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Analysis of a Redundant Free-Flying 
Spacecraft/Manipulator System 

Dragomir Nenchev, Yoji Umetani, and Kazuya Yoshida, Member, ZEEE 

Abstract-This paper presents an anlysis based on the mo- 
mentum conservation equations of a redundant free-flying space- 
craft/manipulator system, acting in zero-gravity environment. 
In order to follow a predefined end-effector path, the inverse 
kinematics at velocity level is considered. The redundancy i 
solved alternatively in terms of pseudoinverses and null-space 
components of the manipulator inertia matrix, the manipulator 
Jacobian matrix, and the generalized Jacobian matrix. A general 
manipulation task is defined as end-effector continuous path 
tracking with simultaneous attitude control of the spacecraft. 
Three subtasks of the general task are considered: 1) end- 
effector continuous path tracking with simultaneous attitude 
maintenance; 2) and 3) changing the attitude of the satellite 
while keeping fixed position/orientation of the end-effector with 
respect to either the orbit-fixed coordinate frame or the satel- 
lite. The case of manipulator motions that yield no spacecraft 
attitude disturbance is analyzed in more detail and a special 
“fixed-attitude-restricted” (FAR) Jacobian is defined. Through 
singular-value decomposition of this Jacobian, corresponding 
FAR dexterity measures (FAR manipulability and FAR condition 
number) are derived. 

I. INTRODUCTION 
ECENTLY, interest toward free-flying space robots has R rapidly increased. A particular problem studied by sev- 

era1 researchers is the disturbance of the position and attitude 
of the spacecraft by induced reaction forces and moments 
from the manipualtor arm. This disturbance is highly under- 
sirable since it yields a disturbed end-effector motion, and 
conventional path planning methods developed for ground- 
fixed robots will not work in space. The manipulator work 
space will be reduced as well [l]. 

There are two main approaches to solve these problems. 
First, some means may be involved to correct the spacecraft 
disturbance. For instance, special devises such as reaction 
wheels and/or jet thrusters can be operated either simulta- 
neously [2], [3] or intermittently [4] to manipulator motion. 
Another alternative for this approach is to use manipulator mo- 
tion itself to correct the position and attitude of the spacecraft. 
This can be accomplished through small cyclic motions in joint 
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space [ l ] .  Second, new path planning methods can be utilized 
based on proper modeling of the spacecraft-manipulator dy- 
namic interaction [l], [5]-[9]. The end-effector is able thereby 
to track some desired path while the spacecraft floats freely, 
i.e., the spacecraft/end-effector motion is noncoordinated. This 
might be undersirable in some cases. 

Other formulations that guarantee coordinated motion of 
the spacecraft and the end-effector without using special 
compensating devices have been reported for the case of an 
n-DOF manipulator arm able to simultaneously control three- 
dimensional spacecraft attitude [ 101, [ 111. 

The purpose of this paper is to propose a method for ana- 
lyzing a redundant free-flying spacecraft/manipulator system 
and to discuss some control tasks for coordinated space- 
craft/manipulator motion. Motions of the manipulator arm that 
do not disturb the attitude of the spacecraft will be of prime 
interest. Some dexterity measures will be defined for these 
motions as well. 

11. BACKGROUND AND NOTATIONS 

We use assumptions and fundamental equations for the 
free-flying system as presented in a previous work [6]. 

A. Assumptions 

We consider an n-DOF manipulator arm with rotational 
joints mounted on a free-flying spacecraft. Manipulator links 
and spacecraft are regarded as rigid bodies. Thus, we obtain 
a mechanical chain of n + 1 rigid bodies, acting under zero- 
gravity conditions. This system has n + 6 generalized coordi- 
nates, n of them representing the generalized coordinates of 
the manipulator, and the other six defining the position and ori- 
entation of the spacecraft with respect to an inertial coordinate 
system. We assume that, at an initial state and while moving, 
the position and orientation of the spacecraft are well known 
from the inertial coordinate system. We assume no mechanical 
restrictions nor external forces or torques about the mass 
center, so that momemtum convervation and the equilibrium 
of forces and moments hold strictly true. There are no special 
attitude control devices such as reaction wheels or thrusters, 
and internal forces are generated only by joint motors. 

