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ABSTRACT This article studies an M/G/1 retrial queue with two types of breakdowns. When the server

is idle, it is subject to breakdowns according to a Poisson process with rate δ and it cannot be repaired

immediately. While when the server is busy, it may break down according to a Poisson process with rate

θ and can be immediately repaired. Firstly, based on embedded Markov chain technique and probability

generating function (PGF) method, we present the necessary and sufficient condition for the system to be

stable and the PGF of the orbit size at the departure epochs. Secondly, we give the steady-state joint queue

length distribution by supplementary variable method, and present some important performance measures

and reliability indices. Thirdly, we provide the analysis of sojourn time of an arbitrary customer in the system

when the system is in stable state. Finally, some numerical examples are presented to illustrate the effect of

the some system parameters on important performance measures and reliability indices.

INDEX TERMS Retrial queue, performance measures, reliability indices, passive breakdowns, active

breakdowns.

I. INTRODUCTION

Retrial queues with unreliable servers have been investigated

extensively, due to their applications in various fields, such

as telephone switching systems, call centers, computer com-

munication and telecommunication networks, manufacturing

systems etc. On one hand, retrial queues can reflect the

characteristics of customer service requirements, i.e., arriving

customers who find the server unavailable may join into a

retrial group (orbit) and ask for their services again some time

later. For the survey papers, the books, the bibliographical

information and recent literatures on retrial queues, readers

are referred to Falin [10], Falin and Templeton [11], Artalejo

and Gómez-Corral [4], Gómez-Corral [17], Artalejo [2], [3],

Gao and Zhang [15], Zhang et al. [31] and references therein.

On the other hand, due to some unexpected factors in reality,

such as limited lifetime of the server, external interference,

malfunctions of the server, starting failures, etc., the servers

may break down and need repair during idle period or busy
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period. Severs’ failures and repairs were introduced by

Aissani [1] and Kulkarni and Choi [21]. Since then, related

studies regarding retrial queues with unreliable servers and

repairs have been carried out successively from queuing and

reliability viewpoints. In earlier relevant papers, the types of

breakdowns of the servers may be divided into as follows:

(1) active breakdowns, i.e., the server is subject to break-

downs when it is busy. In this case, the server’s life time

is often assumed to be exponential distributed. Wang [23]

studied both queueing characteristics and reliability issues for

an M/G/1 retrial queue with server breakdowns and general

retrial times. Falin [12] dealt with an unreliable M/G/1 retrial

queue, in which the server’s lifetime follows exponential

distribution and the repair time is generally distributed.

Different from classical retrial queues with only one orbit

queue, the retrial queue in Falin [12] has two waiting queues,

one is normal waiting queue which is formed by the arriving

primary customers who find the server unavailable at their

arrival epochs, the other is orbit queue which is formed by

those customers whose services are interrupted by the failures

of the server. Chang et al. [6] considered a multi-server retrial
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queue with customer feedback and impatient, in which the

server’s breakdown is incurred by exponentially distributed

lifetime when it is working. Yang et al. [29] considered an

unreliable retrial queue with J optional vacations, where the

server is subject to random breakdowns and repairs when

he is working. Gao et al. [13] treated an M/M/1 retrial

queue with an unreliable server from the economic

viewpoint.

(2) passive breakdowns, i.e., when the server is idle,

the server may break down and needs immediately repair.

Taleb and Aissani [22] considered the performance measures

and reliability indices for a new unreliable M/G/1 retrial

queue, in which persistent and impatient customers, active

and passive failures and preventive maintenances are both

taken into account. Performance analysis was considered by

Krishna Kumar et al. [19] for a Markovian retrial queue with

passive and active breakdowns.

(3) catastrophic failures, i.e., the sever breakdowns are

caused by external attacks or shocks (called as negative

customers). In such retrial queues, if a negative arrives at a

system, it removes one or all present customers in the system

at once (called as individual or complete removal) and makes

the server breakdown and repair. Many studies on such retrial

queues have been carried out from queuing and reliability

and economic viewpoints. Interested readers are referred to

Wang et al. [24], Wang and Zhang [25], Wu and Lian [26],

Wu and Yin [27], Gao and Wang [14] and references

therein.

(4) starting failures, i.e., when the server is idle,

an arriving (new or returning) customer must start the

server. If the server is successfully started with a cer-

tain probability, the customer receives service immediately.

Otherwise, the server undergoes repair immediately.

Yang and Li [28] presented an M/G/1 retrial queue with the

sever subject to starting failures. Krishna Kumar et al. [18]

addressed the performance analysis of an M/G/1 retrial

queue with feed back and starting failures. Atencia et al. [5]

developed a discrete-time Geo/G/1 retrial queue with gen-

eral retrial times, Bernoulli feedback and starting failures.

Recently, Yang et al. [30] generalized the model of

Krishna Kumar et al. [18] to a multi-server retrial systemwith

feed back and starting failures. For more retrial queues with

breakdowns and repairs, the readers are referred to the recent

survey paper by Krishnamoorthy et al. [20].

Most unreliable retrial queues assume that the server can

be immediately repaired when it breaks down. For example,

Zhang [32] studied an M/M/1 retrial queue with passive

breakdowns and active breakdowns from economic point,

in which whenever any type of breakdowns occurs, the sever

immediately enters a repair stage and the repair times for

these two types of breakdowns are identical and exponential

distribution. Zirem et al. [33] dealt with a batch arrivals

retrial queue with active breakdowns, where the sever can be

immediately repaired when breakdown happens and reserved

service schedule is considered for the interrupted customer.

However, in many realistic situations, such as in the area of

computer communication networks and flexible manufactur-

ing systems, etc, it may not be possible to start the repair

process immediately due to non-availability of the repair-

man or of the apparatus needed for the repairs or due to being

undetected timely. Recently, Choudhury and Tadj [9] stud-

ied the steady-state behavior of an unreliable retrial queue

with a second optional service phase and delayed repair.

Choudhury and Ke [7], [8], respectively, studied a batch

arrival and a single arrival unreliable retrial queue with gen-

eral retrial times under Bernoulli vacation schedule, in which

the server is subject to active breakdown and delaying repair,

i.e., when the server’s failure occurs, it can begin its repair

after some delaying time. For such retrial queues, the authors

obtained some important performance measures and reliabil-

ity indices.

