞ ∞

∞ ∞

⎡ ⎤
⎢ ⎥+ + −
⎢ ⎥

= ⎢ ⎥
⎢ ⎥

+ +⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫ ∫

∫ ∫

β

β

 (4.19) 

1,
, 0

Ω ( ) ( ) , 0, 2,
Ω (0)

0, 1

j n
j n

x γ x dx n j J

n

∞

−

⎧
⎪ = =

= ⎨
⎪

≥⎩

∫ …
 (4.20) 

0 0(0) , 0Q δP n= =α  (4.21) 

1 0

0 0

(0) ( ) ( ) ( ) ( ) , 1n n nQ λ P x a x dx P x dx λ δ P n
∞ ∞

−

⎛ ⎞
⎜ ⎟= + + + ≥
⎜ ⎟
⎝ ⎠
∫ ∫α  (4.22) 

The normalising condition is 

1, 2, 3,

0 0 0 0
0

1 00
,

10 0

Π ( ) Π ( , ) Π ( )

( ) 1

( ) Ω ( )

n n n

n
J

n n
n j n

j

x dx x y dxdy x dx

P P x dx

Q x dx x dx

∞ ∞ ∞ ∞

∞∞ ∞

∞ ∞
= =

=

⎛ ⎞
⎜ ⎟+ +
⎜ ⎟

+ + =⎜ ⎟
⎜ ⎟
+ +⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ∫ ∫ ∫
∑ ∑∫

∑∫ ∫
 (4.23) 

4.2 The steady state solution 

The steady state solution of the retrial queueing model is obtained by using the PGF 
technique. To solve the above equations, we define the generating functions for |z| ≤ 1 as 
follows: 

1 1,
1 1 0

1 1, 2 2,
0 0

( , ) ( ) ; (0, ) (0) ; Π ( , ) Π ( ) ;

Π (0, ) Π (0) ; Π ( , , ) Π ( , ) ;

n n n
n n n

n n n

n n
n n

n n

P x z P x z P z P z x z x z

z z x y z x y z

∞ ∞ ∞

= = =

∞ ∞

= =

= = =

= =

∑ ∑ ∑

∑ ∑
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2 2, 3 3,
0 0

3 3, , ,
0 0 0

0 0

Π ( , 0, ) Π ( , 0) ; Π ( , ) Π ( ) ;

Π (0, ) Π (0) ; Ω ( , ) Ω ( ) ; Ω (0, ) Ω (0) ;

( , ) ( ) ; (0, ) (0) ;

n n
n n

n n

n n n
n j j n j j n

n n n

n n
n n

n n

x z x z x z x z

z z x z x z z z

Q x z Q x z Q z Q z

∞ ∞

= =

∞ ∞ ∞

= = =

∞ ∞

= =

= =

= = =

= =

∑ ∑

∑ ∑ ∑

∑ ∑

 

On multiplying the equations (4.2) to (4.12) by zn and summing over n, (n = 0, 1, 2…) 
and Solving the partial differential equations, we get 

[ ] ( )( , ) (0, ) 1 ( ) λ δ xP x z P z R x e− += −  (4.24) 

[ ] ( )
1 1Π ( , ) Π (0, ) 1 ( ) ,pA z x

px z z S x e−= −  (4.25) 

[ ] ( )
2 2Π ( , , ) Π (0, , ) 1 ( ) ,pA z x

px y z y z S x e−= −  (4.26) 

[ ] ( )
3 3Π ( , ) Π (0, ) 1 ( ) ,bA z x

bx z z S x e−= −  (4.27) 

[ ] ( )Ω ( , ) Ω (0, ) 1 ( ) , for ( 1,2, )b z x
j jx z z V x e j J−= − = …  (4.28) 

[ ] ( )( , ) (0, ) 1 ( ) ,b z xQ x z Q z H x e−= −  (4.29) 

where Ap(z) = λ(1 – z) +β, *( ) ( ( ) (1 ( ( ))))b p p pA z A z δ S A z= + −  and b(z) = (λ(1 – z)). 
From (4.10) we obtain, 

[ ],0 ,0Ω ( ) Ω (0) 1 ( ) , for ( 1,2, )λx
j jx V x e j J−= − = …  (4.30) 

Multiplying with equation (4.30) by γ(x) on both sides for j = J and integrating with 
respect to x from 0 to ∞, then from (4.1) we have: 

