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Abstract
In this paper we consider a single server queueing model with under general bulk service
rule with infinite upper bound on the batch size which we call group clearance. The arrivals
occur according to a batch Markovian point process and the services are generally dis-
tributed. The customers arriving after the service initiation cannot enter the ongoing service.
The service time is independent on the batch size. First, we employ the classical embed-
ded Markov renewal process approach to study the model. Secondly, under the assumption
that the services are of phase type, we study the model as a continuous-time Markov chain
whose generator has a very special structure. Using matrix-analytic methods we study the
model in steady-state and discuss some special cases of the model as well as representative
numerical examples covering a wide range of service time distributions such as constant,
uniform, Weibull, and phase type.

Keywords Queueing · Stochastic processes · Batch arrivals · Group clearance ·
Matrix-analytic method

Mathematics Subject Classification (2010) 60J27 · 60K25

1 Introduction

Batching (bulking) and group clearance are natural ways to improve throughput and utiliza-
tion of a system used in various fields from public transportation (Grippa et al. 2019) and
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cargo to blood screening, production systems, amusement parks etc. (a number of interesting
applications with appropriate references can be found in Claeys et al. (2013)). In infor-
mation technology batching is widely implemented in telecommunication and computing
systems. For instance, packages in most common implementations of the TCP protocol are
grouped into the so-called windows, which are sent to a receiver simultaneously. Another
example is the packet encapsulation during transmission, when aggregates rather than stan-
dalone packages, equipped with a single header, are sent in a single transmission. The effect
of increased throughput along with improved channel utilization by frame aggregation plays
a crucial role in recent 802.11 standards and is further amplified in the case of IEEE 802.11n
WLANs (Charfi et al. 2017).

By the same reason of improving the throughput and reducing the latency, data are being
aggregated in a write buffer before the actual execution of write operation on a conventional
hard disk drive is done. The data aggregation and group clearance feature on a NAND-
flash based solid state drive (SSD) is related to the specifics of write operations, which are
allowed to be performed only on a block level, as opposed to a more fine-grained page level
(representing the granularity of read operations). Aggregation and write caching in modern
SSDs is also related to the so-called data deduplication (replacing redundant data writes
by pointers to an existing data blocks/pages), that may be performed in advance before
the actual write operation is done; thus, improving the lifetime of an SSD by reducing
the number of unnecessary writes (see Ivashko et al. 2018). Moreover, similar problems
are studied at the hard disk drive (HDD) storage, see Xie et al. (2020) and Saxena et al.
(2018) or database level, see O’Mullane et al. (2005). We stress that in the context of cloud
computing, there is no natural upper bound on the batch size, and thus the batch service can
be started for an arbitrary large batch (Saxena et al. 2018).

Aside from latency reduction, in distributed computing the workunit batching is used for
improving the application turnaround, whereas the so-called workunit replication is used to
improve reliability as well (see Mazalov et al. 2014). At that, the results of workunits com-
pletion are to be validated and assimilated into the overall result of an experiment. However,
in a desktop grid (e.g. the BOINC-based desktop grid), being a highly parallel and volatile
system, the coordination of computations is performed by a single project management
server, which in many cases is a bottleneck (this effect is discussed in Ilya et al. (2017)).
At that, it is important to improve efficiency of the assimilation phase, which is related to
operations with workunits database. For the sake of efficiency, the assimilation operations
are performed at group clearance basis, that is, all the completed and valid results are assim-
ilated as a group in a single transaction, whereas the results arrived during the assimilation
process (if any), are subject to the next assimilation (which, if required, starts immediately
after completion of an ongoing one). The constant one_pass_N_WU limiting the number
of results assimilated per transaction, can be made arbitrary large, thus making the group
clearance nature of the assimilation phase evident.

Finally, with the current COVID-19 situation affecting the entire planet, we can find an
application involving the pooling of the blood samples to test for this disease as well as for
antibodies. If the test shows up a positive result then everyone involved in that group needs
to be tested either individually or in subgroups. In the latter case, the strategy of subgroup
selection is to be optimized (Cheng et al. 2019). The idea of pooling in queues originally
appeared in Neuts and Chandramouli (1987), and very recently this model was put in use
by a team from the Institute of Virology (Lohse et al. 2020).

The application examples in cloud storage (see, e.g., Saxena et al. (2018)), distributed
computing (see, e.g., Ilya et al. (2017)) and blood screening (Lohse et al. 2020) motivate
our interest to study a single-server batch arrival queue with a group clearance in which
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all those customers present at the time of the beginning of a service are taken into service.
We are confident that there are other applications in practice where we can implement the
group clearance rule which places no restriction on the size of the batch served. It should
be pointed out that even though we place no restriction on the batch size, if the (finite)
batch size goes beyond a certain point the assumption of unlimited size for the batch, for
all practical purposes, will have little or no impact. This is like truncating an infinite sum
in numerical computations. Often times, the assumption of infinite size leads to explicit or
compact results as opposed to finite size problem.

Since the introduction of batch service queueing systems by Bailey (1954), the litera-
ture on such systems has grown significantly (see e.g., Abolnikov and Dukhovny (2003),
Arumuganathan and Jeyakumar (2005), Baba (1996), Banik et al. (2008), Banik et al.
(2009), Bar-Lev et al. (2007), Chakravarthy (1992), Chakravarthy et al. (2017), Chaudhry
and Templeton (1983), Chaudhry and Gupta (1999), Claeys et al. (2010b), Germs and van
Foreest (2013), Gold and Tran-Gia (1993), Hébuterne and Rosenberg (1999), Neuts (1967),
Powell and Humblet (1986), Sikdar and Gupta (2005), Zee et al. (2001), Chakravarthy
(1993), Chakravarthy and Dudin (2002a), Chakravarthy and Dudin (2002b), Dudin and
Chakravarthy (2002a), Dudin and Chakravarthy (2002b), and Dudin and Chakravarthy
(2003) and many others). Many variants of batch arrival/batch service systems are studied
in the literature, and we summarize the recent developments in the next subsection.

1.1 Literature Survey

The batch service models have long history. Thus, in this subsection we focus only on the
results of the recent decade, and refer the reader to literature surveys in Banerjee et al.
(2015) and Sasikala and Indhira (2016) for an extensive discussion.

Two major classes of single-server batch service models studied in recent papers are the
discrete-time (Claeys et al. 2010a; Claeys et al. 2010b; Claeys et al. 2013; Banerjee et al.
2014; Yu and Alfa 2015; Baetens et al. 2016; Baetens et al. 2017; Baetens et al. 2018; 2019;
Panda and Goswami 2020) and continuous-time models (Saxena et al. 2018; D’Arienzo
et al. 2019; Banerjee and Gupta 2012; Banerjee et al. 2015; Yu and Tang 2018; Pradhan
and Gupta 2017; Pradhan et al. 2016; Pradhan and Gupta 2019; Gupta et al. 2020; Gupta
and Banerjee 2019; Maity and Gupta 2015; Banik 2015; Vadivu and Arumuganathan 2015;
Chaudhry et al. 2016; Jeyakumar and Senthilnathan 2017; Zeng and Xia 2017; Niranjan
et al. 2018; Gupta and Banerjee 2018; Panda et al. 2018; Ayyappan and Karpagam 2018;
Ayyappan and Nirmala 2018; Bank and Samanta 2020; Xie et al. 2020). The variety of
techniques used for the analysis includes Kolmogorov equations, Supplementary variable
techniques, Roots method, Matrix-Analytic Method, Embedded Markov chain analysis,
Spectral methods, Asymptotic Quasi-Toeplitz Markov chain technique and Game theory, to
name a few. Below we summarize a few features of the models studied, and give the corre-
sponding classification of the recent papers with respect to these features. Finally, we outline
the papers studying models close to the one studied in the present paper, and highlight the
novelty of the present study.

