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Petr Jarušek and Radek Pelánek
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Abstract. Our aim is to improve problem selection and recommenda-
tion in intelligent tutoring systems by modeling students problem solving
times. We describe a simple model which assumes a linear relationship
between latent problem solving ability and a logarithm of time to solve
a problem. We show that this model is related to models from two dif-
ferent areas: the item response theory and collaborative filtering. Each
of these areas provides inspiration for parameter estimation procedure
and for possible extensions. The model is already applied in a widely
used “Problem solving tutor”; using the data collected by this system
we evaluate the model and analyse its parameter values.
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1 Introduction

Problem solving is an important part of education in general and of intelligent
tutoring systems in particular. To use problem solving activities efficiently, it is
important to estimate well their difficulty – easy problems are boring, difficult
problems are frustrating (this observation is elaborated by the flow concept [4]).

In intelligent tutoring systems [1, 12] problem selection is often done with
respect to knowledge concepts – matching students mastery of concepts with
concepts required to solve a problem. In some domains, however, there are many
problems which are based on the same knowledge concepts, but differ signifi-
cantly in their difficulty. In this work we focus on these types of domains, specif-
ically on logic puzzles and introductory programming – these problems require
little background knowledge, do not have easily identifiable skills, and yet span
wide range of difficulty [6].

In this work we focus on predicting students problem solving times based
on the data about previous problem solving attempts. To attain clear focus, we
consider both students and problems as “black boxes”, i.e., the only information
that we use are the problem solving times. For practical application it may be
useful to combine this approach with other data about students and problems
(e.g., from knowledge tracing models [3]). Nevertheless, even the basic “black
box” approach is applicable and has an important advantage of being simple
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and cheap (e.g., compared to knowledge tracing models which require significant
expertise).

We describe a model which assumes a linear relation between a problem solv-
ing ability and a logarithm of time to solve a problem (i.e., exponential relation
between ability and time). We provide connections of the model to two different
areas – item response theory and collaborative filtering. Item response theory [2,
5] is used mainly in computerized adaptive testing to predict a probability of a
correct answer and thus to select a suitable test item. Collaborative filtering [8]
is used in recommender systems to predict user ratings of items (e.g., books)
and recommend items to buy. Using inspiration from these areas we describe
different variants of the model and different methods for parameter estimation.

The model is currently used in a “Problem solving tutor” – a web-based
system which recommends students problems of suitable difficulty. The tutor
contains more than 20 types of problems from areas of programming, math, and
logic puzzles. The system is used in several schools and contains data about
more than 5 000 users and 220 000 solved problems. Using this extensive data
we evaluate the model and its different variants.

The evaluation shows several interesting results. The data support the basic
model assumption of linear relation between ability and a logarithm of time to
solve a problem. For predicting future times even a simple baseline predictor
provides reasonable results; the model provides only slight improvement in pre-
dictions. Nevertheless, it brings several advantages. The model is group invariant
and gives a better ordering of problems with respect to difficulty. It also brings
additional insight – we can determine not just average difficulty of problems,
but also their discrimination and randomness. With an extension of the model
we can even determine similarity of individual problems (using just the problem
solving times). All these parameters are useful for automatic problem selection
in intelligent tutoring systems.

2 Modeling Problem Solving Times

We describe the setting, the basic models and we elaborate on its relation to the
item response theory and collaborative filtering.

2.1 The Setting and Simple Models

We assume that we have a set of students S, a set of problems P , and data
about problem solving times: tsp is a logarithm of time it took student s ∈ S to
solve a problem p ∈ P (i.e, t is a matrix with missing values). In this work we do
not consider any other information about students and problems except for the
problem solving times. We study models for predicting future problem solving
times based on the available data. These predictions are denoted t̂sp.