B. Basic Equations and Relationships 

lows: 
The momemtum conservation equations are given as fol- 

krnii; = const. (1) 
i = O  
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stands for translational momentum, and been based on a general description of a free-flying space- 
n 

( ~ i w i  + miri x i i )  = const. (2)  
i=O 

represents rotational momentum. In these equations, m; is the 
mass of body i, ri is the radius vector of its mass center, wi 
is its angular velocity, and Ii is its inertia matrix with respect 
to the mass center. Vectors and matrices are expressed with 
reference to the inertial coordinate system. 

Further on, we use a geometric and a kinematic model of 
the free-flying system as given in [6]. It has been assumed 
that attitude control of the spacecraft is essential, whereas its 
position control can be neglected. Therefore, the models in 
3-D space comprise a total of n + 3 generalized coordinates. 
Spacecraft attitude is described by means of yaw-pitch-roll 
notation. 

From the geometric and kinematic models of the free-flying 
system, expressions for ri, i i ,  and wi can be derived. If these 
expressions are substituted into the momentum conservation 
equation (2),  the following expression can be obtained: 

craft/man;puIatnr cyctem. comnrised of an m-ntla maninu1stc.r 

arm in 3-D space; and 2) the reaction effect of manipulator 
motion on the spacecraft has been described in terms of motion 
rates and momenta; no explicit expressions for accelerations 
and forces/torques have been utilized. 

111. INVERSE KINEMATIC SOLUTIONS OF THE 
SPACECRAFT/MANIPULATION SYSTEM 

A. Redundancies in the Free-Flying System 

The degree of redundancy (DOR) for ground-fixed robots 
has been defined as the difference between the DOF of the 
manipulator arm and the number of end-effector task variables 
[12]. According to this definition, a free-flying robot with 
autonomous motion control of the spacecraft always will be 
redundant. 

Let us consider now a free-flying system characterized by 
active control of manipulator joints only. This control has 
to solve the problem of coordinated spacecraft/manipulator 

(3) 
motion. We can make a straightforward representation of the 
problem by two tasks: the spacecraft motion control task and 

I& + I M ~  = L~ 

where Lo is an initial momentum, IS is the 3 x 3 inertia matrix 
of the spacecraft, IM is the 3 x n inertia matrix of manipulator 
links, 52 is the 3 x 1 velocity vector, and 0 is the n x 1 
joint velocity vector. Through (3), the spacecraft rotational 
momentum Is52 can be distinguished from the manipulator 
momentum IM 0. 

On the other hand, the relationship between motion rates 
can be presented as 

x = J& + J& +ho (4) 

where i., is an M x 1 constant initial motion rate vector of 
the free-flying system, m being the number of end-effector 
task variables, JS is an m x 3 spacecraft Jacobian matrix, 
JM is an m x n manipulator Jacobian matrix, and i stands 
for the m x 1 end-effector velocity vector. Through.(4), the 
spacecraft-motion-dependent end-effector velocity Js52 can be 
distinguished from the manipulator-motion-dependent velocity 
JMO.  

Expressions for matrices IS, IM,  Js, and JM can be found 
in [6]. 

Now, from (3) and (4) we can eliminate the unknown 
attitude variables h, thus obtaining a joint/end-effector rate 
relationship. From (3) we have 