0
,0 *

( )Ω (0)
( )J

λ δ p
V λ
+

=  (4.31) 

From equation (4.30) and solving (4.20), (4.30) over the range j = J – 1, J – 2,…,1, after 
some simplifications, we will have: 

( )
0

,0 1*

( )Ω (0) , 1, 2, , 1.
( )

j J j
λ δ p j J

V λ − +

+
= = −…  (4.32) 

from (4.20), (4.31) and (4.32), we obtain 

( )
0

1*

( )Ω (0, ) , 1,2, , 1
( )

J J j
λ δ pz j J

V λ − +

+
= = −…  (4.33) 

Integrating the equation (3.33) from 0 to ∞ and using (4.31) and (4.32) again, we finally 
obtain 
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( )
( )

*
0

,0 1*

( ) 1 ( )
Ω (0, ) , 1, 2, .

( )
j J j

λ δ p V λ
z j J

V λ − +

+ −
= = …  (4.34) 

Note that Ωj,0 represents the steady-state probability that no customer appears while the 
server is on the jth vacation. 

Let us define as the probability that no customer appears in the system while the 
server is on vacation. Then, 

( )( )
( ) ( )

*
0

0
* *

( ) 1 ( )
Ω

( ) 1 ( )

J

J

λ δ p V λ

V λ V λ

+ −
=

−
 (4.35) 

From the equations (4.13) to (4.22), we can obtain 

1 3
10 0 0

3

0 0

1 ,0 0
10

(0, ) Π ( , ) ( ) Π ( , ) ( ) Ω ( , ) ( )

 ( , ) ( ) (1 ) Π ( , )

 Π ( , ) Ω (0) ( )

J

p b j
j

J

j
j

P z x z μ x dx x z μ x dx x z γ x dx

Q x z η x dx θ θz x z dx

x z dx λ δ P

∞ ∞ ∞

=

∞ ∞

∞

=

= + +

+ + − +

⎛ ⎞
+ − + +⎜ ⎟⎜ ⎟

⎝ ⎠

∑∫ ∫ ∫

∫ ∫

∑∫

β

β

 (4.36) 

1 0

0

Π (0, ) ( , ) ,z δ P x z dx δP
∞⎛ ⎞

⎜ ⎟= +
⎜ ⎟
⎝ ⎠
∫α  (4.37) 

2 3Π (0, , ) Π ( , )x z δ x z=  (4.38) 

3 0

0 0

1Π (0, ) ( , ) ( ) ( , ) ,z P x z a x dx λ P x z dx λP
z

∞ ∞⎛ ⎞
⎜ ⎟= + +
⎜ ⎟
⎝ ⎠
∫ ∫α  (4.39) 

0

0 0

(0, ) ( , ) ( ) ( , ) ( )Q z P x z a x dx λz P x z dx λ δ P
∞ ∞⎛ ⎞
⎜ ⎟= + + +
⎜ ⎟
⎝ ⎠
∫ ∫α  (4.40) 

Inserting the equation (4.24) in (4.37), we get 

( )*
1 0Π (0, ) (0, ) ( ) ,z δP z R λ δ δP= + +α  (4.41) 

where 
*

* 1 ( )( ) .R λ δR λ δ
λ δ

− +⎛ ⎞
+ = ⎜ ⎟

+⎝ ⎠
 

Inserting equation (4.24) in (4.38) and make some manipulation, finally we get, 

( )* *
3 0

(0, )Π (0, ) ( ) ( )P zz R λ δ λzR λ δ λP
z

= + + + +
α α  (4.42) 
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Inserting the equation (4.24) in (4.39), we get 

( )* *
0(0, ) (0, ) ( ) ( ) ( )Q z P z R λ δ λzR λ δ λ δ P= + + + + +α α  (4.43) 

Using (4.24) to (4.29) in (4.36) and make some manipulation, we get 

( ) ( )

( ) ( )( )
( )

( )( )
( )

( )( )
( )

* *
1 3

*
*

3
1

*

1

*

0 0
*

Π (0, ) ( ) Π (0, ) ( )

1 ( )
  Ω(0, ) ( ) (1 )Π (0, )

( )

1 ( )(0, )
(0, ) *( ( )) Π (0, )

( )

1 ( )
         ( ) ( )