Queue size Most of the papers study the system either with finite queue (FIN), or with
infinite queue (INF). A notable exception is the paper (D’Arienzo et al. 2019) where a
retrial system is studied.

Arrival process More analytically tractable are the memoryless arrival processes (Pois-
son in continuous time, and Geometric in discrete time case), but several works focus on
general renewal processes, batch Poisson arrivals (Pradhan and Gupta 2017; Jeyakumar
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and Senthilnathan 2017; Ayyappan and Karpagam 2018; Ayyappan and Nirmala 2018),
and, among the most general cases, the batch Markovian arrival process (BMAP) (Banik
2015; Bank and Samanta 2020), which though received less attention.

Service time distribution In the majority of cases, the service time distribution is
assumed to be general (e.g. defined by its Laplace–Stieltjes transform), but several excep-
tions include memoryless (Gupta and Banerjee 2019; Maity and Gupta 2015; Panda et al.
2018; Panda and Goswami 2020; Baetens et al. 2017) and phase-type (PH) ((D’Arienzo
et al. 2019)), which allow to obtain explicit results. Note that in discrete time models, sin-
gle slot service is also used, see Claeys et al. (2010a), Baetens et al. (2016), and Baetens
et al. (2018).

Batch service type The most widely studied is the classical General Bulk Service (GBS)
rule introduced in Neuts (1967): the two finite constant threshold policy states that the
server starts service of a batch of size larger or equal to a ≥ 1, and can handle up to
b ≥ a customers in a batch, with b finite. Some variations of this classical rule are: the
possibility of serving a batch of size less than a with some probability (Saxena et al.
2018; Claeys et al. 2013), or a single customer service mode for batch smaller than a (Yu
and Alfa 2015). A specific version of the GBS rule (when a = b) is the Fixed Bulk Ser-
vice (FBS) policy (Claeys et al. 2010a; Yu and Tang 2018; Gupta and Banerjee 2019; Xie
et al. 2020). A significant attention is also received by the systems with variable capac-
ity or the so-called versatile Bulk Service rule, where the batch size taken for service
is random (Pradhan et al. 2016; Maity and Gupta 2015; Jeyakumar and Senthilnathan
2017; Bank and Samanta 2020). Another interesting setup is considered in a series of
papers (Baetens et al. 2016 2017, 2018, 2019), where the so-called two-class service
policy was introduced. The model though is rather different from classical single-server
batch service queue, since it is essentially a multiclass model. However, the policy is
such that a sequence of customers of same class are taken into service, without an upper
bound on the size of the batch, which is rather different from the GBS rule.

Size dependence Both variants are considered: the service time of a batch is thought to be
dependent or independent of the batch size. The latter case is obvious for the FBS policy,

Model peculiarities Several papers include some specific model features, such as queue-
length dependence of the service time distribution (Gupta and Banerjee 2018), vaca-
tions (Vadivu and Arumuganathan 2015; Jeyakumar and Senthilnathan 2017; Niranjan
et al. 2018; Ayyappan and Nirmala 2018; Panda et al. 2018), breakdowns (Niranjan
et al. 2018; Ayyappan and Karpagam 2018) and inter-customer correlation (Baetens et al.
2017).

Using this classification, we conclude that the present study considers a continuous time
BMAP/G(1,∞)/1 model with size-independent service times and GBS service rule with
a = 1 and b = ∞ which we call group clearance. The most similar models to the one
considered in the present paper were studied in Banik (2015), Baetens et al. (2019), Saxena
et al. (2018), and Zeng and Xia (2017). However, we stress the following differences:

• In the paper (Banik 2015) the BMAP/G(a,b)/1 with a classical GBS discipline, given
b finite, was treated by the matrix-analytic method. In contrast, in the present paper,
the batch size taken into service is not bounded by finite b. It is not clear if the analysis
in Banik (2015) can be extended to the case b = ∞ straightforwardly. However, likely
that some asymptotic results can be obtained from the solution in Banik (2015) for b

large, which could be an interesting point for further study.
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• Though the batch service discipline in Baetens et al. (2019) allows one to take a batch
of unbounded size for service, the discipline is rather specific, and the present model
can only be obtained as a limiting (trivial) case of a single customer class. Moreover,
the analysis in Baetens et al. (2019) is held in discrete time, and continuous time results
may only be obtained in limiting case of the slot size approaching zero, which leads to
complicated analysis.

• The paper (Saxena et al. 2018) analyzes a discrete-time model with general interarrival
and service time distributions (the latter are dependent on the batch size), vacations and
exhaustive service policy with a specific probabilistic batching and infinite upper bound
on batch size. This discrete-time model resembles our model and generalizes it in some
points. However, due to these generalizations, the analytical results are obtained in
terms of generating functions, while in our model we obtain explicit results. However,
it might be interesting to obtain our model as a limiting special case when the slot size
goes to zero.

• The analysis in Zeng and Xia (2017) considers a finite queue system, and moreover,
the arrival process is Poisson. However, the explicit results obtained in Zeng and Xia
(2017) are interesting to be compared with the results of our analysis in case of a large
queue capacity.

Summarizing the literature survey, to the best of our knowledge, the batch arrival and
group clearance single server queueing model with general service times is studied for the
first time in this paper.

1.2 Structure of the Paper

The structure of the paper is the following. The model under study is described in Section 2
and in Section 3 we study the model with general distribution of group clearance. We also
provide the stationary performance measures of the system. In Section 3.1, we perform a
busy period analysis. In Section 4, we perform a deeper analysis of the case when service
time has a phase type distribution (we give the details on this type of distribution in the
section), and provide explicit solutions for some special cases. A number of system perfor-
mance measures are listed in Section 4.1. In Section 5, we provide some useful insights by
means of illustrative numerical experiments, which include a wide range of service distri-
butions including constant, uniform, Weibull among others, and some concluding remarks
are given in Section 6.

2 Model Description

In this paper, we study a single-server queueing model in which the arrivals occur according
to a versatile Markovian point process, namely, batch Markovian arrival process (BMAP ),
and services are offered simultaneously to all the customers present in the system at the
service starting epoch. The service times are assumed to be generally distributed and is
independent of the size of the group being served. That is, the system operates under the
bulk service rule with infinite upper bound on the batch size. The server stays idle if at the
completion of a service there are no customers waiting in the system. In Kendall notation,
the system can be classified as BMAP/G(1,∞)/1.

TheBMAP , which is dense in the class of arrival processes with domain on non-negative
real axis, allows us to incorporate the correlation between inter-arrival times. The process
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goes through transitions among, say, m phases as follows. These transitions are governed by
a sequence of square matrices, say, {Dk, k ≥ 0} of size m, such that D0 governs transitions
corresponding to no arrival and Dk governs those that correspond to an arrival of a batch (of
size k, k ≥ 1) of customers(for more details on this type of processes (see e.g., (Bladt and
Nielsen 2017; Chakravarthy 2011; 2001; He 2014; Chakravarthy 2015)). The generator Q

of the underlying Continuous-Time Markov Chain (CT MC, related to transitions of phase
irrespective of the number of arrivals) is given by Q = ∑∞

k=0 Dk . Let π be the stationary
probability vector of the CT MC uniquely satisfying

πQ = 0, πe = 1, (1)

(where e is a column vector of ones, and 0 is the vector of zeros). Letting D = Q − D0, the
quantity λg = πDe gives the arrival rate of batches and λ = π

∑∞
k=1 kDke is the expected

number of customer arrivals per unit time. The service times of the group of customers
present at the service starting epoch are iid., with distribution function H(.) and mean μ−1,
and thus the traffic intensity is given by ρ = λg

μ
. Note the model studied in this paper is

always stable for any ρ > 0.