In this article, we analyze an M/G/1 retrial queue with

passive and active breakdowns and delayed repairs for pas-

sive breakdowns. To the best of the authors’ knowledge,

studies for such retrial queue do not yet exist. The motiva-

tion of this work is that such retrial queue arises in vari-

ous practical fields, such as in communication networks and

manufacturing systems, it not only characterizes the retrial

phenomenon of customers, but takes the delayed repairs for

passive breakdowns into consideration. Moreover, another

motivation for considering such retrial model is to obtain

analytical solution in term of closed form expression by sup-

plementary variables technique and evaluate the performance

measures and the reliability of the considered system which

may be suited to many communication networks. The basic

findings of the paper and their significance are outlined as

follows:

• We introduce a new repairable M/G/1 retrial queue with

passive and active breakdowns, in which passive active

breakdowns are subject to delayed repair. Such model

has potential applications in packet-switching networks.

• We give the stable condition of the system, stationary

analysis of joint distribution of the orbit size and the

server’s state. Based on these analysis, we can give

the expressions of important performance measures of

the system.

• Sojourn time of an arbitrary customer can reflect the

quality of service of the system, so we present the

expression of Laplace transform of the sojourn time of

an arbitrary customer, and prove that Little’s law still

hold in our model.

• Reliability indices including the steady state availability

of the server, the failure frequency of the server and the

mean time to first failure of the server are provided.

The rest of this article is organized as follows. Section 2

gives the system description and a practical example.

Section 3 presents the stable condition of the system and

the steady-state analysis, and gives some system measures.

Section 4 focuses on the reliability indexes of the system.

Section 5 studies the distribution of the sojourn time in the

system of any customer. Section 6 gives some numerical

examples to illustrate the features of our model.
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II. MODEL FORMULATION AND A PRACTICAL EXAMPLE

A. MODEL DESCRIPTION

In this section, we consider an unreliable retrial queue with

two types of breakdowns and delayed repairs due to passive

breakdowns. Assumptions of the queueing system are as

follows.

• Arriving process and general service times. Customers

from outside arrive at the system according to a Pois-

son processes with rate λ. The service time B of each

customer follows an arbitrary distribution with cumula-

tive distribution function (c.d.f.) B(x), probability den-

sity function (p.d.f.) b(x), finite first two moments

β1, β2. If an arriving customer finds the server idle,

the customer obtains service immediately. Otherwise the

arriving customer who finds the server busy or inop-

erative because of failures will produce a source of

unsatisfied customers, who may retry several times

for service. Such unsatisfied customers are said to

be in ‘‘orbit’’ and form a queue according to FCFS

discipline.

• Two types of breakdowns and delayed repairs. The sever

is subject to passive and active breakdowns, respectively,

in idle period and busy period. When the server is idle,

it breaks down at an exponential rate δ (called as a

passive breakdown). When the server is busy serving

a customer, it breaks down at an exponential rate θ

(called as an active breakdown). When an active break-

down occurs, the server can be immediately repaired

and the repair time R follows general distribution with

c.d.f. R(x), p.d.f. r(x), finite first two moments ν1, ν2.

However, due to lack of monitoring of the server in the

idle period, when a passive failure happens, the server

can not obtain immediate repair and stays there until a

customer arrives at the service station from outside or the

orbit if any. The repair time G for a passive failure

follows general distribution with c.d.f. G(x), p.d.f. g(x),

finite first two moments µ1, µ2. It is assumed that,

when the service of a customer is interrupted by an

active breakdown, the customer in service waits there

to accept its remaining service as soon as the repair is

completed. While the customer who starts the repair for

a passive failure doesn’t leave the service facility and

can immediately obtain its service after the completion

of the repair.

• Constant retrial policy. Under such retrial policy, only

the first customer in the orbit is permitted to apply for

service when the server becomes idle and the retrial time

follows exponential distribution with rate α.

• All random variables defined above are assumed to be

mutually independent.

Throughout the rest of the paper, for a c.d.f. F(x), we denote

F(x) = 1 − F(x) as the tail of F(x), F̃(s) =
∫ ∞

0 e−sxdF(x)

as the Laplace-Stieltjes transform (LST) of F(x) and

F
∗
(s) =

∫ ∞

0 e−sxF(x)dx as the Laplace transform of function

F(x). Obviously, we can obtain that F
∗
(s) =

1−F̃(s)
s

.

Define the functions β(x), µ(x) and ν(x) as the condi-

tional completion rates for service time, for repair time for

an active breakdown and repair time for a passive failure,

respectively, i.e.,

β(x) =
b(x)

B(x)
, µ(x) =

g(x)

G(x)
, ν(x) =

r(x)

R(x)
.

B. A PRACTICAL APPLICATION EXAMPLE

Besides its theoretical interest, our retrial queue has potential

applications in a packet-switching network, in which mes-

sages are divided into IP packets before they are sent. For

instance, most modern Wide Area Network (WAN) proto-

cols, including TCP/IP, X.25, and Frame Relay, are based

on packet-switching technologies. The router is an intercon-

nected device over which a packet is transmitted from a

source host to to a destination host in a packet switching

network. If the source host wishes to send a package to a des-

tination host, it first sends the package to the router to which

it is connected, and then the package is transmitted to the

destination host. Assume packages arrive at the source host

from outside according to a Poisson process. Upon receiving

a package, the host immediately sends it to its router. If the

router is available, the package is accepted and is transmitted

immediately and the transmission time is assumed to be

generally distributed. Otherwise the package is blocked by

the router due to limitations in the TCP/IP network path

MTU (Maximum Transmission Unit) or active breakdowns,

in this case, the blocked package is stored in the buffer of

the source host (called as orbit) and has to be retransmitted

some time later according to FCFS. Besides, due to external

attacks or other technical faults, the router may break down

during idle period or during the packet transmission period.

We assume that the network administrator who is responsible

for failure management of the network always does some

secondary auxiliary jobs when the router is idle until a packet

arrives at the router and always is on duty when the router

is busy. If the router fails when it is transmitting a packet,

it can be immediately repaired by the network administrator

and resumes the transmission of the interrupted packet as

soon as its repair process is completed. While if the router

breaks down when it is idle, the repair may be delayed till

the arrival epoch of the next packet from outsider or the orbit

at which the network administrator returns and immediately

begins the repair process of the router. The time interval from

the epoch at that the passive failure occurs to the epoch at

which the next packet arrives is called as delayed period.