( )

p p b b

J
b b

bj

p p

p

J

J

z S A z z S A z

S A z
z V b z θ θz z

A z

S A zP z
Q z H b z z

A z

V λ
λ δ p λ δ p

V λ

=

⎧ +
⎪

−⎪
− + − +⎪

⎪
⎪ −= ⎨ +⎪
⎪
⎪ −⎪ − + − +⎪
⎩

∑ β

β
 (4.44) 

Using the equation (4.41) to (4.43) and (4.33) in (4.44), we get 

( )(0, )
( )

Nr zP z
Dr z

=  (4.45) 

[ ]( ) ( ) ( )
( )
( )( ) ( )( )

* *

*
0

* *

( ) ( ) 1 ( ) ( ) ( )

( )  ( ) ( ) ( ) (1 )

 1 ( ) ( ) 1 ( ) ( )

b b

p p b p

b b p p p b

λ δ N z λ δ H b z λS A z

Nr z zP δS A z A z A z λ q θz

S A z A z δ S A z A z

⎧ ⎫⎡ + − + + +⎣⎪ ⎪⎪ ⎪
= + ⎤ + − −⎨ ⎬⎦

⎪ ⎪
− + −⎪ ⎪⎩ ⎭

α α

α α β

α β

 

( ) ( )
( ) ( )

( )( )
( )( )

( )
( )( )

* * *

* * *

* *

*

* *

* *

( ) ( ) ( )

 ( ) ( ) ( ) ( ) ( )

 ( ) ( )
( ) ( ) ( )

(1 ) 1 ( )

   ( ) ( ) ( )

1 ( ) ( ) ( )

b b b p

p p
b p

b b

p

p p b

z R λ δ λzR λ δ H b z

R λ δ λzR λ δ S A z A z A z

z δR λ δ S A z
Dr z zA z A z

θ θz S A z

R λ δ λzR λ δ A z

δ z S A z R λ δ A z

⎧ ⎫⎡ ⎤+ + +
⎪⎢ ⎥
⎪ + + + +⎢ ⎥
⎪⎢ ⎥

+ +⎪⎢ ⎥⎪⎣ ⎦= − ⎨
+ − + −⎪
⎪

+ + +⎪
⎪+ − +⎪⎩

α

α

α

αβ

α β

⎪
⎪
⎪
⎪⎪
⎬
⎪
⎪
⎪
⎪
⎪⎭

 

Using the equation (4.45) in (4.41), we get 

[ ]( )
[ ]

( ) ( )
( )( )

*

* *

1 0
* * *

* *

( ) ( ) 1 1

 ( ) ( ) ( )
Π (0, ) ( )

  ( ) ( ) ( )

 ( )(1 ) 1 ( ) ( )
b b

b b p

z R λ δ N z

z λ δ λz R λ δ R λ δ
z δp Dr z

H b z R λ δ S A z

R λ δ θ θz S A z A z

⎧ ⎫+ − −
⎪ ⎪
⎪ ⎪+ + − + − +

= ⎨ ⎬
− +⎪ ⎪

⎪ ⎪− + − − −⎩ ⎭

α
α

α

αβ

 (4.46) 

 



   

 

   

   
 

   

   

 

   

    Analysis of a preemptive priority retrial queue with negative customers 89    
 

    
 
 

   

   
 

   

   

 

   

       
 

Using the equation (4.45) in (4.42), we get 

( )
[ ]( )

( )
( )

* *

3 0
*

* *

( ) ( )

( ) ( ) 1
Π (0, ) ( ) ( ) ( )

( ) ( )

( ) ( )

p b

p p

R λ δ λzR λ δ

λ δ N z
z P A z A z Dr z

λ δ λz H b z

λz δR λ δ S A z

⎧ ⎫+ + +
⎪ ⎪
⎛ ⎞+ −⎪ ⎪

= ⎜ ⎟⎨ ⎬⎜ ⎟+ + −⎪ ⎪⎝ ⎠
⎪ ⎪+ + +⎩ ⎭

α
α

α

 (4.47) 

Using the equation (4.39), (4.45) in (4.38), we get 

[ ]
( )

[ ]( )
( )

( )
( )

* ( )
0

* *

2
* *

*

* *

1 ( )

( ) ( )

( ) ( ) 1 )
Π (0, , ) ( )