3 EmbeddedMarkov renewal process

In this section we study the model with a general service time distribution with CDF ,
H(.), by means of the embedded Markov process method, introduced in Kendall (1953).
Consider the embedded Markov renewal process {Ni, Ji, τi , i ≥ 0} at departure epochs
(with Ni ≥ 0 being the number of customers, Ji ∈ {1, . . . , m} being the phase of the
BMAP right after departure, and τi ≥ 0 being the inter-departure times). The transition
probability matrix P̃ (x) of the embedded process (transition kernel) consisting of elements
Pnj (x) = P{Ni = n, Ji = j, τi ≤ x}, n ≥ 0, 1 ≤ j ≤ m, x ≥ 0, is of the form

P̃ (x) =

⎡

⎢
⎢
⎢
⎣

B0(x) B1(x) B2(x) · · ·
A0(x) A1(x) A2(x) · · ·
A0(x) A1(x) A2(x) · · ·

...
...

...
. . .

⎤

⎥
⎥
⎥
⎦

,

where the (square) matrices of size m

Bi(x) =
∫ x

0
eD0(x−t)DAi(t)dt, i ≥ 0, (2)

correspond to the probabilities that a departure at time 0 left the system empty and that the
next departure (which occurs no later than time x) leaves behind i in the system and

Ai(x) =
∫ x

0
P(i, t)dH(t), i ≥ 0, (3)

are matrices (of dimension m) related to a service time (lasting no more than time x) of
a group of customers that started right after the previous service completion epoch and
during which time exactly i customers arrive. The elements Pij (n, t) of the matrix P(n, t)

are probabilities of n arrival events in BMAP during time t , given the phase transition
from i to j ; i, j = 1, . . . , m. The necessary details on the computation of P(n, t) were first
described in Neuts and Li (1996).
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The transition probability matrix, P̂ = P̃ (∞), of the corresponding embedded Markov
chain (related to transitions of the process {Ni, Ji}i≥0) is given by

P̂ =

⎡

⎢
⎢
⎢
⎣

B0 B1 B2 · · ·
A0 A1 A2 · · ·
A0 A1 A2 · · ·
...

...
...

. . .

⎤

⎥
⎥
⎥
⎦

,

where it follows from Eqs. 2 and 3, that

Ai =
∫ ∞

0
P(i, t)dH(t), Bi = (−D0)

−1DAi, i ≥ 0.

Note that

A =
∞∑

i=0

Ai =
∫ ∞

0
eQtdH(t), B =

∞∑

i=0

Bi = (−D0)
−1DA. (4)

It can easily be verified that A and B are stochastic matrices.
Let x, partitioned as x = (x0, x1, · · · ), be the steady-state probability vector of P̂ ,

where the j th component of xk gives the steady-state probability that soon after a departure,
the system will have k customers waiting in the queue with the arrival process in phase j ,
1 ≤ j ≤ m, k ≥ 0. That is,

xP̂ = x, xe = 1. (5)

Using the structure of x, it is easy to transform Eq. 5 into the following steady-state
equations:

xi = x0Bi +
∞∑

k=1

xkAi, i ≥ 0, (6)

subject to normalizing condition
∞∑

k=0

xke = 1.

Moreover, Eq. 6 allows to obtain explicit expressions for the steady-state probability vector
x.

Theorem 1 The steady-state probability vector x is obtained as

x0 = uA0[I − (−D0)
−1DA0]−1,

xi = x0(−D0)
−1DAi + uAi, i ≥ 1, (7)

where the vector u is the unique solution to

u
[
I − A + A0(I − B0)

−1(I − B)
]

= 0, (8)

subject to the normalizing condition

uA0[I − (−D0)
−1DA0]−1e + ue = 1.

Proof Denoting

u =
∞∑

k=1

xk,
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the equations in Eq. 6 can be rewritten as

x0 = x0B0 + uA0,

u = x0(B − B0) + u(A − A0),
(9)

from which the stated result follows after routine simplifications.

Interestingly, the vector u may be intuitively explained as the stationary probability vec-
tor of seeing at least one customer in the system at a departure epoch with the arrival process
in various phases. By the group clearance property of the service discipline, the balance
Eq. 9 in fact correspond to a reduced state Markov chain {Ĩ {Ni > 0}, Ji}i≥0, where Ĩ {·} is
the indicator function.

It is easy to verify that the inverses appearing in Eqs. 7 and 8 do indeed exist. Note also
that the matrices A0 = ∫ ∞

0 eD0t dH(t) and A = ∫ ∞
0 eQtdH(t) can be obtained efficiently

using uniformization method, which was first introduced by Jensen (1953). We will briefly
outline some key steps and more details can be found in many books and papers (see e.g. He
(2014)).

Suppose that θ̃ = max
i

|(D0)i,i | and

γn =
∫ ∞

0
e−θ̃ t

(θ̃ t)n

n! dH(t), n ≥ 0. (10)

Defining K1 = I + θ̃−1D0 and K2 = I + θ̃−1Q, we get

A0 =
∞∑

n=0

γnK
n
1 , A =

∞∑

n=0

γnK
n
2 . (11)

The above infinite sums, for computational implementation, may be truncated at some n∗
(based on the tail probabilities of γn), to guarantee that for a given ε > 0, the condition,
∑n∗

n=0 γn > 1 − ε, holds good.

3.1 Busy Period Analysis

In this section we consider the embedded Markov renewal process to obtain busy period
distribution, as well as mean service completions (and customers served) during a busy
period. Let G denote the matrix such that the (j, k)th element gjk , 1 ≤ j, k ≤ m, gives the
probability that the underlying Markov renewal process eventually visits level 0 by visiting
state (0, k) for the first time starting from state (1, j). Conditioning on the number of arrivals
during a single transition (service time of a single group), and recalling the group clearance,
it is easy to see that

G = A0 + A1G + A2G + · · · ,

which implies that
G = (I − A + A0)

−1A0, (12)

and it is easy to verify that Ge = e.
Now let G̃(n, x) = (g̃jk(n, x), 1 ≤ j, k ≤ m), n ≥ 1, x ≥ 0, be such that g̃jk(n, x)

gives the conditional probability that the first passage time from (1, j) to (0, k), occurs no
later than time x and exactly in n transitions. Let

G∗(z, s) =
∞∑

n=1

zn

∫ ∞

0
e−sxdG̃(n, x).
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Using the special structure induced by group clearance, it can be verified that

G∗(z, s) = z[A0(s)+A1(s)G
∗(z, s)+A2(s)G

∗(z, s)+· · · ] = z[A0(s)+(A(s)−A0(s))G
∗(z, s)], (13)

where A(s) = ∑∞
i=0 Ai(s). Hence

G∗(z, s) = z[I − z(A(s) − A0(s))]−1A0(s).

We note that

Ak(s) =
∫ ∞

0
e−st dAk(t), k ≥ 0,

and, consistently with Eq. 12,

G = G∗(1, 0) = [I − A + A0]−1A0.

To obtain the sequence, Ĝn, of the number of transitions (service completions) in a busy
period, we look at G∗(z, 0). From Eq. 13, we get

G∗(z, 0) = z[I − z(A − A0)]−1A0 =
∞∑

k=0

zk+1(A − A0)
kA0,

and hence
Ĝn = (A − A0)

n−1A0, n ≥ 1.

Note that the Laplace-Stieltjes transform of the distribution of the busy period is given by
G∗(1, s). It is easy to verify from Eq. 13 that

G∗(1, s) = [I − (A(s) − A0(s))]−1A0(s).

Also, it can be verified that μ̃, the vector of order m, whose j th component gives the mean
number of service completions during a busy period given that the arrival process was in
phase j = 1, . . . , m at the beginning of the busy period, can be obtained as

μ̃ =
∞∑

n=0

nĜne =
∞∑

n=1

n(A − A0)
n−1A0e,

which gives
μ̃ = (I − A + A0)

−1e. (14)

Alternatively, one can get an expression for μ̃ as follows.

μ̃= ∂G∗(z, s)
∂z

e

∣
∣
∣
∣
z=1,s=0

=(I−A+A0)
−1A0e+(A−A0)(I−A+A0)

−2A0e=(I−A+A0)
−1e.

