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Analysis of A Simplified Hopping Robot

Abstract

This article offers some analytical results concerning simplified models of Raibert's hopper. We represent
the task of achieving a recurring hopping height for an actuated "ball" robot as a stability problem in a
nonlinear discrete dynamical control system. We model the properties of Raibert's control scheme in a
simplified fashion and argue that his strategy leads to closed-loop dynamics governed by a well-known
class of functions, the unimodal maps. The rich mathematical literature on this subject greatly advances
our ability to determine the presence of an essentially globally attracting fixed point-the formal rendering
of what we intuitively mean by a "correct” strategy. The motivation for this work is the hope that it will
facilitate the development of general design principles for "dynamically dexterous" robots.
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ko plified models of Raibert’s hopper. We represent the task
i of achieving a recurring hopping height for an actuated
‘ball”” robot as a stability problem in a nonlinear discrete
ynamical control system. We model the properties of
aibert’s control scheme in a simplified fashion and argue
hat his strategy leads to closed-loop dynamics governed
y a well-known class of functions, the unimodal maps.

he rich mathematical literature on this subject greatly
dvances our ability to determine the presence of an
ssentially globally attracting fixed point—the formal ren-
ering of what we intuitively mean by a “‘correct’’ strat-

- egy. The motivation for this work is the hope that it will
acilitate the development of general design principles for
“dynamically dexterous’’ robots.

" 1. Introduction

~This article concerns the steady-state behavior of a
““hopping ball’’ controlled by sensory feedback to
achieve a stable periodic motion in the earth’s gravi-
tational field. We take as inspiration and as point of
‘departure the pioneering work of Raibert, whose
successful implementation of simple yet appropriate
control procedures has resulted in working physical
prototypes of stable hopping, running, and cantering
gaits (Raibert 1986). The most striking feature of
these control algorithms is their minimal dependence
on “‘higher level’ intelligence or planned reference
trajectories and elegant reliance on the intrinsic
dynamical characteristics of actuators and masses.
An understanding of the capabilities and limits of
such approaches to robot task specification and con-
trol seems essential to the reliable construction of
“dynamically dexterous robots’’ in general.

The International Journal of Robotics Research,
Vol. 10, No. 6, December 1991,
‘© 1991 Massachusetts Institute of Technology.

h

Analysis of a Simplified
Hopping Robot

This last phrase we understand to mean the prob-
lem of robotic interaction with incompletely actuated
environments (i.e., the absence of a continuous con-
trol input at every degree of mechanical freedom)
whose dynamical structure changes in response to
the robot’s actions. Our article focuses on the prob-
lem of articulating design principles for this task
domain: we attempt to account in some measure for
the experimental success of Raibert’s control strate-
gies by adopting a formal representation of the prob-
lem and reasoning within it. Such a project, of
course, is guaranteed to encounter the inevitable
conflict between physical accuracy and analytical
tractability, and it is just this tension that the article
explores. Apart from its acadenfic interest—perspec-
tive in ‘‘hindsight’’—this effort to understand the
operating principles of an existing robot is applicable
to independent work that we are pursuing in the
analysis and control of a throwing, catching, and
juggling robot (Biihler et al. 1989, 1990). Our ulti-
mate goal lies in a unified body of theory for robot-
ics in intermittent dynamical environments that
explains and is supported by representative experi-
ments.

Concretely, this article presents a stability analy-
sis of certain discrete dynamical systems that arise
from extremely simplified models of Raibert’s physi-
cal machines. Different choices in modeling between
analytical tractability and physical validity result in
two very different classes of nonlinear oscillators.
Simulations of these models demonstrate that for
reasonable parameter values, their qualitative prop-
erties match those of Raibert’s physical data. Our
analysis of these models relies on exact integration
of the oscillatory dynamics to produce a “‘return
map’’ that exhibits the robot’s state at the next hop
as a function of that at the previous. We are then
able to assess the global stability properties of var-
ious periodic orbits—a formalization of our intuitive
sense of what would constitute a steady-state hop-
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ping behavior. For both classes of models, we are
able to show that Raibert’s control strategies lead to
essential global asymptotic stability: that is, those
states failing to converge to the specified limiting
behavior have zero measure.