( ) ( ) ( ) ( )
( )
( ) ( )

bA z x
b

p b

p p

δP S x e

R λ δ λzR λ δ

λ δ N z λ δ λz
x z Dr z

R λ δ λzR λ δ A z A z
H b z λz
δR λ δ S A z

−−

⎧ ⎫+ + +
⎪ ⎪

+ − + + −⎪ ⎪
= ⎪ ⎪

+ + +⎨ ⎬
⎪ ⎪

+⎪ ⎪
⎪ ⎪+⎩ ⎭

α

α(

α

 (4.48) 

Using the equation (4.45) in (4.43) we get 

( )
[ ]

( )( )
( ) ( )( )
( )( )

( )
( )( ) ( )

* *

* *

* *
0

* *

* *

( ) ( ) ( )
 ( ) 1 ( ) ( )

 ( ) ( ) ( ) ( )

(0, ) ( ) ( ) 1 ( )

( ) ( ) ( )
 ( ) (1 )

 1 ( ) ( ) ( )

p b

b

p p p p p

p

b b b b b

z R λ δ λzR λ δ λ δ
N z A z A z

δzA z R λ δ λz λ δ R λ δ

Q z P S A z A z S A z

λz λ δ R λ δ λzR λ δ
A z θ θz

S A z S A z A z

⎧ ⎫+ + + +
⎪ ⎪

−⎪ ⎪
⎪ ⎪
+ + + − + +⎪ ⎪

⎪ ⎪⎡ ⎤= + −⎨ ⎬⎣ ⎦
⎪
+ − + + + +⎪
⎪ − −⎪
⎪ − +⎩ ⎭

α

α β

α

β

( )Dr z
⎪
⎪
⎪
⎪
⎪

 (4.49) 

Using the equations (4.45) to (4.51) in (4.24) to (4.29), then we get the results for the 
following PGFs P(x, z), Π1(x, z), Π2(x, y, z), Π3(x, z), Ωj(x, z) and Q(x, z). Next we are 
interested in investigating the marginal orbit size distributions due to system state of the 
server. 

Theorem 4.1. Under the stability condition ρ < R* (λ + δ), the marginal probability 
distributions of the number of customers in the orbit when server being idle, busy serving 
priority customers without preempting an ordinary customer, busy serving priority 
customers with preempting an ordinary customer, busy serving ordinary customers, on 
vacation and repair due to starting failure is given by 

( )( )
( )

Nr zP z
Dr z

=  (4.50) 
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[ ]( ) ( )
( ) ( )

( )( )
( )( )

*

* *

* *
0

*

( ) ( ) 1 ( ) ( )
( ) ( )

  ( ) ( )

( ) ( )  (1 ) 1 ( ) ( )

 1 ( )

b p
b b p p

b b p

p p b

λ δ N z λ δ H b z
A z A z

λS A z δS A z

Nr z zP R λ δ λ θ θz S A z A z

δ S A z A z

⎧ ⎫⎡ ⎤+ − + +
⎪ ⎪⎢ ⎥

+ +⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦
⎨ ⎬

= + + − − −⎪ ⎪
⎪ ⎪
+ −⎪ ⎪⎩ ⎭

α

α α

α β

α β

 

( ) ( )
( ) ( )

( )( )
( )( )

( )
( )( )

* * *

* * *

* *

*

* *

* *

( ) ( ) ( )

 ( ) ( ) ( ) ( ) ( )

 ( ) ( )
( ) ( ) ( )

(1 ) 1 ( )

   ( ) ( ) ( )

1 ( ) ( ) ( )

b b b p

p p
b p

b b

p

p p b

z R λ δ λzR λ δ H b z

R λ δ λzR λ δ S A z A z A z

z δR λ δ S A z
Dr z zA z A z

θ θz S A z

R λ δ λzR λ δ A z

δ z S A z R λ δ A z

⎧ ⎫⎡ ⎤+ + +
⎪⎢ ⎥
⎪ + + + +⎢ ⎥
⎪⎢ ⎥

+ +⎪⎢ ⎥⎪⎣ ⎦= − ⎨
+ − + −⎪
⎪

+ + +⎪
⎪+ − +⎪⎩

α

α

α

αβ

α β

⎪
⎪
⎪
⎪⎪
⎬
⎪
⎪
⎪
⎪
⎪⎭

 

( )
[ ]( )