Note that the vector of mean number of service completions during a busy period doesn’t
depend on the type of the batch size distribution as well as the parameter of the distribution.
This is intuitively clear since we are looking at the number of service completions. However,
the mean number of customers served during a busy period will depend on the average
number of customers per batch arrival.

Suppose we denote by δ the vector of size m such that its j th component gives the mean
duration of the busy period which started with the phase of the arrival process in state j .
Then, we have,

δ = −∂G∗(z, s)
∂s

e

∣
∣
∣
∣
z=1,s=0

= [I−A+A0]−1(−A′
0(0))e+[I−A+A0]−1(−A′(0)+A′

0(0))e,

(15)
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where

−A′
0(0) =

∫ ∞

0
t dA0(t) =

∫ ∞

0
t exp(D0t) dH(t),

and

−A′(0) =
∫ ∞

0
t dA(t) =

∫ ∞

0
t exp(Qt) dH(t).

Thus, the following intuitively obvious result can be deduced from Eq. 15.

δ = 1

μ
[I − A + A0]−1e = 1

μ
μ̃.

4 Generator approach

In this section we apply the celebrated matrix analytic method of Neuts (1981) to study the
model in detail under the assumption of phase type (PH) distribution for the group service
time, having representation (β, S) of order n. Recall, that the PH distribution is the time
until absorption of a finite-state CT MC with an absorbing state, where β is the initial state
distribution (and a basic assumption βe = 1 guarantees no atom at zero), S is square matrix
of order n defining the transition rates between n non-absorbing states (phases), whereas
S0 := −Se is the vector of absorption rates. Recall also that the mean service time is given
by μ−1 = β(−S)−1e.

We study the queueing model as a CT MC. Let N(t) be the number of customers waiting
in the queue at time t , J1(t) be the phase of the service process at time t should the server
happens to be busy at that time, and J2(t) be the phase of the arrival process at time t . Then
the triplet {N(t), J1(t), J2(t)}t≥0 is a CT MC with state space given by

	 = {(0, k) : 1 ≤ k ≤ m}
⋃

{(i, j, k) : i ≥ 0, 1 ≤ j ≤ n, 1 ≤ k ≤ m}.
For convenience, we partition the set 	 into subsets 0∗ = {(0, k) : 1 ≤ k ≤ m}, correspond-
ing to an empty system, and i = {(i, j, k) : i ≥ 0, 1 ≤ j ≤ n, 1 ≤ k ≤ m}, for i ≥ 0, being
the number of customers in the queue. The generator, Q̃, of the CT MC is given by

Q̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

D0 β ⊗ D 0 0 0 0 · · ·
S0 ⊗ I S ⊕ D0 I ⊗ D1 I ⊗ D2 I ⊗ D3 I ⊗ D4 · · ·

0 S0β ⊗ I S ⊕ D0 I ⊗ D1 I ⊗ D2 I ⊗ D3 · · ·
0 S0β ⊗ I 0 S ⊕ D0 I ⊗ D1 I ⊗ D2 · · ·
0 S0β ⊗ I 0 0 S ⊕ D0 I ⊗ D1 · · ·
...

...
...

...
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We note that⊗ and⊕ are Kronecker product and sum, respectively, and the special structure
of the matrix Q̃ is related to the properties of the model. Namely, the main diagonal is related
to transitions of the CT MC without any arrivals or departures, and thus is related to phase
changes of J1(t) or J2(t), except the element D0 corresponding to subset 0∗ describing the
phase change of J2(t) only (since the system is empty). The values S0β ⊗ I correspond to
a service completion of a group of customers and an initiation of a service for a new group,
whereas S0 ⊗ I is related to the clearance of a group that leaves the system empty. Finally,
the values I ⊗ Di correspond to an arrival of a batch of size i during a service completion,
whereas β ⊗ D corresponds to an arrival of a group (with no regard to the batch size) to an
empty system that initiates a service.
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Let y partitioned as y = (y∗, y0, y1, · · · ) be such that
yQ̃ = 0, ye = 1. (16)

The following theorem gives an expression for y which is explicit up to a vector y0.

Theorem 2 The steady-state probability vector y is obtained as

y∗ = y0(S
0 ⊗ (−D0)

−1),

yi = ∑i−1
j=0yj (I ⊗ Di−j )(−S ⊕ D0)

−1, i ≥ 1,
(17)

and y0 is obtained by solving

y0
[
(S0β ⊗ (−D0)

−1D) + S ⊕ D0 + (I ⊗ D)(−S ⊕ Q)−1(S0β ⊗ I )
] = 0,

y0
[
e + (S0 ⊗ (−D0)

−1e) + (I ⊗ D)(−S ⊕ Q)−1e
] = 1.

Proof The equations corresponding to Eq. 16 are given by

y∗D0 + y0(S
0 ⊗ I ) = 0,

y∗(β ⊗ D) + y0(S ⊕ D0) + ∑∞
k=1 yk(S

0β ⊗ I ) = 0,
∑i−1

j=0yj (I ⊗ Di−j ) + yi (S ⊕ D0) = 0, i ≥ 1,
y∗e + ∑∞

i=0yie = 1.

(18)

Suppose we denote

v =
∞∑

i=1

yi .

Then, the equations in Eq. 18 can be rewritten as

y∗D0 + y0(S
0 ⊗ I ) = 0,

y∗(β ⊗ D) + y0(S ⊕ D0) + v(S0β ⊗ I ) = 0,
y0(I ⊗ D) + v(S ⊕ Q) = 0,

y∗e + y0e + ve = 1.

(19)

The stated result follows immediately after routine simplifications.

Note that the special structure of the coefficient matrices involving Kronecker products
and sums can be exploited in obtaining the steady-state vector, whereas Eq. 17 provides a
recursive procedure to obtain yi , i ≥ 1. Moreover, since the vector v can be obtained from
the system Eq. 19 in advance, it is easy to find the truncation point, say, i∗, for the vectors yi

computation with given accuracy. The following intuitive results serve as accuracy checks
in numerical computation.

Theorem 3 We have

y∗ + ∑∞
i=0yi (e ⊗ I ) = π ,

1

(1 − y∗e)
∑∞

i=0yi (I ⊗ e) = μβ(−S)−1,
(20)

where π is as defined in Eq. 1.

Proof Note that the first equation in Eq. 18 can be transformed into

y∗(β ⊗ D0) + y0(S
0β ⊗ I ) = 0.
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Now adding the above equation to the second and third (over all i) equations in Eq. 18, we
get

(β ⊗ y∗Q) +
∞∑

i=0

yi[(S + S0β) ⊕ Q] = 0. (21)

Post-multiplying Eq. 21 by e ⊗ I and using the uniqueness of π we get the first statement
in Eq. 20. Similarly, post-multiplying Eq. 21 by I ⊗ e and using the uniqueness of the
steady-state vector of S + S0β, we get the second stated result in Eq. 20.

The steady-state probability vectors at arrival and departure epochs are given in the
following theorem.

Theorem 4 The steady-state probability vector x at departure epochs partitioned as x =
(x0, x1, · · · ) is given by

xk = [μ(1 − y∗e)]−1yk(S
0 ⊗ I ), k ≥ 0. (22)

The steady-state probability vector z at arrival epochs, partitioned as z = (z0, z1, · · · ), is
given by

z∗ = 1

λg

(y∗D), zk = 1

λg

yk(I ⊗ D), k ≥ 0.

Proof Follows immediately from the definition of the steady-state vectors.

Finally, let Ws denote the sojourn time in the system (ST S) of a customer. The following
theorem shows that ST S has PH distribution.

Theorem 5 Ws follows a PH distribution with representation given by (γ, L) of order 3n
where

γ =
(

z∗eβ,

∞∑

k=0

zk(I ⊗ e), 0
)

,

and

L =
⎡

⎣
S 0 0
0 S S0β
0 0 S

⎤

⎦ .