Here the packet who arrives during the delayed period can

be transmitted immediately after the completion of the repair

for the passive failure. This scenario can be modelled as our

retrial queueing system with two-type failures and delayed

repairs.
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III. STABILITY CONDITION AND

STEADY-STATE ANALYSIS

This section focuses on investigating the stability condition of

the system and deriving some steady state distributions of the

system, respectively, by embedded Markov chain technique

and supplementary variable method.

A. STABILITY CONDITION

Let SB be the generalized service time interval of a customer

from the beginning of his service to the end of his service,

with c.d.f SB(x), LST S̃B(s). Taking into account the possi-

ble occurrence of active breakdowns in the service process,

we have that S̃B(s) = B̃(s + θ (1 − R̃(s))), which leads to

E [SB] = β1 (1 + θν1) , β∗
1 ,E

[
S2B

]
= β2(1 + θv1)

2 +

θβ1v2 , β∗
2 .

In the following, we give some useful notations:

ak =

∫ ∞

0

(λt)k

k!
e−λtdG(t), k = 0, 1, 2, · · · ,

hk =

∫ ∞

0

(λt)k

k!
e−λtdSB(t), k = 0, 1, 2, · · · ,

where ak is the probability that there are k customers who

enter into the orbit during the repair time for a passive failure,

hk is the probability that k customers who join the orbit during

the generalized service time.

Let A(z) =
∑∞

k=0 z
kak ,H (z) =

∑∞
k=0 z

khk , and 3(z) =

λ(1 − z), then

A(z) = G̃ (3(z)) ,

A′(1) =
dA(z)

dz

∣∣∣∣
z=1

= λµ1 , ρ1,

A′′(1) =
d2A(z)

dz2

∣∣∣∣
z=1

= λ2µ2,

H (z) =

∞∑

k=0

zkhk = B̃
(
λ(1 − z) + θ (1 − R̃(λ(1 − z)))

)
,

H ′(1) =
dH (z)

dz

∣∣∣∣
z=1

= λβ∗
1 , ρ,

H ′′(1) =
d2H (z)

dz2

∣∣∣∣
z=1

= λ2β∗
2 .

Define ck =
∑k

i=0 aihk−i, k ≥ 0, then ck is the proba-

bility that k customers enter into the orbit during the pas-

sive repair time and generalized service time. Then C(z) =∑∞
k=0 z

kck = A(z)H (z).

To develop the necessary and sufficient condition for the

system to be stable. we first establish the embedded Markov

chain of the system at departure epochs.

Let Tk (T0 = 0) be the time epoch at which the k-th

customer leaves the system, Nk = N (Tk ) be the orbit size at

the time of the kth departure, then the process {Nk , k ≥ 0} is a

Markov chain with state spaceN. Then we have the following

theorem.

Theorem 3.1: (1) The Markov chain {Nk , k ≥ 0} is ergodic

if and only if ρ + δ
λ+α+δ

ρ1 < α
λ+α

.

(2) Under the condition ρ + δ
λ+α+δ

ρ1 < α
λ+α

, let πn =

lim
k→∞

P(Nk = n), n ≥ 0, be the stationary probabilities of the

Markov chain {Nk , k ≥ 0}, then the PGF5(z) =
∑∞

n=0 z
nπn

is given as follows:

5(z)

=
α

λ + δ
π0

×
δC(z)[(λ+δ)(z−1)+(λ + α)z]−(λ+α)(δ+3(z))H (z)

(λ+α) [(δ+λ+α)z−(α+λz)H (z)]−δ(α+λz)C(z)

(1)

where

π0 =
(λ + δ)[(λ + α)(λ + α + δ)]

α
(
(λ + δ)(λ + α + δ) + δ(λ + α)ρ1

)

×

(
α

λ + α
− ρ −

δ

λ + α + δ
ρ1

)
.

Proof: (1) From the assumptions of our model, the

one-step transition probabilities are given as follows:

qm,n = P(Nk+1 = n|Nk = m)

=





λ

λ + δ
hn +

δ

λ + δ
cn, m = 0, n ≥ 0,

α

λ + δ + α
h0 +

δ

λ + δ + α
·

α

λ + α
c0,

m > 0, n = m− 1,

λ

λ + δ + α
hn−m +

α

λ + δ + α
hn−m+1

+
δ

λ + δ + α

(
λ

λ + α
cn−m

+
α

λ + α
cn−m+1

)
, m > 0, n > m− 1,

0, otherwise,

Obviously, the Markov chain {Nk , k ≥ 0} is irreducible and

aperiodic. And the mean drift

xm = E[Nk+1 − Nk |Nk = m]

=





ρ +
δ

λ + δ
ρ1, m = 0,

ρ +
δ

λ + δ + α
ρ1 −

α

λ + α
, m > 0.

Then from Foster’s criterion (see Gómez-Corral [16]),

we know that the inequality ρ + δ
λ+δ+α

ρ1 < α
λ+α

is a

sufficient condition for the system to be stable.

The same inequality is also the necessary condition for

ergodicity. Assume that ρ + δ
λ+α+δ

ρ1 ≥ α
λ+α

, which implies

that xm ≥ 0 for all m ≥ 0. Furthermore, according to the

one-step transition probabilities, we know that the down drift

Dm =
∑

n<m

(n− m)P(Nk+1 = n|Nk = m)

=




0, m = 0,

−(
α

λ + δ + α
h0 +

δ

λ + δ + α
·

α

λ + α
c0), m > 0,
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which implies that the Markov chain {Nk , k ≥ 0} satisfies

Kaplan’s condition namely if the sequence {Dm,m ≥ 0} is

bounded below. Thus the Markov chain {Nk , k ≥ 0} is not

ergodic, and then the necessity of the ergodicity is proven.

(2) Denote τn and ωn as follows

τn =
λ

λ + δ
hn +

δ

λ + δ
cn, n ≥ 0,

ωn =
λ

λ + δ + α
hn−1 +

α

λ + δ + α
hn

+
δ

λ + δ + α

(
λ

λ + α
cn−1 +

α

λ + α
cn

)
, n ≥ 0,

where h−1 = c−1 = 0. From the expression of the one-step

probabilities, we can get the one-step probability MatrixQ =

(qi,j) of the Markov chain {Nk , k ≥ 0} as follows

Q =




τ0 τ1 τ2 τ3 · · ·

ω0 ω1 ω2 ω3 · · ·

ω0 ω1 ω2 · · ·

. . .
. . .

. . .