[ ]
( ) ( )

( )( )

*
0

*

* *

1
* * *

* *

1 ( )

( ) ( ) 1 1

( ) ( ) ( ) ( )
Π ( ) ( )

( ) ( ) ( )

( )(1 ) 1 ( )

( ) ( )

p p

b

b b

b b

p b

δP S A z

z R λ δ N z

z λ δ λz R λ δ R λ δ A z
z Dr z

H b z R λ δ S A z

R λ δ θ θz S A z

A z A z

⎡ − ⎤⎣ ⎦
⎧ ⎫⎛ ⎞+ − −
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟+ − + − +⎪ ⎪= ⎜ ⎟⎨ ⎬⎜ ⎟− +⎪ ⎪⎝ ⎠
⎪ ⎪
− + − − −⎪ ⎪⎩ ⎭

α

α

α

αβ

 (4.51) 

( ) ( )
( ) [ ]( )

( )
( ) ( )

* *
0

* *

2
* *

* * *

1 ( ) 1 ( )

( ) ( ) ( ) ( ) 1
Π ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

b b p p

p p

δP S A z S A z

R λ δ λzR λ δ λ δ N z
z Dr z

λ δ λz R λ δ λzR λ δ
H b z λz δR λ δ S A z

⎡ ⎤− ⎡ − ⎤⎣ ⎦ ⎣ ⎦
⎧ ⎫+ + + + −

= ⎪ ⎪⎪ ⎪
+ + − + + +⎨ ⎬
⎪ ⎪

+ + +⎪ ⎪⎩ ⎭

α

α

α

 (4.52) 

( )
( )

[ ]( ) ( )( )
( )

*
0

* *

3
*

* *

1 ( )

( ) ( )
Π ( ) ( )

( ) ( ) 1 ( ) ( ) ( )

( ) ( )

b b

p

p p

P S A z

R λ δ λzR λ δ
z Dr z

λ δ N z λ δ λz H b z A z

λz δR λ δ S A z

⎡ ⎤−⎣ ⎦
⎧ ⎫+ + +

= ⎪ ⎪⎪ ⎪
+ − + + −⎨ ⎬

⎪ ⎪
+ + +⎪ ⎪⎩ ⎭

α

α

α

 (4.53) 

( )
[ ]

*
0

1*

( ) 1 ( )
Ω( ) , 1,2, ,

( ) ( )J j

λ δ P V b z
z j J

V λ b z− +

⎡ ⎤+ −⎣ ⎦= = …  (4.54) 
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( )

( ) [ ]

( )( )
( )

( )( )
( )( ) ( )

( )

*
0

* *

* *

*

* *

*

* *

1 ( )
( )

( ) ( ) ( ) ( ) 1
 ( ) ( )+ ( )

 ( ) ( ) ( )

 ( ) ( ) ( )
( )  ( ) ( ) ( )

 1 ( ) ( )

 ( ) ( ) ( )

 (1

p b b

p p p b

p p

p

P H b z
b z

z R λ δ λzR λ δ λ δ N z
A z A z δzA z

R λ δ λz λ δ R λ δ

S A z A z δzA z
Q z R λ δ λz λ δ R λ δ

S A z λz λ δ

R λ δ λzR λ δ A z

θ

⎡ ⎤−⎣ ⎦

+ + + + −

+ + − + +

⎡ ⎤ +⎣ ⎦
=

+ + − + +

− + − +

+ + +

− −

α

α

α

β α

β ( )( )( )
( )( )

( )

*

* *

*

( )

) 1 ( )

 ( ) ( ) ( )

 ( ) ( ) ( )

b b

p b b b

Dr z

θz S A z

λz λδ R λ δ λzR λ δ

A z S A z A z

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪−⎪ ⎪
⎪ ⎪+ − + + +⎪ ⎪
⎪ ⎪⎩ ⎭

α

 (4.55) 

where 
*

0
( )R λ δ ρP
ω
+ −

=  (4.56) 

( )

( )

(1) * * (1) *

* * * * *
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Proof. Integrating the equation (4.24) to (4.29) with respect to x, we define the PGFs as, 
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Integrating the above equation (4.26) by x and y, define the partial generating functions as 
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we can be determined the probability that the server is idle (P0). Thus, by setting z = 1 in 
(4.52) to (4.57) and applying L-Hospital’s rule whenever necessary and we get 

0 1 2 3( ) Π ( ) Π ( ) Π ( ) Ω ( ) ( ) 1.jP P z z z z z Q z+ + + + + + =  

Corollary 4.1.: if the system satisfies the stability condition ρ < R* (λ + δ) the PGF of 
number of customers in the system at stationary point of time is 
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where P0 is given in equation (4.62). 