Proof First note that with probability z∗e the arriving customer enters into the service
immediately. So, in this case the sojourn time in the system is nothing but the service time.
However, if the arrival sees the server busy then the customer has to wait for the current
service to be over and then get into service. Thus, we can model the ST S as a mixture of
two phase type distributions and by a well-known result (see Neuts 1981) is again of phase
type. Thus, the stated result follows.

Note: It is clear from the representation of the PH−distribution that the sojourn time is
independent of batch size distribution as well as the mean batch size.
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4.1 The System PerformanceMeasures

In this section we list a number of system performance measures of interest for
BMAP/PH/1 along with their expressions.

1. Probability that the server is idle. The probability, Pidle, that the server is idle at an
arbitrary time is given by

Pidle = y∗e.

It is important to point out that Pidle does not depend on the batch size distribution.
This fact can be seen immediately from the steady-state equations given in Eq. 19. This
observation can also be used as an internal accuracy check in numerical computation.

2. Mean number of customers in the queue. The mean, μNQ, number of customers in the
queue is given by

μNQ =
∞∑

i=1

iyie.

Note that the measure, μNQ, depends only on the average batch size and not on the
batch size distribution. To see this, we see from the third equation in Eq. 18,

∞∑

i=1

iyi =
∞∑

j=0

yj

(
I ⊗

∞∑

k=1

kDk

)
(−S ⊕ Q)−1,

which immediately implies that μNQ does not depend on the batch size distribu-
tion. Again, this observation can be used as another accuracy check in numerical
computation.

3. Mean number of customers in service. A novel way to compute the mean number of
customers in service is to look at the weighted average of the average batch size of
an arrival and the (conditional) average number of customers left behind a departure
conditioned on the fact that at least one customer is seen in the queue. The weights are
given by x0e and (1 − x0e). Thus, the mean, μNS , number of customers under service
is given by

μNS = λ

λg

x0e +
∞∑

i=1

ixie.

The fact that μNS also depends only on the average batch size and not on the batch size
distribution can be seen immediately from Eq. 22.

4. Mean number of customers in the system. The mean, μS , number of customers in the
system is given by

μS = μNQ + μNS = λ

λg

x0e +
∞∑

i=1

i(yie + xie).

5. Mean STS of a customer. The mean, μWs , STS of a customer is given by

μWs = γ (−L)−1e = 1
μ
z∗e +

∞∑
k=0

zk(I ⊗ e)(−S−1e) + 1
μ

∞∑
k=0

zke = 1
μ

+
∞∑

k=0
zk(−S−1e) ⊗ e).
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6. Variance of STS of customers. The variance, σ 2
Ws

, of STS of customers is given by

σ 2
Ws

= 2γ (−L)−2e − μ2
WS =

= 2β(−S)−2e + 2
∞∑

k=0

zk

[

(−S)−2e ⊗ e + 1

μ

(
(−S)−1e ⊗ e

)
− μ2

WS

]

= σ 2 + 2
∞∑

k=0

zk((−S)−2e ⊗ e) −
[ ∞∑

k=0

zk((−S)−1e ⊗ e)

]2

.

7. Mean number of service completions during a busy period. The mean, μSC , number
of service completions during a busy period is obtained using the fact that the j th

component of the vector 1
y∗De

y∗D gives the probability a busy period starts with the
arrival process in phase j, 1 ≤ j ≤ m. Thus, we have

μSC = 1

y∗De
y∗Dμ̃,

where μ̃ is as given in Eq. 14.
8. Mean number of customers served during a busy period. The mean, μSR , number of

customers served during a busy period is obtained simply as

μSR = μSCμNS .

4.2 Special Cases:

In this section we discuss special classes of BMAP arrival processes and PH -type service
time distributions.

Theorem 6 In an M [X]/M/1-type model define ρ = λg

μ
, and denote pi the probability that

an arriving batch is of size i. Then the steady-state probability vector y (and hence x and
z) is obtained explicitly as follows.

y∗ = 1
1+ρ+ρ2 , y0 = ρ

1+ρ+ρ2 , yi = 1
1+ρ

∑i−1
j=0 yjpi−j , i ≥ 1.

Proof First note that in this case D0 = −λg , Di = λgpi; i ≥ 1, D = λ, S = −μ, β = 1,
and hence the steady-state equations given in Eq. 18 reduce to

−λgy
∗ + μy0 = 0,

λgy
∗ − (λg + μ)y0 + μ

∑∞
i=1yi = 0,

λg

∑i−1
j=0yjpi−j − (λg + μ)yi = 0, i ≥ 1,

y∗ + ∑∞
i=0yi = 1.

The stated result follows immediately.

Theorem 7 In anM [X]/PH/1-type model, the steady-state probability vector y (and hence
x and z) is obtained explicitly as follows.

y0 = λgy
∗β(λI − λgeβ − S)−1

yi = λg

∑i−1
j=0yjpi−j (λgI − S)−1, i ≥ 1,

where y∗ is obtained using the normalizing condition.
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Proof In this case, the steady-state equations in Eq. 18 are simplified to

−λgy
∗ + y0S

0 = 0, (23)

λgy
∗β + y0(S − λgI) +

∞∑

i=1

yiS
0β = 0, (24)

λg

i−1∑

j=0

yjpi−j + yi (S − λgI) = 0, i ≥ 1,

subject to the normalizing condition

y∗ +
∞∑

i=0

yie = 1.

It follows from Eq. 20 that

∞∑

i=0

yi = μ(1 − y∗)β(−S)−1,

which implies
∞∑

i=0

yiS
0 = μ(1 − y∗).

Then, from Eq. 23 we get

∞∑

i=1

yiS
0 = μ(1 − y∗) − λgy

∗. (25)

Also, Eqs. 23 and 24 give

λgy0e =
∞∑

i=1

yiS
0.

Then, using Eqs. 24 and 25, we obtain

λgy
∗β + y0(S − λgI + λgeβ) = 0,

from which the stated results follows immediately.

Theorem 8 In an PH [X]/M/1-type model, with PH interarrival time distribution having
representation (α, T ), the steady-state probability vector y (and hence x and z) is obtained
explicitly as follows.

y∗ = μy0(−T )−1,

yi = ∑i−1
j=0yjT 0αpi−j (μI − T )−1, i ≥ 1,

y0 = μπ [2μI − μeα − T + μ2(−T )−1]−1.

Proof In this case the model is of PH [X]/M/1-type with D0 = T , Di = piT
0α; i ≥ 1,

D = T 0α, S = −μ, β = 1. On substitution, the steady-state equations in Eq. 18 get reduced
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to

y∗T + μy0 = 0, (26)

y∗T 0α + y0(T − μI) + μ

∞∑

i=1

yi = 0, (27)

i−1∑

j=0

yjT
0αpi−j + yi (T − μI) = 0, i ≥ 1,

y∗e +
∞∑

i=0

yie = 1.

Recalling that

y∗ +
∞∑

i=0

yi = π = λα(−T )−1,

we have from Eqs. 26 and 27, that

μy0eα + y0(T − μI) + μ

∞∑

i=1

yi = 0,

which implies

y0[μI − μeα − T ] = μ

∞∑

i=1

yi = μ[π − y0 − μy0(−T )−1],

and hence
y0 = μπ [2μI − μeα − T + μ2(−T )−1]−1.

Thus, the steady-state probability vector y is obtained explicitly as stated.

Finally we note that in the case of MAP/PH/1-queue (i.e., the arrivals occur singly),
we have DK = 0, K ≥ 2. The steady-state equations for y∗, y0 and v are same as those
of BMAP/PH/1. This is as is to be expected since these involve D0 and D. The only
simplification is in the computation of yi , i ≥ 1, and the needed equations are:

yi = yi−1(I ⊗ D)(−S ⊕ D0)
−1, i ≥ 1.