the end-effector motion control task. These tasks determine 
the motion of the spacecraft and the end-effector with respect 
to the inertial coordinate system. Denote by ml and m2 the 
number of task variables for the spacecraft task and the end- 
effector task, respectively. Then three cases of redundancy can 
be distinguished in relation to the number of manipulator joints 
n and the total number of task variables m l  +ma. The first two 
cases are characterized by n 2 ml + m2, and the manipulator 
arm will comprise some redundancy with respect to both the 
spacecraft and the end-effector tasks. This redundancy can be 
utilized to coordinate the motion of the spacecraft and the end- 
effector. For the first case, however (n > ml +m2), there will 
also be some additional redundancy available, which can be 
resolved in order to satisfy certain criteria (for example, joint 
limit, singularity, or obstacle avoidance). For the second case 
(n = ml + mz), the available redundancy can be utilized 
only to coordinate the end-effector-spacecraft motion. The 
third case is characterized by n < ml + m2. Although the 
manipulator arm may comprise some redundancy with respect 
to the spacecraft task (n  > ml) or the end-effector task 
(n  > m2), the DOR will not suffice to coordinate exactly 
spacecraft and manipulator end-effector motion. 

B. Three Alternative Solutions of Inverse Kinematics 

Let us consider the model of the free-flying system as 
(5)  

Substitute in (4) to obtain described in Section 11. For this system we would like to 
coordinate manipulator end-effector motion (i.e., velocity .k) 
and angle maneuvers of the spacecraft (attitude velocity 52). 3 = (JM - J ~ I ~ ~ I ~ ) ~  + io (6) 

where i o  = PO + JsIs'Lo. The expression Hence, the spacecraft task will be three-dimensional (ml = 
3), whereas the end-effector task is generally of dimension 
7722 5 6. Let us assume also that kinematic redundancy of 
the system is determined as n > ml + m2. This yields the 
following solutions for joint rates from (3), (4), and (6): 

JG E JM - JsIilI~ (7) 

is said to be the generalized Jacobian matrh for space manip- 
ulators, mounted on a free-flying spacecraft [5 ] ,  [6]. 

Jacobian approach should be pointed out: 1) this method has 
Summarizing, two important results with the generalized 

OM, = I~ t (Lo - I - I~IM)&MI t (8) 
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(10) 

6 M j  = J~ t (  i: - ~~h - io) + (I - J L J M ) & M J  (9) 

6 G j  = J A ( ~ :  - io) + (I - JAJG)&GJ 

respectively. Here, I denotes the identity matrix, (.)t is a 
pseudoinverse of some matrix (.), whereas ( I  - (.)t(.)) is 
a projector onto the null space of this matrix and a(.) E W" 
is arbitrary. The subscripts we define as follows: M I  stands 
for manipulator inertia, M J means manipulator Jacobian, and 
G J  stands for generalized Jacobian. 

Similar pseudoinverse-based formulations are well known 
from the analysis of ground-fixed redundant manipulators [ 131, 

It should be noted that the availability of redundancy with 
respect to the end-effector task (n  > m2) implies the existence 
of nonzero vectors in the null space of the Jacobian matrices 
JM and JG (similar to redundant ground-fixed robots). On 
the other hand, the redundancy with respect to the spacecraft 
task (n  > ml) yields nonzero vectors in the null space 
of the manipulator inertia matrix I M .  This is considered to 
be a unique feature of free-flying space robots, where the 
momentum equilibrium equation (see (3)) holds. 

C. Defining the 8, Vectors 
The &(.I vectors in (SXlO) can be defined by considering 

some auxiliary restrictions. For the manipulator-inertia-based 
(8), this will be the restriction imposed on the end-effector 
motion (see (4)), whereas for the Jacobian-matrices-based 
(9) and (lo), the restriction for spacecraft motion (see (3)) 
is to be considered. In order to guarantee the capability of 
spacecraft/manipulator motion coordination, it is necessary to 
assume redundancy distribution according to the expression 
n 2 ml + m2. This assumption implies a common solution of 
each of the equation couples (8)/(4), (9)/(3), and (10)/(3), and 
hence, each of @)-(lo) will generate the same joint velocity, 
as long as singularities are avoided. 