5 System performance measures 

In this section, we derive some system probabilities, a mean number of customers in the 
orbit/system, mean busy period and the busy cycle of the model. 

5.1 System state probabilities 

From equations (4.52) to (4.57), by setting z → 1 and applying L-Hospital’s rule 
whenever necessary, then we get the following results. 
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1 the steady-state probability that the server is idle during the retrial is given by, 
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2 the steady-state probability that the server is busy serving priority customers without 
preempting an ordinary customer is given by, 
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3 the steady-state probability that the server is busy serving priority customers with 
preempting an ordinary customer is given by, 
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4 the steady-state probability that the server is busy serving ordinary customers is 
given by, 
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5 The steady-state probability that the server is on vacation, is given by 
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6 The steady-state probability that the server is on starting failure is given by, 
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5.2 Mean system size and orbit size 

If the system is in steady state condition, the expected number of customers in the orbit 
(Lq) is obtained by differentiating (4.64) with respect to z and evaluating at z = 1. 
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2 the average time a customer spends in the system (Ws) and the average time a 
customer spends in the queue (Wq) can be found by using the Little’s formula 

and .qs
s q

LLW W
λ λ

= =  

6 Stochastic decomposition 

Stochastic decomposition has been discussed among M/G/1 type queueing models with 
server vacations by Fuhrman and Cooper (1985). In this result we analyses that the 
number of customers in the system in a steady state at a random point in time is 
distributed as the sum of two independent random variables, one of which is the number 
of customers in the corresponding standard queueing system (in steady state) at random 
point in time, the other random variable may have different probabilistic interpretations 
in specific cases depending on how the vacations are scheduled. Let K(z) be the 
stationary size distribution of M/G/1 retrial queueing system with negative customers, 
starting failure and at most J vacation convolution of two independent random variables 
χ(z) and φ(z). 

The mathematical version of the stochastic decomposition law is K(z) = χ(z). φ(z) and 
is expressed in the form 

1 the system size distribution of M/G/1 queueing system with two type of customers, 
Negative customers, starting failure and at most J vacations [represented in the first 
term of K(z)] 

2 the conditional distribution of the number of customers in the vacation system at a 
random point in time given the server is idle [represented in the second term of K(z)]. 

The number of arrivals in the vacation system at a random point in time given that the 
server is on vacation or idle. In fact, the second term can also obtain through the vacation 
definition of our system, i.e. 
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The first term can be obtained through the without vacation definition of our system 
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From above stochastic decomposition law, we observe that K(z) = χ(z).φ(z) which 
confirm that the decomposition result of Fuhrman and Cooper (1985) also valid for this 
special vacation system. 

7 Special cases 

In this section, we analyse briefly some special cases of our model, which are consistent 
with the existing literature. 

Case (i): no vacation, no negative customer, no orbital search and no starting 
failure 

In this case, we put Pr[V = 0] = 1; α = θ = 1; β = 0; our model can be reduced to a 
preemptive priority retrial queueing system and Ks(z) can be obtained as follows, 
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This coincides with the result of Gao (2015). 

Case (ii): no priority arrival, no negative customer and no starting failure 

In this case, we put δ = β = 0; α = 1, our model can be reduced to a single server retrial 
queueing system with j vacation and Ks(z) can be obtained as follows, 
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Case (iii): no priority arrival, no starting failure, and no vacation 

In this case, we put Pr[V = 0] = 1; δ = 0; α = 1, our model can be reduced to a single 
server retrial queueing system with starting failure, and negative customer and Ks(z) can 
be obtained as follows, 
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Case (iv): no priority arrival, no vacation, no starting failure, and no negative 
customer 

In this case, we put Pr[V = 0] = 1; δ = β = θ = 0; α = 1, our model can be reduced to an 
M/G/1 retrial queue and Ks(z) can be obtained as follows, 
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Case (v): no priority arrival, no retrial; no vacation, no negative customer and 
no starting failure 

In this case, we put R*(λ) → 1; Pr[V = 0] = 1; δ = β = θ = 0; α = 1, our model can be 
reduced to an M/G/1 queue and Ks(z) can be obtained as follows 
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8 Numerical examples 

We present some numerical examples in this section, to study the effect of various 
parameters in the system performance measures of our system where all retrial times, 
arrival times, service times, vacation times and repair times are exponential. We assume 
arbitrary values to the parameters such that the steady state condition is satisfied. 
MATLAB software has been used to illustrate the results numerically. Probability density 
functions for the exponential distribution is f(x) = υe–υx, x > 0. 