To conclude this section we note that specific results for steady-state probabilities
obtained above allow us to proceed with explicit expressions for the matrix G defined in
Eq. 12. In particular, for some special cases, we have

1. BMAP/PH/1:

G =
[
I − (β ⊗ I )(−S ⊕ Q)−1(S0 ⊗ I ) + (β ⊗ I )(−S ⊕ D0)

−1(S0 ⊗ I )
]−1

[
(β ⊗ I )(−S ⊕ D0)

−1(S0 ⊗ I )
]

2. M [X]/PH/1: since A0 = β(λI − S)−1S0, and A = 1, then G = 1.
3. PH [X]/M/1: A0 = μ(μI − T )−1, and A = μ(μI − Q)−1, where interarrival times

are PH distributed with representation (α, T ) and Q = T + T 0α. Hence it is easy to
obtain

G = μ
[
μI − T + μT 0α(μI − Q)−1

]−1
.
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5 Numerical Examples

In this section we will discuss a few illustrative numerical examples that bring out the qual-
itative aspects of the model under study. During the development of the Fortran code to
generate these numerical examples, we used a number of accuracy checks to validate the
code. These accuracy checks include the results of Theorem 4.2 as well as the special cases
outlined in Theorems 4.5 through 4.7.

In our examples below, we consider three service time distributions. These are:

T oS − 1 : Erlang (ErS): This is Erlang of order 5 with rate 5μ in each stage.
T oS − 2 : Exponential (ExS): This is an exponential distribution with rate μ.
T oS − 3 : Hyperexponential (HeS): Here we look at mixture of two exponentials with

rates 7.30μ, 0.730μ and 0.073μ, respectively, with mixing probabilities 0.8, 0.15 and
0.05.

Also, in our examples we consider three types of probability distributions for batch sizes in
the arrival process. They are:

Poisson Batch Size (PbS) Here we assume that the arriving batch is of size k with prob-
ability given by

e−θ
( θk−1

(k − 1)!
)
, k ≥ 1. Note that the mean batch size is given by θ + 1.

Geometric Batch Size (GbS) Here the arriving batch is of size k with probability given

by (1 − p)pk−1, k ≥ 1. Note that the mean batch size is given by
1

1 − p
.

Uniform Batch Size (UbS) Here it is assumed that the batch size is uniformly distributed
on {1, 2, · · · , N}. Due to the finiteness of N , it is clear that we assume that Di = 0, i >

N . Note that the mean batch size is given by 0.5(N + 1).

Note that, in order to compare various scenarios properly, we will fix 1 + θ = 1

1 − p
=

0.5(N + 1) so that the batch means in all these cases are the same.

Example 1 In this example, we look at the effect of arrival rate, arrival processes, service
processes and probability distributions of batch sizes on some selected performance mea-
sures. Towards this end, we look at five different BMAPs with representation {Dk} such
that Dk = Dpk, k ≥ 1, where the batch size probability mass function, {pk}, is taken to be
one of the three displayed above, and D0 and D are as given below.

T aP 1 : Erlang (ErA): Here we consider an Erlang distribution of order 5 with rate 5λ.
That is,

D0 =

⎛

⎜
⎜
⎜
⎜
⎝

−5λg 5λg

0 −5λg 5λg

0 0 −5λg 5λg

0 0 0 −5λg 5λg

0 0 0 0 −5λg

⎞

⎟
⎟
⎟
⎟
⎠

,D =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

5λg 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

T aP 2 : Exponential (ExA): This corresponds to the classical Poisson process with rate
λg . That is,

D0 = (−λg

)
, D = (

λg

)
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T aP 3 : Hyperexponential (HeA): We look at a mixture of two exponentials with rates
1.9λ and 0.19λ, respectively, with probabilities 0.9 and 0.1. That is,

D0 =
( −1.9λg 0

0 −0.19λg

)

,D =
(

1.71λg 0.19λg

0.171λg 0.019λg

)

T aP 4 : MAP with negative correlation (MnC):

D0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−2.25λg 2.25λg 0 0 0
0 −2.25λg 2.25λg 0 0
0 0 −2.25λg 2.25λg 0
0 0 0 −2.25λg 0
0 0 0 0 −4.5λg

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, D =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0.0225λg 0 0 0 2.2275λg

4.455λg 0 0 0 0.045λg

⎞

⎟
⎟
⎟
⎟
⎟
⎠

T aP 5 : MAP with positive correlation (MpC):

D0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−2.25λg 2.25λg 0 0 0
0 −2.25λg 2.25λg 0 0
0 0 −2.25λg 2.25λg 0
0 0 0 −2.25λg 0
0 0 0 0 −4.5λg

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, D =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

2.2275λg 0 0 0 0.0225λg

0.045λg 0 0 0 4.455λg

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

All of the above BMAP processes will be normalized so as to have a specified (batch)
arrival rate, λg . Observe that these BMAPs are qualitatively different with different vari-
ance and correlation structure. It is worth mentioning that (a) the first three arrival processes,
namely ErA, ExA, and HeA, correspond to renewal processes and hence the correlation
is 0; (b) the arrival process labeled MnC has correlated arrivals with correlation between
two successive inter-arrival times given by -0.57855 and the arrivals corresponding to the
processes labelled MpC has a positive correlation with values 0.57855; (c) the ratio of the
standard deviations of the inter-arrival times of these five arrival processes with respect to
ErA are, respectively, 1, 2.2361, 5.0194, 3.1758, and 3.1758.

We fix μ = 1 and consider two values: λg = 1, 2 for the (batch) arrival rate, and two
values for the mean (arrival) batch size: 3 and 5. That is, λ = 3λg and λ = 5λg .

In Table 1, we display the three measures, Pidle, the coefficient of variation of the sojourn
time, and μNS . As mentioned earlier these three measures do not depend on the distribution
as well as the mean of the batch size.

A look at this table yields the following observations.

• As is to be expected, the probability of the server being idle decreases with increasing
arrival rate λg for all combinations of arrival and service time distributions.

• With respect to the first three arrival processes, whose inter-arrival times form a renewal
process, the probability, Pidle appears to increase as the variation in the inter-arrival
times increases for all cases. However, for other two arrival processes, whose succes-
sive inter-arrival times are, respectively, negatively and positively correlated, we see a
different behavior, indicating again the significant role played by the correlation. Note
that these two arrival processes have the same variance also.

• As the variation in service times (or in the inter-arrival times) increases, the measure
Pidle appears to increase. This seems to be true for all cases. However, for the HeA

processes the rate of increase (as a function of variability in service times) is not that
significant.

• Further, it is worthy to note that this measure, Pidle is insensitive with regard to the
probability distributions of batch size for different parameters under all scenarios.
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Table 1 Selected system performance measures

Measure λg T oS ErA ExA HeA MnC MpC

ErS 0.145 0.287 0.447 0.244 0.396

1 ExS 0.243 0.333 0.468 0.300 0.428

P(idle) HeS 0.412 0.435 0.487 0.422 0.520

ErS 0.013 0.085 0.307 0.065 0.101

2 ExS 0.074 0.143 0.317 0.122 0.187

HeS 0.221 0.251 0.320 0.235 0.332

ErS 0.455 0.452 0.430 0.450 0.464

1 ExS 0.846 0.825 0.787 0.818 0.833

Coefficient of variation HeS 1.791 1.791 1.763 1.785 1.707

of the sojourn time ErS 0.403 0.414 0.410 0.414 0.422

2 ExS 0.755 0.758 0.746 0.754 0.768

HeS 1.510 1.528 1.550 1.516 1.523

ErS 2.693 2.488 3.293 2.803 1.627

1 ExS 1.913 2.000 2.345 2.224 1.595

Mean number of service completions HeS 1.171 1.298 1.409 1.412 1.243

during a BP ErS 14.630 5.378 4.792 5.722 3.786

2 ExS 3.431 3.000 3.101 3.277 2.357

HeS 1.309 1.493 1.669 1.651 1.341

• The measure, CV = σWs

μWs

, giving the coefficient of variation of the sojourn time

exhibits an interesting phenomenon. For all scenarios in which the service times are
ErS orExS, we notice this measure appears to be less than one while forHeS services,
the CV is greater than one; further MpC arrivals seem to have the largest CV .