By the matrix equation (π0π1π2 · · · ) = (π0π1π2 · · · )Q, and

normalization condition
∑∞

n=0 πn = 1, we can obtain the

expression of 5(z) as given by (1). �

Remark 1 (Special Case): Suppose that no passive break-

down occurs in the retrial system, i.e., δ = 0, then our system

is reduced to the M/G/1 retrial queue with active breakdowns

and constant retrial times, which is a special case by taking

A(x) = 1 − e−αx , x > 0 in Wang [23].

B. STEADY STATE ANALYSIS

In this subsection, we study the steady state distribution of

the system by using supplementary variable method.

At time t , the state of the system can be described by

the Markov process {(N (t), J (t), ξ1(t), ξ2(t), ξ4(t)) , t ≥ 0} ,

where N (t) is the number of customers in the orbit, J (t)

denotes the state of the server defined as:

J (t) =





0, the server is idle

1, the server is busy

2, the server is under repair for an active

breakdown

3, the server is during the delayed period

4, the server is under repair for a passive

breakdown

when J (t) = 1, ξ1(t) is the elapsed service time; when J (t) =

2, ξ2(t) is the elapsed repair time for an active breakdown;

when J (t) = 4, ξ4(t) denotes the elapsed repair time for a

passive failure.

Since the arrival stream is a Poisson process, from Burke’s

theorem, we can see that the steady state probabilities of the

Markov processX (t) = {(N (t), J (t), ξ0(t), ξ1(t), ξ2(t), ξ4(t))}

exist and are positive if and only if ρ + δ
λ+α+δ

ρ1 < α
λ+α

.

Therein after, we assume that the stationary condition ρ +
δ

λ+α+δ
ρ1 < α

λ+α
always holds. Let {(N , J , ξ0, ξ1, ξ2)} be the

limit of the Markov process {(N (t), J (t), ξ0(t), ξ1(t), ξ2(t)),

t ≥ 0}.

Define the following joint steady-state probabilities and

steady-state probability densities:

Pn,j = P(N = n, J = j)

= lim
t→∞

Pn,j(t), n ≥ 0, j = 0, 3,

Pn,j(x)dx = P(N = n, J = j, x < ξj ≤ x + dx)

= lim
t→∞

Pn,j(t, x)dx, n ≥ 0, j = 1, 4, x ≥ 0,

Pn,2(x, y)dxdy

= P(N = n, J = 2, x < ξ1 ≤ x + dx,

y < ξ4 ≤ y+ dy)

= lim
t→∞

Pn,j(t, x, y)dxdy, n ≥ 0, x, y ≥ 0.

Based on the method of supplementary variable technique,

we formulate the basic equations describing steady state as

follows:

(λ + δ)P0,0 =

∫ ∞

0

P0,1(x)β(x)dx, (2)

(λ + δ + α)Pn,0 =

∫ ∞

0

Pn,1(x)β(x)dx, n ≥ 0, (3)

d

dx
Pn,1(x) = − (λ + θ + β(x))Pn,1(x) + λPn−1,1(x)

+

∫ ∞

0

Pn,2(x, y)ν(y)dy, n≥0, x>0,

(4)

∂

∂y
Pn,2(x, y)

= −(λ + ν(y))Pn,2(x, y) + λPn−1,2(x, y),

n ≥ 0, x, y > 0, (5)

λP0,3 = δP0,0, (6)

(λ + α)Pn,3 = δPn,0, n ≥ 1, (7)

d

dx
Pn,4(x)

= −(λ + µ(x))Pn,4(x) + λPn−1,4(x),

n ≥ 0, x > 0, (8)

where P−1,1(x) = P−1,2(x, y) = P−1,4(x) = 0.

Equations (2)-(8) are to be solved under the boundary

conditions:

Pn,1(0) = λPn,0 + αPn+1,0 +

∫ ∞

0

Pn,4(x)µ(x)dx, n ≥ 0,

(9)

Pn,2(x, 0) = θPn,1(x), n ≥ 0, x ≥ 0, (10)

Pn,4(0) = λPn,3 + αPn+1,3, n ≥ 0, (11)

and the normalization condition is

∞∑

n=0

(Pn,0 + Pn,3) +

∞∑

n=0

∫ ∞

0

(
Pn,1(x) + Pn,4(x)

)
dx

+

∞∑

n=0

∫ ∞

0

∫ ∞

0

Pn,2(x, y)dxdy = 1. (12)
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FIGURE 1. The effect of α on A, Wf , Ls, E [2] for different values of δ = 0.25, 0.35, 0.55, 0.75.

Define the following generating functions

Pj(z) =

∞∑

n=0

znPk,j, j = 0, 3,

Pj(x; z) =

∞∑

n=0

znPn,j(x), j = 1, 4,

P2(x, y; z) =

∞∑

n=0

znPn,2(x, y).

From Eqs.(2)-(12) and by some algebraic manipulations,

we can have the following Theorem.

Theorem 3.2: The generating functions of the stationary

joint distribution of the orbit size and the server state are

given by:

P0(z) =
α(λ + α) (z− H (z)) − δC(z)(1 − z)

D(z)
P0,0,

P1(x, z) =
N1(z)

D(z)
(1 − B(x))αP0,0

× exp
{
−

(
3(z) + θ (1 − R̃(3(z)))

)
x
}
,

P2(x, y, z) = θP1(x, z)(1 − R(y)) exp{−3(z)y},

P3(z) =
δP0,0

λ + α

×

[
α

λ
+

α(λ+α) (z−H (z))−δαC(z)(1 − z)

D(z)

]
,

P4(x; z) =
N2(z)

D(z)
(1 − G(x)) exp{−3(z)x}δαP0,0,

where

P0,0 =
λ

α

(λ + α)(λ + α + δ)

(λ + δ)(λ + α + δ) + δ(λ + α)ρ1

×

(
α

λ + α
− ρ −

δ

λ + α + δ
ρ1

)
,

D(z) = (λ + α)
(
(λ + α + δ)z− (α + λz)H (z)

)

−δ(α + λz)C(z),

N1(z) = δA(z)
(
α + λz+ (λ + α + δ)(z− 1)

)

−(α + λ)(δ + 3(z)),

N2(z) = (α + λz)(1 − H (z)) + (λ + α + δ)(z− 1).