As noted above, we work with a logarithm of time instead of the untrans-
formed time itself. There are several good reasons to do so. At first, problem
solving times have a natural “multiplicative” (not “additive”) nature, e.g., if
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Alice is a slightly better problem solver than Bob, then we expect her times
to be 0.8 of Bob’s times (not 20 second smaller than Bob’s times). At second,
previous research on response times in item response theory successfully used
the assumption of log-normal distribution of response times [9, 11], analysis of
our data also suggests that problem solving times are log-normally distributed.
At third, the use of a logarithm of time has both theoretical advantages (e.g.,
applicability of simple linear models) and pragmatic advantages (e.g., reduction
of effect of outliers).

Given our setting, the simplest way to predict problem solving times is to
use mean time, i.e., t̂sp = mp, where mp is the mean of ts′p over students s′ who
solved the problem p. A straightforward way to improve and personalize this
prediction is to take into account the performance of individual students. This
leads to the “baseline” model t̂sp = mp − δs, where δs is a “mean performance
of student s with respect to other solvers”, i.e., δs = (

∑
mp − tsp)/ns, where ns

is the number of problems solved by the student.

Our basic model, on which we will further elaborate, is an extension of this
baseline model. It is a linear model, which combines problem difficulty for average
solver (bp), problem discrimination (ap) and student’s ability (θs), i.e., t̂sp =
bp + apθs. In the following we describe two different ways how to derive and
further develop this basic idea.

2.2 Model Inspired by Item Response Theory

The item response theory (IRT) deals with test items with discrete set of answers
and models the probability of a correct answer. There has been research on
modeling response times in the context of IRT (see e.g., [9]), but in this research
time is used only as an additional information (the main focus being on the
correctness of response), not on the time itself.

The basic models of IRT assume that probability of correct response depends
on one latent ability θ. The most often used model is the three parameter logistic
model Pa,b,c,θ = c+(1−c)ea(θ−b)/(1+ea(θ−b)). This model has three parameters
(see Fig. 1): b is the basic difficulty of an item, a is the discrimination factor
(slope of the curve, how well the item discriminates based on ability), and c is
the pseudo-guessing parameter (lower limit of the curve, probability that even a
student with very low ability will guess the correct answer).

In our setting, we similarly assume that a problem solving performance de-
pends on one latent problem solving ability θ. We are interested in a “problem
response function” f(θ), which for a given ability θ gives an estimate of a time
to solve a problem. More specifically, the function gives a probabilistic density
of times.

As a specific model we use the simplest “natural” choice: a normal distribu-
tion with the mean linearly dependent on the ability and with constant variance
(remember that we work with a logarithm of time, i.e., this model assumes that
the untransformed time to solve a problem is exponentially dependent on ability).
The model thus has 3 problem parameters with the following intuitive meaning
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Fig. 1. An intuitive illustration of an item response function and a problem response
function. Dashed lines illustrate distributions for certain abilities; solid line denotes the
expected problem solving time, grey area depicts the area into which most attempts
should fall. Note that we are dealing with a logarithm of time.

(we intentionally use notation analogical to IRT): discrimination factor ap, basic
difficulty of the problem bp, and randomness factor cp.

The problem response function, i.e., the probability that a student s with
ability θs will solve a problem p at (a logarithm of) time t, is thus given by a
normal distribution with a mean bp + apθ and a variance c2: fap,bp,cp,θs(t) =
N (bp + apθs, cp)(t).

The predicted time for a student s and a problem p is the expected value of
fap,bp,cp,θs , i.e., t̂sp = bp + apθs. The model and intuition behind its parameters
are illustrated in Fig. 1. Discrimination factor ap describes the slope of the
function, i.e., it specifies how the problem distinguishes between students with
different ability. Basic difficulty describes expected solving time of a student with
average ability. The randomness factor describes variance in solving times for a
particular ability.

Note that the presented model is not yet identified as it suffers from the
“indeterminacy of the scale” issue in the same way as the basic IRT model. This
is solved by normalization – we require that the mean of all θs is 0 and the mean
of all ap is -1.