• With regard to the mean number of service completions, μSC , during a busy period,
we notice that an increase in the arrival rate causes an increase in this measure. This
is as expected; however, the rate of increase is significant in the case of ErS (which
has the least variability compared to the other two service distributions considered) and
furthermore we noticed that the HeA arrivals appear to have the narrowest range with
regard to the amount of change (going from λg = 1 to λg = 2) across all three services.

That is, if one looks at the ratio
μ

λg=2
SC

μ
λg=1
SC

by varying the type of services, we get the values

4.315, 1.011, 0.2707, 0.4418, and 0.7553, respectively, for ErA,ExA,HeA, MnC,

and MpC.

Now we display the measures, μNQ,μNS, and μSR , in Table 2. A quick look at this
table reveals the following observations.

• As is to be expected, as λg increases, the mean queue length μNQ, increases for all
arrival and service processes.

• This measure appears to be the same across all the three batch sizes distributions for
a fixed value of mean (arrival) batch size, λ. It is observed that for a particular dis-
tribution, as value of the parameter increases (increasing the mean batch size), the
mean queue length increases under all combinations of service and arrival processes.
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Table 2 System performance measures displayed as (μNQ,μNS, μSR)

T aP λg 1 2

λ 3 5 3 5

ErA ErS ( 1.12, 4.63, 9.45) ( 1.86, 7.71, 15.75) ( 3.44, 9.51, 88.90) ( 5.73, 15.86, 148.16)

ExS ( 1.81, 5.77, 7.58) ( 3.02, 9.62, 12.63) ( 5.19, 11.67, 22.23) ( 8.65, 19.45, 37.06)

HeS (16.51, 21.61, 5.98) (27.51, 36.02, 9.96) (44.52, 52.23, 10.09) (74.20, 87.04, 16.81)

ExA ErS ( 1.28, 5.49, 10.46) ( 2.14, 9.15, 17.44) ( 3.29, 9.85, 35.27) ( 5.49, 16.42, 58.78)

ExS ( 2.00, 6.50, 9.00) ( 3.33, 10.83, 15.00) ( 5.14, 12.14, 21.00) ( 8.57, 20.24, 35.00)

HeS (16.40, 21.71, 6.89) (27.34, 36.19, 11.49) (43.50, 51.51, 11.96) (72.50, 85.85, 19.93)

HeA ErS ( 1.52, 6.94, 17.86) ( 2.54, 11.57, 29.76) ( 3.42, 12.07, 41.46) ( 5.69, 20.11, 69.09)

ExS ( 2.32, 7.96, 13.23) ( 3.87, 13.27, 22.05) ( 5.34, 14.13, 27.24) ( 8.90, 23.54, 45.41)

HeS (16.73, 22.58, 8.24) (27.89, 37.64, 13.74) (42.16, 50.98, 14.72) (70.28, 84.97, 24.53)

MnC ErS ( 1.41, 5.37, 11.12 ) ( 2.35, 8.96, 18.53 ) ( 3.34, 9.75, 36.71 ) ( 5.56, 16.25, 61.18 )

ExS ( 2.06, 6.34, 9.53 ) (3.43, 10.57, 15.89) ( 5.20, 12.03, 22.40) ( 8.66, 20.05, 37.33 )

HeS (16.51, 21.70, 7.33 ) (27.52, 36.17, 12.21 ) (44.08, 51.93, 12.96) (73.47, 86.55, 21.60 )

MpC ErS ( 1.09, 6.06, 8.09 ) (1.81, 10.10, 13.48 ) ( 3.09, 9.76, 25.26 ) ( 5.15, 16.27, 42.11 )

ExS (1.92, 7.17, 8.37 ) (3.21, 11.95, 13.94 ) ( 4.96, 12.34, 17.39) (8.27, 20.57, 28.99 )

HeS (17.91, 24.15, 7.77 ) (29.84, 40.25, 12.95 ) (43.68, 52.67, 12.05 ) (72.80, 87.78, 20.08 )

Moreover, the sensitivity to the value of parameter for batch sizes distribution is more
apparent for HeS processes.

• For all scenarios, we see that a higher variation in the service times yield a higher value
for μNQ. Furthermore, we notice a significant change in μNQ when going from ExS to
HeS for all the five arrival processes. This appears to be the case for both values of λ.

• With regard to this measure, it is interesting to observe that the degree of sensitiv-
ity to the variation in the successive inter-arrival times is more for HeS processes as
compared to the other service processes, especially when λg = 2.

• The similar behavior is observed for the measure, μNS giving the mean number under
service with respect to the arrival rate, λg and mean batch size.

• For all scenarios, we see that an increase in the variation in service times induces an
increase in this measure. Moreover, the rate of increment is most significant for HeS

processes for all the arrival processes.
• Further, it is interesting to observe that a higher variation in the successive inter-arrival

times yield a higher value for μNS . However, when λg = 2, the reverse behavior is
observed for HeS processes.

• With regard to the mean number of customers served, μSR , during a busy period, we
notice that this measure increases with increase in value of λg for all arrival and ser-
vice processes, as expected. Moreover, for a particular distribution, increasing the mean
batch size causes an increase in μSR and the rate of increment is remarkable for ErS

processes when λg = 2.
• We noticed an interesting observation that this measure appears to decrease as the

variation in service time increases under all scenarios.
• Furthermore, as the variation in successive inter-arrival times increases, the measure

μSR seems to increase for λg = 1 for all service processes. However, we see a different
behavior for λg = 2.
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Example 2 Here, we consider the inter-arrival times to be Erlang of various orders rang-
ing from 1 to 10. We fix μ = 1, vary the (batch) arrival rate, λg = 1, 2 and consider
the three service time distributions like in Example 1. Note that a fixed batch arrival rate
means, that the variance of inter-arrival times decreases inversely proportional to the order
of Erlang.

In Figs. 1 and 2 we display some selected measures. These figures enable one to observe
the following.

• As is to be expected P(idle) decreases as λg is increased. Also, this measure appears to
increase with increasing variability in the services or increasing variability in the inter-
arrival times. While an increase in the order of Erlang causes a gradual decrease in this
measure, the rate of decrease appears to be insignificant for the HeS process. Note that
HeS has a higher variability compared to the other two services considered here.

• With respect to the coefficient of variation of the sojourn time, we notice that the order
of Erlang appears to play no significant role for all the service processes considered;
further HeS process seems to have the largest CV exceeding one. This appears to be
the case for both values of λg .

• The mean number of service completions during a busy period exhibits an interesting
phenomenon. For all the scenarios, we notice that this measure increases with the arrival
rate; however, the rate of increase is remarkable for ErS processes. Further, as the
variation in service time increases, this measure appears to decrease and the difference
in values increases with λg . This phenomenon could be due to the fact that a smaller
variation in the service times lead to longer busy period resulting in more service com-
pletions. We also notice that an increase in the order of Erlang results in a decrease
in this measure in the case of ExS and HeS services; however, for ErS services this
measure appears to increase.

• With regard to the mean number in the queue, we notice that an increase in the arrival
rate or in the mean batch size causes an increase in this measure. This is as expected;
however, the degree of sensitivity to the value of λg as well as of mean batch size is
higher for HeS services. We also notice that this measure appears to be insensitive to
the order of Erlang for all the service processes considered.

• As is to be expected the mean number in service increases as λg is increased. Also, this
measure appears to increase with increasing variability in service times or increasing
value of mean batch size. While an increase in the order of Erlang causes a decrease
in this measure, the rate of decrease seems to be less significant for HeS process
compared to the other two service time distributions considered.