Perhaps the principal contribution of this article is
the hint it gives of a unifying stability mechanism for
tasks involving intermittent dynamical interactions.
Despite the great differences in the two classes of
models studied, both give rise to unimodal return
maps. As a result of relatively recent mathematical
analysis reported in Singer (1978) and Guckenheimer
(1979), it is possible to ‘‘read off>’ the global stabil-
ity properties of such systems from a simple local
computation. Thus the Raibert controller (or at least
our models thereof), despite its dramatically nonlin-
ear setting, admits conclusions (for example, about
the effect of different gain settings) that are compa-
rable in strength to those afforded by traditional lin-
ear systems theory. This fortunate circumstance is
also obtained from our juggling algorithms (Biihler et
al. 1989a, 1990), which are loosely patterned on Rai-
bert’s ideas. Conceivably, then, the Raibert control-
ler may offer a general paradigm for a practicable
stability mechanism in complex robotic applications.

The article is organized as follows. This introduc-
tion continues with a brief review of the literature
followed by a formal problem statement. Section 2
offers an overview of our methods and results deliv-
ered at the tutorial level. In section 3 we derive the
two models of the Raibert hopper that form the cen-
tral concern of the article. They are examined ana-
lytically in section 4. A brief conclusion, section 5,
assesses the larger implications of this work.

1.1. Review of the Related Literature

If research in dynamical task domains is rare, then a
strong reliance on the intrinsic dynamics of the
robot and environment to achieve the task is even
more so. Following Raibert’s pioneering investiga-
tions, one can begin to see a growing interest in stat-
ically unstable gaits in the legged-robot literature
(Miura and Shimoyama 1984; Miura et al. 1985;
Furusho and Masubichi 1987). By and large, how-
ever, this work retains the traditional reliance on an
a priori determined reference trajectory for each
limb that the control system then forces the machine
to track. A similar approach characterizes much of
the wider research in dynamically dexterous robot
tasks. For example, both the ping-pong robot of
Andersson (1988) and the juggling robot of Aboaf et
al. (1989) employ preplanned reference trajectories
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to achieve the desired impact state with the envirop.
ment.

Mason and colleagues have given a great deal of
attention to manipulation strategies that achieve
desired goals by systematically harnessing the intrin
sic features of the robot-environment interaction
Although much of their research has concerned
quasi-static task domains (Mason 1986; Taylor et
1987), some very suggestive ideas have been pre- ’
sented for the dynamical case as well (Wang and
Mason 1987). Fundamental work on passive dynam;.
cal walking machines (McGeer 1990) lies very close
to the goals and concerns of the present article. Thay
work combines the successful fabrication of a
machine whose proper operation is entirely gov-
erned by dynamical interactions with the environ-
ment along with a stability analysis via numerical
studies of a return map.

Our own immediate interest in understanding the
basis for Raibert’s success stems from the study of
juggling robots we have pursued over the past 3
years (Biihler et al. 1989b, 1990). In this research we
had intuitively applied Raibert’s notion of servoing
around the total energy and had achieved empirical
success but found that the standard linear stability
arguments were not applicable (Biihler et al. 1989a).
Having completed the work reported here, we were
motivated to go back and study the nonlinear prop-
erties of the juggling algorithm (Biihler and Kodit-
schek, 1990). Surprisingly, we found exactly the
same underlying stability mechanism operating there
as here: the strong-global properties of unimodal
return maps.

Since our original report of this work (Koditschek
and Biihler 1988; Biihler and Koditschek 1988), a
number of colleagues have begun to follow a similar
line of inquiry. Vakakis and Burdick (1990) have
pursued the question of bifurcation phenomena ina
modified version of our model! through numerical
study. M’Closkey and Burdick (1990) and Li and He
(1990) have more recently used approximate and
numerical methods to examine questions similar to
these for more accurate models with a greater num-
ber of degrees of freedom. It is an open question
whether the methods we apply and the analytical
insights we obtain here can be extended to these
more realistic settings of the problem.

1.2. Statement of the Problem

In our view, one of Raibert’s central contributions
has been to encode the task of hopping in terms of a
desired level of total vertical (i.e., Kinetic plus spring
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' potential) energy. Thus any controller that achieves
" the task as so construed must, in principle, function
by preserving that level. In consequence, his robots’
hopping behaviors rely on ‘‘an oscillation that is
largely passive, with-the details of the motion deter-
mined by the springiness of the leg, that of the body,
and gravity”’ (Raibert 1986). Our juggling robots
(Bihler et al. 1989b, 1990) employ a variant of Rai-
bert’s idea to actively servo around measured errors
between the present and the desired total energy.