Since we do not know either parameters of problems, or abilities of students,
we need to estimate them from available data. Similarly to the procedures used
in IRT [5], this estimation can be performed by iterative maximum likelihood
estimation. We iteratively update problem (student) parameters assuming that
student (problem) parameters are known. Maximum likelihood estimation for
parameter values leads to ordinary least squares regression. Maximum likelihood
estimation for students abilities gives the following update rule [7] (weighted
sum of “local” ability estimates across all problems solved by a student): θs =
∑

p

a2

p

c2
p

tsp−bp
ap

/
∑

p

a2

p

c2
p

.

2.3 Models Inspired by Collaborative Filtering

Collaborative filtering is a method used in recommender systems, e.g., systems
for recommending movies (Netflix) or books (Amazon). The goal in these cases is
to predict future user ratings based on past ratings. Instead of predicting ratings,
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we predict problem solving times, but otherwise our situation is analogical (in
both cases the input is a large sparse matrix).

There are two basic methods for collaborative filtering: neighbourhood based
(memory based) and matrix factorization (model based). The main principle of
matrix factorization methods is based on singular value decomposition (SVD) –
a linear algebra theorem which states that any matrix A can be decomposed as
A = UDV T , where D is a diagonal matrix and U, V are orthonormal matricies.
Using this decomposition it is possible to find an approximation of A by using
only first few rows in the product.

This theorem can be directly used only for complete matrices. In collaborative
filtering, however, there are typically many missing values. This can be overcome
by imputing data (e.g., substituing means in place of missing values), but such
approach has many disadvantages (e.g., imprecision, computational demands). It
is preferable to construct directly an approximation of the form: r̂ij = pi

T · qj ,
where r̂ij is the predicted rating and pi and qj are feature vectors of length
k. This model is typically further extended to include the baseline prediction
for a given item [8]. This leads (using our notation) to the following model:
t̂sp = bp + ap

T · θs, where ap and θs are vectors of length k which specify
problem-feature and user-feature interactions. The parameters of the model are
typically estimated using stochastic gradient descent with the goal to minimize
sum of square errors [8].

Note that for k = 1 the resulting model has the same structure as the model
inspired by IRT. Both the item response theory model and our analogical model
of problem solving times can also be extended to incorporate multidimensional
ability [10].

Collaborative filtering has to deal with parameter changes during time (e.g.,
user book preferences evolve) [8]. Similarly, in our setting it is sensible to incor-
porate learning into the model – students problem solving ability should improve
as they solve more problems. A natural extension of the model is the following:
t̂sp = bp + ap(θs + ∆s · f(k)), where k is the order of the problem in problem
solving sequence; f is a monotone function, and ∆s is a student’s learning rate.

2.4 Group Invariance

The mean predictor and the simple baseline predictor are misleading if the sub-
group of students which solved a particular problem is not representative of
the whole population. An important feature of our approach is that the mod-
els are “group invariant” (similarly to IRT models [5]), i.e., problem (student)
parameters do not depend on a subgroup of students which solved the problem
(problems solved by a student).

Let us describe this important feature on a specific example. When we have
a set of problems, then typically the harder problems are solved only by students
with above average ability. If we use a mean problem solving time as a predictor
of problem difficulty, than we underestimate the difficulty of these harder prob-
lems. Our model takes abilities of solvers into account and thus the obtained
problem parameters are independent of the group of solvers.
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3 Application and Evaluation

Now we briefly introduce a “Problem solving tutor”, which uses the described
approach to make predictions and recommendations to students. Data collected
by this system are used for evaluation of described models.

3.1 Problem Solving Tutor

The described approach is currently used in a “Problem solving tutor” – a free
web-based tutoring system for practicing problem solving, which is available
at tutor.fi.muni.cz. At the moment the system focuses solely on the “outer
loop” of intelligent tutoring [12], i.e., recommending problem instances of the
right difficulty.