Methods for solving a redundant system under certain 
restrictions have been widely discussed for ground-fixed robots 
[16]. We used a constrained least squares approach [17] that 
avoids extension of system dimensions. According to this 
method, the &(.I vectors and the respective joint velocities 

1141. 

can be specified as follows: 
MI-Based Solution: Substitute (8) into (4) to obtain 

( J s  - J M I L I s ) h  + JM (I - &IM) &MI = i - $0 

(11) 
where io = io + J M I M L ~ .  t Solve (11) for &&I 

Joint velocities can be obtained by substituting 
into (8): 

back 

where use has been made of P(HP)t = (HP) t ,  P being a 
symmetrical and indempotent projectional matrix [ 171. 
A4 J-Based Solution: Substituting (9)  into (3) yields 

IM JM t (  x - J s h  - io) + IM (I - J L J M )  

. & ~ j  + I s h  = Lo. (14) 

This equation is solved for &MJ as follows: 

. - I M J ~ ~  t - ( I s  - I M J ~ J s ) ~ ]  t (15) 

t where io = Lo + IM J M i o ,  Note that in the last equation the 
relative end-effector velocity term i - J s h  has been divided. 
This is possible since we assumed n 2 ml +m2, which yields 
sufficient DOR to specify z and Q independently. 

Joint velocities are obtained by substituting + M  J back into 
(9): 

where again the identity used in (13) has been applied. 
GJ-Based Solution: Using (10) instead of (9) and following 

the previous procedure, we obtain a final expression for joint 
velocities as: 

where Lo = Lo + IM JGg0. t -  

D. The Redundancy Distribution Case n < ml + m2 

If we assume n < ml + m2, the alternative solutions 
(8)-(10) should be discussed in terms of tasks with order of 
priority [E]. 

For the manipulator-inertia-based solution (8), the higher 
priority task is the spacecraft motion control task, since the 
minimum-norm component of the @ M I  vector contains the 
spacecraft attitude velocity Cl. The self-motion of the arm, 
obtained through the null-space component, thereby has no 
impact on the spacecraft attitude velocity. 

For the manipulator-Jacobian-based solution (9), the higher 
priority task is control of the end-effector velocity with respect 
to a coordinate frame with its origin placed at the mass 
center of the spacecraft/manipulator system and principle axes 
parallel to a spacecraft-fixed coordinate frame. This relative 
end-effector velocity is expressed by the term i - JsQ (from 
the minimum-norm component) in (9). The self-motion of the 
arm will have no impact on this end-effector velocity. 

For the generalized-Jacobian-based solution (lo), the higher 
priority task is the control of the end-effector motion with 
respect to an orbit-fixed coordinate frame, since the end- 
effector velocity i has been defined in terms of this frame. 
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The arbitrary vectors &(.) can be specified again through 
the constrained least squares approach and by considering the 
following problems: 

1) Solve the momentum equilibrium equation (3) for joint 
velocities OMZ under minimization of the expression 

and 

respectively, under minimization of the terms 
2) solve (4) or (6) for joint velocities ~ ) M J  or OGJ, 

where (e) stands for M J  or G J .  
Minimization of (18) yields the end-effector velocity 

J M ~ M Z ,  which is close in a least squares sense to the 
desired end-effector velocity 3 - Jsfl -3, .  On the other hand, 
minimization of (19) yields manipulator momentums IM@( . )  
that in turn induce spacecraft rotational momentum, close in a 
least squares sense to the desired momentum Lo - Isfl. 

Solutions of the above problems are given by (13), (16), and 
(17), respectively. However, we should note the following. 
Because of insufficient redundancy (n  < ml + mz), there 
will be no common solution for each of the equation couples 
(8)/(4), (9)1(3), and (10)/(3) available, and each of (13), (16), 
and (17) will generate different joint rates. 

Iv. MANIPULATION TASKS FOR THE 
FREE-FLYING SPACE ROBOT 

Based on solutions (13), (16), and (17), as well as on 
the assumption for sufficient DOR (n  2 ml + mz), some 
taks for the free-flying spacecraft/manipulator system can be 
formulated that might be useful in future space missions. Here, 
we also assume no initial motion of the system (Lo = 0, 
zo = 0). It should be noted that the tasks asre stated in terms 
of motion rates. 

