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Abstract—The characteristics impedance of the fundamental mode
in a rectangular waveguide is computed using finite element method.
The method is validated by comparison with the theoretical results.
In addition to this, we have considered the problem of determining
the modes of propagation of electromagnetic waves in a rectangular
waveguide for the simple homogeneous dielectric case. The starting
point is Maxwell’s equations with an assumed exponential dependence
of the fields on the Z-coordinates. From these equations we have
arrived at the Helmholtz equation for the homogeneous case. Finite-
element-method has been used to derive approximate values of the
possible propagation constant for each frequency.

1. INTRODUCTION

The finite element method (FEM) has been widely used during the
last two decades in the analysis of waveguide components. With this
method propagation characteristics of arbitrarily shaped waveguides
of different composition are easily attainable. The finite element
method is based on a spatial discretization [1]. This approximation
allows one to handle waveguide cross section geometries which are
very similar to the real structures employed in practical devices. These
complex structures do not lend themselves to analytical solutions. As a
consequence, the FEM constitutes a promising tool to characterize such
problems [2, 11]. Modern phased array radars imply the requirements
for polarization agility of wideband array elements. One possible choice
for a radiating element with this property is the rectangular waveguide.
In this paper a formulation is proposed to solve waveguides problems.
A numerically efficient finite element formulation is presented that
shows propagation modes and which may be used to analyze problems
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involving linear systems of arbitrary complex tensor permittivity and
permeability. The solution of these eigenvalue problems results in
the approximate fields for all components of different eigenmodes in
the waveguide which can further be used to obtain the corresponding
eigenvalues [2]. A possible comparison of the proposed methodology
with the available theoretical results has also been presented here in
the paper to clear the accuracy and reliability of the solution method.

2. THE FINITE ELEMENT FORMULATION

In this paper, the rectangular cross section of the waveguide is divided
into a number of finite elements. An element is considered to be first
order triangular in shape [3]. An schematics of a triangular finite
element in the rectangular waveguide is shown in Figure 1. Consider
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Figure 1. Schematic representation of a triangular finite element.

a triangle having vertices (x1, y1), (x2, y2), (x3, y3). Two vectors, −→u
and −→v has been drawn by joining the vertices [(x1, y1), (x2, y2)] and
[(x1, y1) and (x3, y3)], respectively. Let

d1 = |u| =
√

(x2 − x1)2 + (y2 − y1)2 (1)

and
d2 = |v| =

√
(x3 − x1)2 + (y3 − y1)2 (2)

The unit vector along the two directions u and v are

û =
u

|u| =
(x2 − x1, y2 − y1)

d1
(3)
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and
v̂ =

v

|v| =
(x3 − x1, y3 − y1)

d2
(4)

any point (x, y) inside this triangle can be represented as

(x, y) = (x1, y1) + u · û + v · v̂

= (x1, y1) +
u(x2 − x1, y2 − y1)

d1
+

v(x3 − x1, y3 − y1)
d2

so
(x − x1) =

u(x2 − x1)
d1

+
v(x3 − x1)

d2
(5)

and
(y − y1) =

u(y2 − y1)
d1

+
v(y3 − y1)

d2
(6)

These are two linear equations for the variable u and v and solving
them gives us u, v as linear functions of x, y. The area measure is
given by

ds(u, v) = |	u × 	v| du · dv

where
|	u × 	v| = sin(α)

here angle α between the vectors u and v defined as

cos(α) =
u · v

d1 · d2

=
(x2 − x1)(x3 − x1) + (y2 − y1)(y3 − y1)

d1 · d2
(7)

The integral of a function can be evaluated as

I(φ) =
1
2

∫ d1

0

∫ d2

0
φ

[
x1 +

u(x2 − x1)
d1

+
v(x3 − x1)

d2
,

y1 +
u(y2 − y1)

d1
+

v(y3 − y1)
d2

]
sinα · dudv (8)

if φ = 1 then we get

I(1) =
d1 · d2 sinα

2
(9)

which represents the area of the triangle. Suppose we write

V (x, y) = ax + by + c
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for
x, y ∈ ∆

with ∆ as the area bounded by the triangle. a, b, c are chosen so that
V at the vertices are given, i.e.,

V (x1, y1) = V1

V (x2, y2) = V2

V (x3, y3) = V3

Thus, 
 x1 y1 1

x2 y2 1
x3 y3 1





 a

b
c


 =


 V1

V2

V3




Thus we find that

a=
V1(y2 − y3) + V2(y3 − y1) + V3(y1 − y2)

∆
(10)

b=
V1(x2 − x3) + V2(x3 − x1) + V3(x1 − x2)

∆
(11)

c=
V1(x2 · y3−x3 · y2)+V2(x3 · y1−x1y3)+V3(x1 · y2−x2 · y1)

∆
(12)

where

∆ = x2 · y3 − x3 · y2 + x3 · y1 − x1y3 + x1 · y2 − x2 · y1 (13)

thus for
x, y ∈ ∆

we have

V (x, y) = ax + by + c

= V1φ1(x, y) + V2φ2(x, y) + V3φ3(x, y)

φ1(x, y) =
(y2 − y3)x + (x2 − x3)y + (x2 · y3 − x3 · y2)

∆
(14)

φ2(x, y) =
(y3 − y1)x + (x3 − x1)y + (x3 · y1 − x1 · y3)

∆
(15)

φ3(x, y)) =
(y1 − y2)x + (x1 − x2)y + (x1 · y2 − x2 · y1)

∆
(16)

The following two integrals occur when one uses the finite element
method
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first

I1 =
∫
∆

V 2
(x,y)dx · dy

second

I2 =
∫
∆
|∇V |2dx · dy

Now

I1 =
∫
∆

V 2
(x, y)dx · dy =

∫
∆

(ax + by + c)2dx · dy (17)

By substituting the value of (x, y) in terms of (xi, yi) in Equation (17),
we get

I(φ) =
sinα

2

∫ d1

0

∫ d2

0

[
a

(
x1 +

u(x2 − x1)
d1

+
v(x3 − x1)

d2

)

+b

(
y1 +

u(y2 − y1)
d1

+
v(y3 − y1)

d2

)
+ c

]2

dudv (18)

The use of method of variable separation for u and v results in the
following.