The system contains more than 20 types of problems, particularly computer
science problems (e.g., binary numbers, robot programming, turtle graphics, in-
troductory C and Python programming), math problems (e.g., describing func-
tions, matching expressions), and logic puzzles (e.g., Sokoban, Nurikabe). All
problems are “pure” problem solving problems with clearly defined correct so-
lution – problem solving time is the single measure of students performance,
there are no “quality of solution” measures (i.e., no hints during solutions or
acceptance of partial solutions).

The system was launched in March 2011, it is already used by more than
20 schools and has more than 5 000 registered users (mainly university and
high school students) who have spent more then 8 000 hours solving more than
220 000 problems. The collected data are used for the below described evaluation.
The number of solved problems is distributed unevenly among different problem
types, in the evaluation we use only problems for which we have sufficient data.

3.2 Analysis of Parameter Values

We begin our evaluation by analysis of the basic model with one ability. The
parameter values were estimated as described in Section 2. We have described
two ways to derive our basic model and estimate parameters: model inspired
by item response theory with parameters estimated by alternating maximum
likelihood estimation and the SVD inspired model with parameters estimated
by stochastic gradient descent (the specific algorithm parameters were used as
in [8]). Our results show that these two ways to estimate the parameters lead to
nearly the same results. Thus here we report only on the computed parameters
(student abilities θ, problem parameters a, b, c) of the IRT inspired model.

Student abilities should be normally distributed in a population, and the
results show that the estimated abilities θ are really approximately normally
distributed (see Fig. 2.). The variance of the distribution depends on the problem
type – for educational problems we have larger variance of abilities than for logic
puzzles.
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Fig. 2. Left: Distribution of abilities for the Robotanist problem. Right: Ability versus
variation in the student performance for the Robotanist problem.

Generally the data suggest that the basic assumptions on which the model
is based are suitable, e.g., for particular problems the relation between the es-
timated ability θ and a logarithm of time is really linear as the model assumes.
Nevertheless, one result shows that some of the model assumptions are too sim-
ple. Fig. 2. shows a relation between an estimated ability and a variation in
student performance (the standard deviation of ability estimates for individual
problem instances). There is a slight negative correlation, i.e., students with
lower ability have larger variance, whereas the model assumes a constant vari-
ance. Thus the model can be extended by another parameter to describe this
decrease of variance with increasing ability.

Fig. 3. shows scatter plots for problem parameters a, b, c. There is a corre-
lation between the basic problem difficulty and its discrimination – more diffi-
cult problems are more discriminating. The randomness parameter (which corre-
sponds to variance of problem solving times) is nearly independent of the basic
problem difficulty (there is a positive correlation, but only small). Note that
this result indirectly supports the application of logarithmic transformation of
times. If we had used untransformed times or some different transformation,
there would be much stronger dependence.

Although there are some correlations among the parameters, generally the
parameters are rather independent, i.e., each of them provides a useful informa-
tion about the problem difficulty. For example, in intelligent tutoring system, it
may be suitable to filter out problems with large randomness or low discrimina-
tion.

3.3 Evaluation of Predictions

Evaluation of model predictions was done by repeated random subsample cross-
validation. We performed 20 repetitions, each with 90% of data as a training
set and the remaining 10% of data as a test set. Table 1. compares the results
using the root mean square error metric. We have also evaluated other metrics
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Fig. 3. Relations between parameters a, b, c of the model.

Table 1. Quality of predictions for different models and problems measured by root
mean square error metric. Baseline model, IRT-model, and SVD-model are models
described respectively in Sections 2.1, 2.2, 2.3. All models assume a single latent ability.