A.  Task &Continuous Path Tracking by Manipulator End- 
Effector and Simultaneous Attitude Control of the Spacecraft 

This is a general motion control task. It is reasonable to 
discuss further three other tasks that will be recognized as 
subcases of Task I. 

B. Task II-Continuous Path Tracking with Simultaneous 
Spacecraft Attitude Maintenance 

In some cases it is desirable to keep the orientation of the 
spacecraft unchanged during manipulator motion, for example, 
in order not to disturb the function of vehicle communication 
and sensing devices or the inner-vehicular micro-gravity en- 
vironment. This task requires zero attitude velocity. Setting 
h = 0 in (13), (16), and (17), we obtain the three solutions 

(20) ~ M Z =  [JM(I  - I M I ~ ) ] t 3  t 
OMJ = J M i  t - [IM(I - J M J ~ ) ] t I ~ J L 3  t (21) 

and 

respectively. 

C.  Task III-Changing the Attitude of the Spacecraft while 
Keeping Fired Position/Orientation of the End-Effector 
with Respect to the Inertial Coordinate Frame 

This task yields a small angle maneuver for the spacecraft. 
It could be performed in order to adjust the work ranges of 
communication and sensing devices that have been disturbed 
by previous manipulation or other operations. Since the end- 
effector is fixed in terms of orbital coordinates, this task will be 
performed without any disturbance of the positiodorientation 
of the target object already being grasped, relative to the orbit. 
The roles of the end-effector and the base (spacecraft) are 
actually exchanged, and therefore this task can be termed the 
“absolute-manipulator-inversion task.” 

Joint velocities for Task I11 can be obtained by substituting 
3 = 0 in (13), (16), and (17): 

and 

D. Task W-Changing the Attitude of the Spacecraft while 
Keeping Fixed PositionlOrientation of the End-Effector with 
Respect to a Relative Coordinate Frame 

This task is similar to the previous one; the only difference 
is the reference coordinate frame. It is convenient to choose 
a reference frame with its origin fixed at the mass center of 
the whole spacecraft/manipulator system and with coordinate 
axes parallel to some local spacecraft-fixed coordinate frame. 
Then simply set the term for the relative end-effector velocity 
3 -  Jss2 in (13) and (16) to zero: 

Note that it is not convenient to use the generalized Jacobian 
formulation for this task since there is no explicit term for the 
relative end-effector velocity in (17). 

Task IV can be termed the “relative-manipulator-inversion 
task.” 

Concluding this section, it should be noted that there is 
a solution for each task in terms of any of the available 
null spaces. The simplest solution for each task, however, is 
obtained through self-motion of the manipulator arm; these 
are solutions (20), (25), and (27) for Tasks 11, 111, and IV, 
respectively. 
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V. FIXED-ATTITUDE RESTRICTED 
MOTION OF THE FREE-FLYING SYSTEM 

Among the above defined motion control tasks, Task I1 is of 
special interest since the manipulator arm will be able to move 
without inducing any reaction moments on the spacecraft. This 
type of motion is called “the fixed-attituted restricted (FAR) 
motion” of the free-flying system [MI. 

A. The FAR Jacobian Matrix 
The kinematic relationship at velocity level for Task I1 is 

maps represented by (20). The matrix product JM(I - I M I ~ )  t 
any joint velocity 6 into a special end-effector velocity 

(28) PFAR = J M ( I  - IMI~)9. t .  

The matrix JFAR _= JM I - I I E UPzxn is called the 
FAR Jacobian matrix, while the special end-effector velocity 
PFAR can be called the FAR end-effector velocity. If end- 
effector motion is planned in agreement with PFAR, this would 
guarantee zero attitude velocity of the spacecraft. 

The FAR Jacobian matrix provides a convenient tool for the 
analysis of free-flying spacecraft/manipulator systems from the 
view point of minimum attitude disturbance. This matrix can 
be used, for example, to analyze singular configurations of the 
system. Since JFAR is represented as a two-matrix product, 
it can be shown that the set of singular configurations will be 
composed of two subsets: the set of manipulator singularities, 
where rank JM < m2, and the set of algorithmic singularities 

< mz. 
Note that due to the assumption n 2 ml +mz, we always have 
rank ( I  - I,IM) = n - ml 2 mz. 