• With respect to the mean number of customers served during a busy period, we notice
that for a particular distribution, increasing the mean batch size causes an increase in
μSR . Moreover, this measure decreases with an increase in variability in the service
times and the difference in values increases with λg . Further, it is worthy to note that
the order of Erlang appears to play no significant role for all scenarios; however when
λg = 2, we see a remarkable increment for ErS process.

It is well-known that the class of continuous phase type distributions is dense in the class
of all distributions with support on [0, ∞). Thus, one can approximate a given general dis-
tribution on the non-negative real line with appropriate phase type distributions. However,
in our next example we will look at four different general distributions for services. The
four service time distributions considered are as follows.
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Fig. 1 Plot of selected measures under various scenarios

1572 Methodology and Computing in Applied Probability (2021) 23:1551–1579



0
20

40
60

λg = 1

0
20

40
60

λg = 1

0
20

40
60

λg = 1

0
20

40
60

λg = 1

0
20

40
60

λg = 1

0
20

40
60

λg = 1 Mean number in the queue

0
20

40
60

λg = 2

0
20

40
60

λg = 2

0
20

40
60

λg = 2

0
20

40
60

λg = 2

0
20

40
60

λg = 2

0
20

40
60

λg = 2

ErS
ExS
HeS
Batch mean=3
Batch mean=5

Mean number in the queue

4
6

8
10

12
14

4
6

8
10

12
14

4
6

8
10

12
14

4
6

8
10

12
14

4
6

8
10

12
14

4
6

8
10

12
14

Mean number in service

4
6

8
10

12
14

4
6

8
10

12
14

4
6

8
10

12
14

4
6

8
10

12
14

4
6

8
10

12
14

4
6

8
10

12
14

Mean number in service

2 4 6 8 10

10
20

50
10

0
20

0

Order of Erlang
2 4 6 8 10

10
20

50
10

0
20

0

Order of Erlang
2 4 6 8 10

10
20

50
10

0
20

0

Order of Erlang
2 4 6 8 10

10
20

50
10

0
20

0

Order of Erlang
2 4 6 8 10

10
20

50
10

0
20

0

Order of Erlang
2 4 6 8 10

10
20

50
10

0
20

0

Order of Erlang

Mean number served during a BP

2 4 6 8 10

10
20

50
10

0
20

0

Order of Erlang
2 4 6 8 10

10
20

50
10

0
20

0

Order of Erlang
2 4 6 8 10

10
20

50
10

0
20

0

Order of Erlang
2 4 6 8 10

10
20

50
10

0
20

0

Order of Erlang
2 4 6 8 10

10
20

50
10

0
20

0

Order of Erlang
2 4 6 8 10

10
20

50
10

0
20

0

Order of Erlang

Mean number served during a BP

Fig. 2 Plot of selected measures under various scenarios using log scale for y-axis
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1. WBS: Weibull with shape and scale parameters set at 0.5. The probability density
function is given by:

f (t) = 1√
2t

e−√
2t , t ≥ 0.

2. UNS: Uniform on the interval (0.5, 1.5).
3. DPS: Discrete probability mass function having masses at 0.5, 1, and 4,5, with

probabilities, respectively, given by 0.7, 0.2, and 0.1.
4. CNS: Constant with a value of 1.

Note that the above distributions all have a mean of 1 but their standard deviations,
respectively, are 2.2361, 0.2887, 1.1832, and 0.

Before we discuss the example, it is worth pointing out that the probabilities, {γn} (see
Eq. 10), discussed in Section 3.1, need to be calculated first. These probabilities depend on
the type of arrival process as well as the service time distribution. Further, they need to be
truncated and the cut-off or truncation point, n∗, is chosen by fixing ε = 10−4. for the tail
probabilities.

For our next example, we will focus on the measure, μSC , the mean number of service
completions during a busy period.

μSC = 1

x0e
x0(−D0)

−1Dμ̃, (28)

where x0 is the steady-state probability vector that a service completion leaves the system
idle.

Recall that that μSC is independent of the batch size distribution since the quantity on the
right-hand side of Eq. 28 does not depend on the batch size distribution (see Eqs. 7 and 14).

Example 3 The purpose of this example to investigate the behavior of the performance
measure,μSC , the mean number of service completions during a busy period, and (recalling)
the cut-off point n∗ such that

∞∑

i=n∗
γi � 10−4, (29)

in the case of general services. See Eq. 10 for the definition of γi . We use the same arrival
processes that are used in Examples 1 and 2. We fix the parameters to have the same values.
That is, we fix λg = 1 and μ = 1.

In Figs. 3 and 4 below, we display the (log) mean number of service completions during
a busy period, ln(μSC) and (log) the cut-off points ln(n∗) under different scenarios.

A quick note on the identifier in the Figs. 3 and 4. In Fig. 3,EW denotes the arrivals occur
according to ERA process (defined in Example 1) and the service times are WBS (defined
in Example 2). Similarly, ND corresponds to negatively correlated arrivals, namely, MnC

and constant service times. That is, the first letter of the identifier corresponds to the arrival
process used in the experiment, whereas the second defines the service time distribution.
The following encoding is used for the first letter of the identifier: E – ErA process, X –
ExA, H – HeA process, N – MnC process, P – MpC process. The second letter encoding
is as follows: W – WBS distribution, U – UNS distribution, D – DPS distribution, C –
CNS service time distribution. In Fig. 4, we display the two measures under consideration
by looking at Erlangs of order 1 through 10, and for constant service times. This is to see
the impact of low variability in the arrivals (and of course no variability in the services).
Thus, the identifier E1, · · · E10, correspond to Erlangs of order 1 through 10.
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Fig. 3 Mean number of service completions during a busy period and cut-off points under various scenarios.
The scenario is encoded as follows: first letter of the identifier E – ErA process, X – ExA process, H –
HeA process, N – MnC process, P – MpC process; second letter encoding: W – WBS distribution, U –
UNS distribution, D – DPS distribution, C – CNS service time distribution

A few key observations are as follows. (a) As is to be expected both μSC and n∗ increase
as λg is increased; (b) We notice for all scenarios that the mean number of service comple-
tions during a busy period decreases with an increase in the variability of the service times;
whereas a reverse pattern is observed for the cut-off points. That is, as the variability in the
services increases, one needs a large value of n, namely, n∗, such that Eq. 29 holds good.
This appears to be the case for both values of λg; (c) It is worthy to note that, for ErA

arrivals with either UNS orCNS services, a significant increase in the values of the measure
μSC is seen as compared to the other scenarios; (d) With regard to the constant service times

Fig. 4 Mean number of service completions during a busy period and cut-off or truncation points under
constant service times, CNS, and Erlang arrival process of order 1, . . . , 10, encoded as E1, . . . , E10,
respectively
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(i.e. CNS), we notice that the measure μSC and n∗ increase as the order of Erlang increases.
This can be explained intuitively as follows. As the order of Erlang increases the tail of the
probability mass function, {γn}, of the number of Poisson (whose parameter depends on the
order of Erlang) arrivals increases. This results in an increase in the probability of seeing
at least one arrival during a service time (which is constant and equals 1). Thus, we see an
increase in the average number of service completions during a busy period.

6 Concluding Remarks

In this paper we introduced bulk service rule with infinite upper bound in the context of
a single server queue with batch Markovian arrivals and general service time distribution
independent on the batch size being served. We analyzed this model using both embedded
Markov renewal approach (in the case of general services) and using generator approach
(in the case of phase type services). The steady-state probability vector is obtained almost
explicitly for the general model and in many special cases we demonstrated how explicit
solutions look like. Interesting numerical examples were presented. The model considered
in this paper can be studied further in a number of ways. First, one can generalize this to
include multiple servers. Secondly, we can model the system with server going on a vacation
whenever the system becomes empty. In such a case, since the steady-state probabilities are
likely to be obtained, it would be interesting to study the performance-energy tradeoff and
optimize the vacation policy. Thirdly, one can model the server failures, repairs, and possibly
backup server (but serving at a lower rate). These and other extensions are currently being
investigated.
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