I(φ) =
sinα

2

∫ d1

0

∫ d2

0

[
u

(
a(x2 − x1) + b(y2 − y1)

d1

)

+v

(
a(x3 − x1) + b(y3 − y1)

d2

)
+ c′

]2

(19)

where
c′ = ax1 + by1 + c

Equation (19) can be written as

I(φ)=
sinα

2

∫ d1

0

∫ d2

0

[
C1u

2+C2uv+C3v
2+C4u+C5v+C6

]
dudv (20)

Here

C1 =
[
a(x2 − x1) + b(y2 − y1)

d1

]2

(21)

C2 = 2
[
a(x2 − x1) + b(y2 − y1)

d1

] [
a(x3 − x1) + b(y3 − y1)

d2

]
(22)

C3 =
[
a(x3 − x1) + b(y3 − y1)

d2

]2

(23)
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C4 =
[
2C ′(a(x2 − x1) + b(y2 − y1))

d1

]
(24)

C5 =
[
2C ′(a(x3 − x1) + b(y3 − y1))

d2

]
(25)

C6 = C ′2 (26)

Also note that
∫ d1

0

∫ d2

0
u2dudv =

d3
1 · d2

3
(27)

∫ d1

0

∫ d2

0
v2dv =

d1 · d3
2

3
(28)

∫ d1

0

∫ d2

0
u · vdudv =

d2
1 · d2

2

4
(29)

and finally ∫ d1

0

∫ d2

0
dudv = d1 · d2 (30)

We also have
∇V (x, y) = (a, b) (31)

and hence

I2 =
∫
∆
|∇V |2dxdy =

(
a2 + b2

)
d1 · d2 sinα

2
(32)

Following the procedure stated above, these two integrals (I1 and I2)
for each element are evaluated. We will find the summation of these
integrals up to the number of elements in which we have divided the
cross-section.

Characteristic power-voltage impedance Z can be defined as
follows:

Z =
U2

2P
(33)

where P is the power carried along the waveguide and U is the voltage
across the waveguide.

3. DETERMINATION OF EIGENVALUES OF THE
MATRIX

The eigenvalues of the matrix are obtain as follows.
(
V T AV − k2V T BV

)
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when minimized over V gives the quadratic form defined by
∫
∆
|∇V |2dxdy − k2

∫
∆

V 2dxdy (34)

here

δ

∫
∆

(
∇−→

V ,∇−→
V

)
dxdy=2

∫
∆

(−→∇ , δ
−→∇V

)
dxdy=−2

∫
δV ∇2V dxdy (35)

and
δ

∫
∆

V 2dxdy =
∫

2V δV dxdy (36)

From Equation (33)

−2
∫

δV ∇2V dxdy − 2k2
∫

δV · V dxdy = 0 (37)

or ∫
δV

(
∇2 + k2

)
V dxdy = 0 (38)

(
∇2 + k2

)
V dxdy = 0 (39)

An approximation of Equation (39) using the fem gives

AV − k2BV = 0 (40)
(
A − k2B

)
V = 0 (41)

|A − k2B| = 0 (42)

Here V is the vector of vertex nodal field values. Solution of this matrix
will give the eigen values. These eigen values are the propagation
modes of the waveguide. The above proposed method can be used to
calculate the modes of a waveguide of any type of cross-section. This
calculation procedure has been validated to present validity, accuracy
and reliability of the solution, in the ensuing section.

4. SIMULATION RESULTS

In order to validate the procedure, the computed result is compared
with those obtained from the theoretical analysis. Table 1 compares
the eigenvalues of the rectangular waveguide for a range of rectangular
cross-section. Also shown in the table are the value of characteristics
impedance (z).
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Table 1. Eigenvalue and characteristic impedance of the fundamental
mode of the rectangular waveguide.

b/a
eigen value
(Present)

eigen value
(Theoretical)

characteristic
impedance (z)

.1 1.266 1.1368 56.28

.2 1.6748 1.3475 97.42

.3 1.9717 1.8975 136.72

.4 2.2168 2.2834 173.78

.5 2.4288 2.4432 207.84

.6 2.7853 2.7582 278.44

.8 3.5839 2.9342 308.65

.9 3.8432 3.1502 342.43
1.0 3.6599 3.5422 401.87

5. CONCLUSION

In this paper an advantageous finite element method for the
rectangular waveguide problem has been developed by which complex
propagation characteristics may be obtained for arbitrarily shaped
waveguide. The extension to higher order elements is straightforward,
and by modifications of the method it is possible to treat other types
of waveguides as well, e.g., dielectric waveguides with impedance walls
and open unbounded dielectric waveguides properly treating the region
of infinity.
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