Problem type Mean time Baseline model IRT-model SVD-model

Binary numbers 1.1717 0.9941 0.9856 0.9860
Graphs and functions 1.2868 1.0477 1.0395 1.0419
Nurikabe 0.9021 0.7111 0.7191 0.7175
Robotanist 1.3137 1.2056 1.1944 1.1963
Rush hour 0.8937 0.8072 0.7948 0.7975
Slither Link 1.0252 0.7873 0.7766 0.7760
Sokoban 1.1491 0.8965 0.8876 0.8893
Tents 1.0238 0.9355 0.9423 0.9434
Tilt maze 1.0044 0.8665 0.8620 0.8656

like the Pearson and Spearman correlation coefficients and mean absolute error.
The relative results are very similar.

The results show that all models provide improvement over the use of a
mean time as a predictor. Most of the improvement in prediction is captured
by the baseline model; models with more parameters bring a slight, but not
very important improvement. As mentioned above, IRT-based and SVD-based
parameter estimations lead to nearly the same parameter values and thus the
predictions are also nearly the same.

So far we have evaluated absolute predictions of problem solving time. In
practical applications it may be more important to focus on relative predictions,
i.e., on ordering of individual problem instances, so that students can progress
from easy problems to difficult ones. Here the group invariance issue (described
in Section 2.4) becomes important. The baseline model leads to same ordering of
problems as the mean time, i.e., it is not group invariant, whereas other described
models are group invariant. An analysis of data shows that the ordering based
on our models is better than the ordering based on mean time (to make this
comparison we ordered problems into sequences P1, . . . , Pn and counted how
many times did some student solve problem Pi faster than problem Pj for i > j).
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Fig. 4. Determination of problem similarity by the extended model with two abilities.
Graph axes are the problem discrimination parameters a1, a2. White dots are Sokoban
problems, black dots are Slither Link problems.

3.4 Extended Models

Finally, we provide a brief evaluation of extended models described in Section 2.3
– a model with learning and a model which assumes multiple abilities (i.e., model
corresponding to SVD technique with several features). Parameters for these
models were estimated using the stochastic gradient descent method in a similar
way as for the basic model.

On our current data these models do not improve predictions due to the
overfitting – we get improved fit over the training set, but worse fit on the test
set. Nevertheless, even with the current data these models can give us some
interesting insight.

The model with learning is of the following form: t̂sp = bp+ap(θs+∆s ·f(k)),
where k is the order of the problem in a problem sequence, f is a monotone
function, and∆s is a learning rate. Our analysis confirms an intuitive expectation
that f should be sublinear (learning is faster at the beginning and then slows
down); a use of square root leads to a good fit. Results also show that for our
problems the learning rate ∆s is weakly positively correlated with ability θs (i.e.,
better students improve faster).

We also evaluated a model with two abilities: t̂sp = bp + a1pθ1s + a2pθ2s.
Although the model does not improve predictions on our current data due to the
overfitting, we can at least evaluate whether the automatically learnt concepts
(abilities) are sensible. To do so we performed the following experiment: we mix
data for two types of logic puzzles, let the algorithm learn the concepts, and
then check, how well are the puzzles separated. Fig. 4 shows results for two
particular problems. As we can see, the two problem types are separated quite
well by the automatically learnt concepts. This extended model can thus be used
for automatic determination of similarity between problems within a given set of
problems. This can be useful for problem recommendation in intelligent tutoring
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systems. If a student solved a particular problem slowly, we can give her a similar
problem, but easier problem, if a student solved problem quickly, we can give
her a problem utilizing different concept.

4 Conclusions

We describe a model of students problem solving times, which assumes a linear
relationship between a problem solving ability and a logarithm of time. We derive
the model details and parameter estimation procedures from two different areas:
the item response theory and collaborative filtering. The model is already applied
in an online “Problem solving tutor” to recommend problems of suitable diffi-
culty. This system is already widely used (more than 220 000 problems solved),
the collected data were used for evaluation of the model. The results show that
the model brings only slight improvement compared to the baseline predictor,
but also that the model provides interesting information about problems (includ-
ing determination of problem similarity based only on problem solving times).
This information can be useful for problem selection and recommendation in
intelligent tutoring systems.
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