Next our interest is to give marginal orbit size dis-

tribution due to the server state being in states J =

1, 2, 4, respectively. Let P1(z) =
∫ ∞

0 P1(x; z)dx,P2(z) =∫ ∞

0

∫ ∞

0 P2(x, y; z)dxdy,P4(z) =
∫ ∞

0 P4(x; z)dx, then we

have the following results.

Theorem 3.3: (1) The marginal PGF of the orbit size when

the server is busy is give by

P1(z) =
N1(z)

D(z)

1 − H (z)

3(z) + θ (1 − R̃(3(z)))
αP0,0.

(2) The marginal PGF of the orbit size when the server is

under repair for an active breakdown is given by

P2(z) =
N1(z)

D(z)

1 − H (z)

3(z) + θ (1 − R̃(3(z)))

1 − R̃(3(z))

3(z)
θαP0,0.
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FIGURE 2. The effect of α on A, Wf , Ls, E [2] for different values of θ = 0.35, 0.65, 0.95, 1.25.

(3) The marginal PGF of the orbit size when the server is

under repair for a passive breakdown is given by

P4(z) =
N2(z)

D(z)

1 − A(z)

3(z)
δαP0,0.

Let 8(z) = E[zN ], which denotes the PGF of the number

of customers in the orbit, let NS be the number of customers

in the system at arbitrary time under stability condition, with

PGF9(z) = E[zNS ]. Then by8(z) =
∑4

j=0 Pj(z) and9(z) =

P0(z) + zP1(z) + zP2(z) + P3(z) + zP4(z), we can obtain the

following Corollary.

Corollary 3.1: The PGFs 8(z) and 9(z), respectively, of

N and NS , are given by as follows

8(z) =
N (z)

D(z)

α

λ
P0,0,

9(z) =

(
δC(z)

(
(λ + δ)(z− 1) + (λ + α)z

)

− (λ + α)(δ + 3(z))H (z)

)

D(z)

α

λ
P0,0,

(13)

whereN = (z−1)(λ+δ+α)(λ+δ)+δ(α+λz) (C(z) − H (z)) .

Remark 2: Comparing Eq.(1) and Eq.(13), we see that

the PGF 9(z) of the number of customers in the system

at an arbitrary time coincides with the PGF 5(z) of the

embedded Markov chain at departure epochs, as shown in

Gómez-Corral [16].

C. PERFORMANCE MEASURES OF THE SYSTEM

Based on the results given in section 3.2, the main pur-

pose of this subsection is to provide main performance mea-

sures of the queueing system. By direct calculation through

L’Hospital’s rule and routine differentiation, we can have the

following Theorem 3.4.

Theorem 3.4: (1) Under the steady state condition, we have

the following results:

• The Probability P0 that the server is idle is given by

P0 = P0(1) =
λ[δ + (α + λ)(1 − ρ)]

(λ + δ)(λ + α + δ) + δ(λ + α)ρ1
.

• The Probability P1 that the server is busy is given by

P1 = P1(1)

=
λ(α + λ) + δ

(
(α + λ)ρ1 + δ + α + 2λ

)

(λ + δ)(λ + α + δ) + δ(λ + α)ρ1
λβ1.

• The Probability P2 that the server is under repair for an

active breakdown is given by

P2 = P2(1) = θν1 P1.

• The Probability P3 that the server is during delayed

period is given by

P3 = P3(1) = δ
(λ + α + δ)(1 − ρ) − λρ − δρ1

(λ + δ)(λ + α + δ) + δ(λ + α)ρ1
.

172434 VOLUME 8, 2020



S. Gao et al.: Analysis of a Retrial Queue With Two-Type Breakdowns and Delayed Repairs

FIGURE 3. The effect of α on A, Wf , Ls, E [2] for different values of µ = 1, 2, 3, 4.

• The Probability P4 that the server is under repair for a

passive breakdown is given by

P4 = P4(1) = δρ1
δ + (α + λ)(1 − ρ)

(λ + δ)(λ + α + δ) + δ(λ + α)ρ1
.

(2) Let LO and LS be, respectively, the mean orbit size and

system size, i.e., LO = E[N ] = d
dz

8(z)|z=1 and LS =

E[NS ] = d
dz

8(z)|z=1, then we have

LO =
N ′′(1)

2N ′(1)
−

D′′(1)

2D′(1)
,

LS = LO + P1(1) + P2(1) + P4(1),

where

D
′(1) = (λ+α)(λ+α+δ)

[
α

λ + α
−ρ −

δ

λ + α + δ
ρ1

]
,

D′′(1) = −(λ + α)
[
2λρ + (α + λ)λ2β∗

2

]

−δ
[
2λ(ρ + ρ1)+(α+λ)(λ2µ2 + 2ρρ1+λ2β∗

2 )
]
,

N ′(1) = (δ + λ)(δ + λ + α) + δ(λ + α)ρ1,

N ′′(1) = 2δλρ1 + δ(λ + α)(λ2µ2 + 2ρρ1).

Next, we make the analysis of a cycle of the system.

A cycle of the system 2 is defined to be the length of the

period that starts at the epoch when the server completes

a service and the orbit is empty, and ends at the epoch

at which the server becomes idle and the orbit is empty

once again. Obviously, 2 = 20,0 + 20,1

∑4
j=1 2j, where

20,0 is the length of the server’s idle period with empty orbit,

20,1 is the length of the server’s idle period with nonempty

orbit, 21 is length of the server’s busy period, 22 is length

of possible repair period for an active breakdown, 23 is

length of possible delayed period, 24 is length of possible

repair period for a passive breakdown. Taking into account the

possible occurrence of a passive failure in server idle period,

we have that E[20,0] = 1
λ+δ

. By applying the argument of

an alternating renewal process, we know that

P0,0 =
E[20,0]

E(2)
, P0 − P0,0 =

E[20,1]

E(2)
,

Pj =
E[2j]

E(2)
, j = 1, 2, 3, 4.

Then the expressions for 20,0, 20,1, 2j, j = 1, 2, 3, 4, 2 are

given as follows:

E[20,0] =
1

λ + δ
, E[20,1] =

P0 − P0,0

P0,0(λ + δ)
,

E[2j] =
Pj

P0,0(λ + δ)
, j = 1, 2, 3, 4,

E[2] =
1

P0,0(λ + δ)
.
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FIGURE 4. The effect of α on A, Wf , Ls, E [2] for different values of ν = 3, 4, 5, 6.

IV. RELIABILITY ANALYSIS

In this section, we aim to provide some important reliability

indexes of the queueing model based on the results obtained

in Section III.