Figure 1 Lq versus starting failure and β (see online version for colours) 
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For the effect of the parameters λ, a, δ, α and γ on the system performancemeasures, 
three-dimensionalgraphs are illustrated in Figure 1 to Figure 4. Figure. 1 shows that the  
surface displays an upward trend as expected for increasing the value of starting failure 
rate and Negative arrival rate (β) against the mean orbit size (Lq). Figure 2 shows that the 
probability that server is idle (P0) decreases with increasing values of the arrival rate (λ) 
and successful service rate (α). Figure 3 show that the mean orbit size (Lq) is decreasing 
for the increasing values of the retrial rate and vacation rate (γ). Figure 4 show that the 
probability that server is idle (P0) is decreased for the increasing values of the vacation 
rate and successful service rate (α). 

Figure 2 α and λ versus P0 (see online version for colours) 

 

Figure 3 Lq versus retrial rate and γ (see online version for colours) 

 

From the above numerical examples, we can find the influence of parameters on the 
performance measures in the system and know that the results are coincident with the 
practical situations. 
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Figure 4 P0 versus α and γ (see online version for colours) 

 

9 Conclusions 

In this paper, we have examined a preemptive priority retrial queueing system with the 
negative customer, at most J vacations and repair due to starting failure. Using the 
method of supplementary variable technique, the PGFs for the numbers of customers in 
the system when it is free, busy with priority customer, busy with preemptive priority 
customer, busy with an ordinary customer, on vacations and under repair due to starting 
failure is found. Some important system performance measures and stochastic 
decomposition law are also discussed. The explicit expressions for the average queue 
length of orbit and system have been obtained. Finally, the analytical results are validated 
with the help of numerical illustrations. 

The present investigation includes features simultaneously such as, 

• preemptive priority retrial queue 

• negative customer 

• at most J vacations 

• repair due to starting failure. 

Our suggested model and its results have a specific and potential application in the field 
of telephone consultation service and in the area of computer processing system. This 
work can be further extended in many directions by incorporating the concepts of 

• batch arrival 

• optional re-service 

• orbital search 

• working vacation 

• immediate feedback. 
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Hopefully, this investigation will be of great help for the system managers to take 
decisions about the system size and other parameters in a perfect manner. 
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Appendix 

Sufficient condition of ergodicity 

The embedded Markov chain {Zn; n ∈ N} is ergodic if and only if ρ < R* (λ + δ) for our 
system to be stable, where 
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Proof: 
To prove the sufficient condition of ergodicity, it is very convenient to use Foster’s 

criterion (see Pakes, 1969), which states that the chain {Zn; n ∈ N} is an irreducible and 
aperiodic Markov chain is ergodic if there exists a non-negative function f(j), j ∈ N and  
ε > 0, such that mean drift ψj = E[f(zn+1) – f(zn)/zn = j] is finite for all j ∈ N and ψj ≤ –ε for 
all j ∈ N, except perhaps for a finite number j’s. In our case, we consider the function  
f(j) = j. then we have 
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ρ j
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Clearly, the inequality ρ < R*(λ + δ) is sufficient condition for ergodicity. 
To prove the necessary condition, As noted in Sennott et al. (1983), if the Markov 

chain {Zn; n ≥ 1} satisfies Kaplan’s condition, namely, ψj < ∞ for all j ≥ 0 and there exits 
j0 ∈ N such that ψj ≥ 0 for j ≥ j0. Notice that, in our case, Kaplan’s condition is satisfied 
because there is a k such that mij = 0 for j < i – k and i > 0, where M = (mij) is the one-step 
transition matrix of {Zn; n ∈ N}. Then ρ ≥ R*(λ + δ) implies the non-ergodicity of the 
Markov chain. 