It is worth noting that the FAR Jacobian is defined even if 
there is no redundancy of the manipulator arm with respect 
to the end-effector task. Redundancy with respect to the 
spacecraft task (n  > ml), however, is necessary. In our 
further discussion, we will assume n > m2. An example of 
end-effector path planning and a control approach with fixed 
attitude maintenance and n = m2 is presented in [MI. 

( w 

[19], where rank JM = m2 and rank [JM(I - I M I ~ ) ]  t 

t 

B. FAR Dexterity Measures 
The FAR Jacobian matrix can be utilized to define some 

measures for free-flying space robots that correspond directly 
to the well-known manipulability measure, manipulability 
ellipsoid [20], or condition number [21] for ground-fixed 
rob0 ts . 

The FAR manipulability measure for a given arm configu- 
ration can be defined as 

In (30) the symmetry and idempotency of the null space 
projector was utilized. 

The singular-value decomposition (SVD) of the FAR Jaco- 
bian is 

JFAR = UXVT (31) 

where U E R m 2 x m 2  and V E R n X n  are orthogonal matri- 
ces, and having in mind the restriction n L ml + m2 (or 
equivalently n - ml 2 m2 

r 0 1  1 

l o  gm ‘ 1  
with singular values g1 2 u2 2 . . .  2 omz 2 0. In the 
case of algorithmic or manipulator singularities, one or more 
singular values will be zero. The principle axes of the FAR 
manipulability ellipsoid are a;%, i = 1, .. . ! m ~ ,  U; being 
vector columns of matrix U. the FAR manipulability measure 
also can be represented as 

WFAR = 01f f z  . ‘ . Om2. 

Once the singular values are known, the FAR condition 
number can be computed as omZ / ( T I .  As another FAR dexterity 
measure, the minimum singular value of JFAR can also be 
applied. 

The dexterity measures thus defined can be utilized for 
the analysis and/or design of redundant free-flying space- 
craft/manipulator systems from the view point of minimum 
spacecraft attitude disturbance. Thereby, the ideas developed 
by Klein and Blaho for application of various dexterity mea- 
sures to redundant ground-fixed robots [21] can be followed, 
using the FAR Jacobian instead of the “conventional” manip- 
ulator Jacobian. 

(33) 

VI. CONCLUSION 

A method of analyzing a redundant free-flying space- 
craft/manipulator system has been presented. A manipulator 
arm in space comprises some kinematic redundancy, and 
therefore the analysis has been based on the pseudoinverse 
redundancy resolution technique. Along with the conventional 
end-effector trajectory tracking task, a second spacecraft 
attitude-velocity control task has been defined. This control 
task should be accomplished only through manipulator motion, 
thus avoiding use of external devices, such as reaction wheels 
or jet thrusters. 

Three alternative solutions for manipulator joint veloci- 
ties have been derived based on expressions for the ma- 
nipulator link inertia matrix, the manipulator Jacobian, and 
the generalized Jacobian. Four tasks for coordinated space- 
craft/manipulator motion have been suggested that might be 
useful in future space missions. The inertia-matrix-based so- 
lution can be used whenever fixed attitude of the spacecraft 
is desired. The manipulator-Jacobian-based solution can be 
applied for small-angle maneuvers of the spacecraft with no 
relative motion of the end-effector with respect to a mass 
center-spacecraft fixed coordinate frame. The generalized- 
Jacobian-based solution is suitable for small-angle maneuvers 
and no relative motion of the end-effector with respect to the 
inertial coordinate frame. 
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The case of manipulator motions yielding no disturbance 
of the spacecraft attitude has been discussed in more de- 
tail. A Jacobian matrix was defined for this purpose (the 
fixed-attitude-restricted Jacobian). Expressions for dexterity 
measures of the free-flying system were suggested as well. 
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