Suppose that the system is stable, let A be the steady state

availability of the server, Wf be the failure frequency of the

server, then we have that

A = P0 + P1, Wf = δP0 + θP1. (14)

Next, we focus on studying the mean time to first failure

MTTF of the server.

At initial time t = 0, the system is assumed to be empty

and the server is idle, i.e., P0,0(0) = 1. Let Y be the time to

the first failure of the server, then the reliability function of

the server is U (t) = P(Y > t). The Laplace transform of

U (t) is denoted as U∗(s) =
∫ ∞

0 e−stU (t)dt, Res(s) > 0, then

MTTF = E[Y ] =
∫ ∞

0 U (t)dt = U∗(0). The expressions of

U∗(s) and MTTF are given in the following Theorem.

Theorem 4.1: (1) The Laplace transform U∗(s) is given by

U∗(s)

=

(s+ λ + α + δ)
(
1 + 3(ζ (s))B

∗
(s+ θ )

)

−
(
α + λζ (s)

)̃
B(s+ θ )

(
s+ δ + 3(ζ (s))

)(
s+ λ + (λ + α)(1 − B̃(s+ θ ))

) ,

where ζ (s) is the minimum absolute value root of the equation

z(s+ λ + α + δ) − (α + λz)̃B(s+ λ + α + δ) = 0

in the unit circle and Res(s) > 0.

(2) The expression of MTTF is given by

MTTF =
(λ + α + δ)

(
1+3(ζ (0))B

∗
(θ )

)
−

(
α+λζ (0)

)̃
B(θ )

(
s+ δ + 3(ζ (0))

)(
λ+(λ+ α)(1 − B̃(θ ))

) .

Proof: To find U (t), define the failure states J = 2, 3, 4

of the server are absorbing states. For the new system with

absorbing states, using the same notations as in Section 3,

we know that

U (t) =

∞∑

n=0

(
Pn,0(t) +

∫ ∞

0

Pn,1(t, x)dx

)
,

and we have the following set of differential equations at

time t:

( d
dt

+ λ + (1 − δ0,n)α + δ
)
Pn,0(t)

=

∫ ∞

0

Pn,1(t, x)β(x)dx, n ≥ 0, (15)

( ∂

∂t
+

∂

∂x
+ λ + θ + β(x)

)
Pn,1(t, x)

= (1 − δ0,n)λPn−1,1(t, x), n ≥ 0, x > 0, (16)

Pn,1(t, 0) = λPn,0(t) + αPn+1,0(t), n ≥ 0, (17)

where δ0,n is the Kronecker’s symbol.
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Define the Laplace transforms of Pn,0(t),Pn,1(t, x) and

corresponding generating functions as follows

P∗
n,0(s) =

∫ ∞

0

e−stPn,0(t)dt,

P∗
0(s; z) =

∞∑

n=0

znp∗
n,0(s),

P∗
n,1(s; x) =

∫ ∞

0

e−stPn,0(t, x)dt,

P∗
1(s; x; z) =

∞∑

n=0

znp∗
n,1(s; x),

Then

U∗(s) = P∗
0(s; 1) +

∫ ∞

0

P∗
1(s; x; 1)dx. (18)

Based on the initial condition P0,0(0) = 1 and taking

the Laplace transform on both sides of Eq.s (15)-(17),

we have

(s+ λ + (1 − δ0,n)α + δ)P∗
n,0(s)

= δ0,n +

∫ ∞

0

P∗
n,1(s; x)β(x)dx, (19)

(s+ λ + θ + β(x))P∗
n,1(s; x) +

∂

∂x
P∗
n,1(s; x)

= (1 − δn,0)λP
∗
n−1,1(s; x), n ≥ 0, (20)

P∗
n,1(s; 0) = λP∗

n,0(s) + αP∗
n+1,0(s), n ≥ 0. (21)

Multiplying on both sides of (19)-(21) by zn and summing

over n ≥ 0, we have on simplification

(s+ λ + α + δ)P∗
0(s; z) = 1 + αP∗

0,0(s)

+

∫ ∞

0

P∗
1(s; x; z)β(x)dx,

(22)

P∗
1(s; x, z) = P∗

1(s; 0; z)e
−(s+θ+3(z))xB(x),

(23)

zP∗
1(s; 0; z) = (α + λz)P∗

0(s; z) − αP∗
0,0(s).

(24)

Combining (22)-(24) leads to

P∗
1(s; 0; z) =

α + λz− α(s+ δ + 3(z))P∗
0,0(s)

z(s+λ+α+δ)−(α + λz)̃B(s+ θ + 3(z))
.

(25)

By Rouché’s theorem, the denominator of (25) has exactly

one zero point z = ζ (s) inside the unit circle and it is also the

zero point for the numerator of (25), which leads to

P∗
0,0(s) =

α + λζ (s)

α(s+ δ + 3(ζ (s)))
. (26)

Then follows from (23)-(26), we have on simplification

P∗
0(s; z)

=
1

s+ δ + 3(ζ (s))

×
z(s+ λ + α + δ) − (α + λζ (s))̃B(s+ θ + 3(z))

z(s+ λ + α + δ) − (α + λz)̃B(s+ θ + 3(z))
,

(27)

P∗
1(s; x; z)

=
λ(s+ λ + α + δ)

s+ δ + 3(ζ (s))

×
z− ζ (s)

z(s+ λ + α + δ) − (α + λz)̃B(s+ θ + 3(z))

×B(x)e−(s+θ+3(z))x . (28)

Using (18),(27) and (28), we can get the expected results

given in Theorem 4.1. �

V. ANALYSIS OF THE SOJOURN TIME IN THE SYSTEM

Sojourn time of an arbitrary customer can reflect the quality

of service of the system. Based on this point, this section is

devoted to discuss the distribution of the sojourn time T of

any arbitrary tagged arriving customer, which is the length of

the time interval from the epoch at which the tagged customer

arrive at the system to the epoch at which the tagged customer

leaves the system with his service completion. Let T̂ (s) =

E[e−sT ], by conditioning on the system’s state at the tagged

customer’s arrival epoch, we have that

T̂ (s) = P0S̃B(s) + P3G̃(s)̃SB(s)

+

∞∑

k=0

∫ ∞

0

Pk,1(x)T̃k,1(x; s)dx

+

∞∑

k=0

∫ ∞

0

∫ ∞

0

Pk,2(x; y)T̃k,2(x, y; s)dydx

+

∞∑

k=0

∫ ∞

0

Pk,4(x)T̃k,4(x; s)dx, (29)

where

T̃k,j(x; s) , E
[
e−sT |N = k, J = j, ξj = x

]
, j = 1, 4,

T̃k,2(x, y; s) , E
[
e−sT |N = k, J = 2, ξ1 = x, ξ2 = y

]
.

To derive the explicit expression of T̂ (s), it is necessary to

introduce two auxiliary random variables, one is the random

variable T1, which denotes the length of time interval calcu-

lated from the epoch when the server becomes idle and the

tagged customer is at the head of the system to the epoch

when the tagged customer leaves the system; the other is the

random Td , which denotes the length of time interval calcu-

lated from the epoch when a passive breakdown of the server

occurs and the tagged customer is at the head of the system

to the epoch when the tagged customer leaves the system.

Denote T̃1(s) = E[e−sT1 ], T̃d (s) = E[e−sTd ]. With the help
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of the auxiliary variable Td , we can derive the expression

of T̃1(s).

Lemma 5.1: The Laplace transform T̃1(s) of T1 and its

mean value are given by as follows:

T̃1(s) =

α
s+λ+δ+α

(
1 + δ

s+λ+α
G̃(s)

)
S̃B(s)

1 − λ
s+δ+λ+α

(
1 + δ

s+λ+α
G̃(s)

)
S̃B(s)

, (30)

E[T1] =

(
β∗
1 +

1

λ + α
+

δ

λ + δ + α
µ1

) (
1 +

λ

α

)
. (31)

Proof: For T̃1(s), by considering the order of the new

arrival from outsider, the passive failure and the retrial time

of the tagged customer who is at the head in the orbit, we have

that

T̃1(s) =

∫ ∞

0

λe−λxe−(δ+α)xe−sx S̃B(s)T̃1(s)dx

+

∫ ∞

0

αe−αxe−(λ+δ)xe−sx S̃B(s)dx

+

∫ ∞

0

δe−δxe−(λ+α)xe−sx T̃d (s)dx

=
λ

s+ λ + α + δ
S̃B(s)T̃1(s) +

α

s+ λ + α + δ
S̃B(s)

+
δ

s+ λ + α + δ
T̃d (s). (32)

Similarly, for T̃d (s), by conditioning on the beginning epoch

of the repair for the passive breakdown whether at the epoch

of the arrival from the outside or from the orbit, we have that

T̃d (s) =
λ

s+ λ + α
G̃(s)̃SB(s)T̃1(s) +

α

s+ λ + α
G̃(s)̃SB(s).

(33)

Following from (32) and (33), we can obtain the result (30).

By differentiating T̃1(s) with respect to s and then taking limit

s → 0, i.e., E[T1] = − d
ds
T̃1(s)|s=0, we can get (31). �

Now we can derive the expressions of T̃ (s) and the mean

value E[T ], which are given by Theorem 5.1.

Theorem 5.1: The Laplace transform T̃ (s) of the sojourn

time T and its mean value E[T ] are as follows

T̃ (s) = S̃B(s)
(
P0 + P3G̃(s)

)
+

[
N1(T̃1(s))

D(T̃1(s))

×
S̃B(s) − S̃B(3(T̃1(s)))

3(T̃1(s)) − s

×

(
1 + θ

R̃(s) − R̃(3(T̃1(s)))

3(T̃1(s)) − s

)

+δ
N3(T̃1(s))

D(T̃1(s))

G̃(s)−G̃(3(T̃1(s)))

3(T̃1(s))
S̃B(s)

]
T̃1(s)αP0,0,

(34)

E[T ] = P0β
∗
1 + P3(β

∗
1 + µ1)

+(P1 + P2)

(
E[T1] +

β∗
2 (1 + λE[T1])

2β∗
1

)

+P4

(
β∗
1 + E[T1] +

µ2(1 + λE[T1])

2µ1

)

+αP0,0E[T1]

(
β∗
1

N ′′
1 (1)D

′(1) − N ′
1(1)D

′′(1)

2(D′(1))2

+δµ1

N ′′
3 (1)D

′(1) − N ′
3(1)D

′′(1)

2(D′(1))2

)
(35)

=
Ls

λ
, (36)

where

N
′
1(1) = δρ1(λ + α) + (λ + δ)(δ + α + λ),

N
′′
1 (1) = δ((λ + α)(λ2µ2 + 2ρ1) + 2ρ1(δ + λ)),

N
′
3(1) = δ + (1 − ρ)(λ + α),

N
′′
3 (1) = −2λρ − (α + λ)λ2β∗

2 .

Proof: Recall that in reliability theory, if a nonnegative

random X denotes a life time of a unit, with p.d.f f (x), c.d.f

F(x), then the random variable Xx = X − x|X > x is

called residual lifetime, and the p.d.f fx(y) of Xx is given by

fx(y) =
f (x+y)

F(x)
.

In the following we first consider T̃k,1(x; s) =

E
[
e−sT |N = k, J = 1, ξ1 = x

]
.

Given that the tagged customer finds that the system is

in the state (N , J , ξ1) = (k, 1, x) at its arrival epoch, then

the tagged customer joins the (k + 1)-th position of the orbit

and its sojourn time is the sum of the three random variables:

Bx ,R
(M ),T

(K+1)
1 , where Bx is the residual service, T

(K+1)
1 is

the sum of k + 1 independently and identically distributed

(i.i.d.) random variables with generic random variable T1,

M is the number of active breakdowns occurring during Bx ,

and R(M ) is the total repair times for M active breakdowns.

Therefore we have that

T̃k,1(x; s)

=

∫ ∞

0

b(x + y)

B(x)
e−sy

∞∑

m=0

(θy)m

m!
e−θy

(̃
R(s)

)m(
T̃1(s)

)k+1
dy

=

(
T̃1(s)

)k+1

B(x)

∫ ∞

x

b(u)e−(s+θ(1−R̃(s)))(u−x)du. (37)

Adopting similar analysis line to the above, we can obtain the

expressions for T̃k,2(x, y; s) and T̃k,4(x; s) as follows:

T̃k,2(x, y; s) =
T̃k,1(x; s)

R(y)

∫ ∞

y

r(t)e−s(t−y)dt, (38)

T̃k,4(x; s) =
S̃B(s)

(
T̃1(s)

)k+1

G(x)

∫ ∞

x

g(t)e−s(t−x)dt. (39)

Substituting (37)-(39) into (29) and using Theorem 3.2, after

some tedious calculations, we can obtain the result (34).

By E[T ] = − d
ds
T̃ (s)|s=0, we can have (35). Inserting the

expressions of P0,0,Pi, i = 0, 1, 2, 3, 4 and E[T1], and com-

paring the expression of Ls, we can have the Eq. (36). �

Remark 3: Eq.(36) shows that the Little’s law still holds

in our retrial queue system, which will also be shown by the

following numerical examples.
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TABLE 1. The effect of α on E [T ], E [T ]
∣

∣

Little
, MTTF for δ = 0.25, 0.35, 0.55, 0.75.

TABLE 2. The effect of α on E [T ], E [T ]
∣

∣

Little
, MTTF for θ = 0.35, 0.65, 0.95, 1.25..

VI. NUMERICAL EXAMPLES

As an numerical example, the arrival rate of external cus-

tomers is taken as λ = 0.25, the service time follows

the phase type distribution with representation (d0, Ŵ) with

d0 = (0.65 0.35), Ŵ =

[
−0.8 0.1

0.2 −0.6

]
, with d.f. B(x) =

1 − d0e
Ŵx1, LST B̃(s) = d0(sI − Ŵ)−1t,, where t = −Ŵ1, I

is a an identity matric with size 2 × 2, 1 is a column vector
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TABLE 3. The effect of α on E [T ], E [T ]
∣

∣

Little
, MTTF for µ = 1, 2, 3, 4..

TABLE 4. The effect of α on E [T ], E [T ]
∣

∣

Little
, MTTF for ν = 3, 4, 5, 6..

with two 1’s. The repair time for a passive failure follows the

Erlang(3, µ) distribution, i.e., Erlang of order 3 with mean

µ1 = 3/µ, LST G̃(s) = (
µ
s+µ

)3. The repair time for an active

failure follows the Erlang(2, ν) distribution, i.e., Erlang of

order 2 with mean ν1 = 2/ν, LST R̃(s) = ( ν
s+ν

)2.

Under the stationary condition ρ + δ
λ+α+δ

ρ1 < α
λ+α

, the

base case for setting these system parameters is set below:

δ = 0.25, θ = 0.95, µ = 2, and ν = 4. We assume that

the values of the retrial rate α varies from 1 to 10 in the

following Figures 1-4 and Tables 1-4, and each of the system
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parameters δ, θ, µ, and ν takes turn to change in a certain

rang but keeps other system parameters fixed given in the

base case. The purpose of this section is to illustrate the effect

of these parameters on some important reliability indices,

including steady-state availability A, the failure frequency

Wf and mean time to first failure of the server MTTF , and

queueing measures, including the mean system length Ls,

the expected length of a cycle E[2] and the mean sojourn

time of an arbitrary E[T ]. In the following, we use the Matlab

program to illustrate the numerical results of A,Wf ,Ls,E[2]

in Figures 1-4 and E[T ],E[T ]
∣∣
Little

,MTTF in Tables 1-4.

In Tables 1-4, we list the mean values of sojourn time E[T ] =

− d
ds
W̃T (s)

∣∣
s=0

, and the corresponding values of E[T ]
∣∣
Little

=
Ls
λ
obtained by Little’s law, to show that Little’s law still hold

in our retrial queue. Fig.s 1-4 and Tables 1-4 graphically and

numerically show that:

• Little’s Law still holds in our retrial queueing system

with two types of failures and delayed repairs, which is

numerical shown in Tables 1-4.

• Given that values of other system parameters are fixed,

all reliability indices (steady-state availabilityA, the fail-

ure frequency Wf and mean time to first failure of the

serverMTTF) and queueing measures (the mean system

length Ls, the expected length of a cycle E[2] and

the mean sojourn time of an arbitrary customer E[T ])

decrease as the retrial rate α increases, which agrees with

our expectations.

• The increase in the passive failure rate δ and active

failure rate θ makes the server breakdown more fre-

quently, and then decrease the steady-state availability

A and the mean time to first failure of the serverMTTF ,

but increase the failure frequencyWf , the system length

Ls, the expected length of a cycle E[2] and the mean

sojourn time of an arbitrary customer E[T ], which is

shown in Fig.s 1, 2 and Tables 1,2.

• The increase in µ and ν can shorten the repair time

of the server and makes the server more available,

which increases the steady-state availability A, but

decreases the failure frequency Wf , the system length

Ls, the expected length of a cycle E[2] and the mean

sojourn time of an arbitrary customer E[T ], which is

shown in Fig.s 3, 4 and Tables 3,4. However, the changes

in the values ofµ and ν in the repair times of passive and

active failures have no effect on the mean time to first

failure of the server MTTF , because it is not calculated

after the server fails for the first time, which can be seen

from Tables 3,4.

VII. CONCLUSION

In this article, we have conducted an exhaustive study on an

unreliable M/G/1 retrial queue with two-type breakdowns:

one is passive failures with delayed repairs, the other is active

breakdownswith immediately repair. Of course, such delayed

repair process is different from that incurred by starting

failures. The feature of starting failures is that the server

may be broken down at the arrival epoch of a customer who

arrives from outside or orbit and finds the server idle, in this

case, the customer must start the server to receive its service.

If the server is unsuccessfully started with some probability,

it immediately accepts repair, otherwise, if it is successfully

started with complimentary probability, it immediately ren-

ders service to the customer. However our delayed repair

process is that when the server breaks down in idle period, i.e.,

a passive breakdown occurs, the server can begin its repair at

the arrival epoch of a customer from outside or orbit. That is to

say, the repair process of a passive failure is started by the next

arriving customer (new or returning). For this model, we ana-

lyzed the sufficient and necessary condition for the system to

be stable, the stationary queueing indexes, sojourn time in the

system from the queueing viewpoint, and obtain reliability

measures such as availability, server failure frequency, and

mean time to first failure from reliability viewpoint. Some

numerical examples were given to study the effect of some

parameters on the important performance measures and reli-

ability indices of the model. As one direction of further future

research, it is very interesting to develop the discrete-time

counterpart of our continuous-time retrial queue, the reason

is that the discrete-time queueing system is more feasible

to model computer and telecommunication systems. Another

direction of future research, one can consider the equilibrium

balking policy for the Markovian counterpart of our retrial

queue from economic viewpoint.
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