© However, Raibert’s (1986) implementation of this

. idea is still simpler:

The control system for the hopping machine deliv-
ers a fixed thrust during each stance phase. This
causes the bouncing motion to come to equilib-
rium at a hopping height for which the energy
injected by thrust just equals the energy lost to
friction and accelerating unsprung leg mass.
Because these mechanical losses are monotonic
with hopping height, a unique equilibrium hopping
height exists for each fixed value of thrust, and
greater thrust results in greater height.

. In this article we will explore these three statements
- analytically and append a fourth idea that properly
belongs together with the others: we will argue that
the control procedure causes the unique equilibrium
. state to have strong stability properties as well.

. Thus the problem addressed by this article may be
- stated as follows:

1. Develop an appropriate dynamical model of a
hopping robot interacting with its environment
with respect to which the desired hopping
behavior may be encoded as an equilibrium
state.

2. Show that the Raibert controller results in the
appearance of a unique and stable equilibrium
state whose domain of attraction is *‘large.”

. 2. Return Map Analysis of Hopping Robots

We will address this problem by appeal to the the-
ry of unimodal return maps as developed over the
ast two decades in the dynamical systems litera-
ure. Specifically, we will argue that the controller
nimating the hopping robots gives rise to a closed-
00p system that, although it is nonlinear, possesses
obal properties whose ease of analysis and power
N application is reminiscent of the linear case.

- These methods are now quite commonplace in an
Ncreasingly wide range of engineering applications
nd have received fine tutorial treatment in recent

years (Guckenheimer and Holmes 1983; Devaney
1987). However, in the field of robotics and control,
contemporary techniques of dynamical systems the-
ory seem not to have received widespread attention.
For this reason we now present an intuitive account
of the aims and achievements of the article as a
whole. That is, we explain in simple terms what our
equations model and what our analysis reveals.

In section 2.1 we introduce the necessary con-
cepts and terminology in the context of the familiar
damped linear oscillator. Section 2.2 presents gen-
eral intuitive arguments to the effect that, even if
not linear, the closed-loop dynamics fall into the
very special class of unimodal maps. The features of
this special class of dynamical systems that we find
particularly important in the present context are
then reviewed in section 2.3. With this background,
we provide a very brief summary of our technical
results in section 2.4.

2.1. Return Maps Induced by Oscillatory Dynamics
Consider the unit-mass damped spring system,
X + 208} + (1 + By = 0, (D

that we have parameterized to ensure oscillatory
solutions (we assume o, B > 0). Trajectories of (1)
evolving on the phase plane, (x(1), (1)), cross the
negative y-axis repeatedly every 27/w units of time.

~ The magnitude at any subsequent crossing, x, . i, is

related to the magnitude of the previous value, x,,,
by

g(x) & e~ 2By, )]

The discrete dynamical system (2) resulting from
this sampling of the continuous trajectories of (1) is
called the Poincaré or return map of that system.

In the sequel we shall find it convenient to employ
different coordinate systems in our analysis of such
return maps. For example, because the total
mechanical energy,

X1 = g(x,);

1 1
E £ 5 X+ 5@+ B,

depends solely on the value of x along the abscissa
of the phase plane, we may relate x, to the equiva-
lent total energy at the nth crossing, E,, via the
change of coordinates,

E = h(x); h(x) = %wz(l + Bx?,

whose inverse is A~ '(E) £ V2E/w*(1 + 7). In
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energy coordinates the return map for (1) is given by

E.c1 = f(En); f(E) & e *"PE, 3
where f and g are related to each other as f =
hegoeh™.

In this article we shall be concerned with the sta-
bility of equilibria of return maps. For example,
because f has a fixed point at E = 0, the zero state
is an equilibrium of (3). Furthermore, because the
slope, f' = e~ 4™, has magnitude less than unity at
E = 0, we are guaranteed that this is an asymptoti-
cally stable fixed point—some small neighborhood
of initial conditions take their steady-state value at
the equilibrium. Finally, because (3) is linear, all
solutions are a scalar multiple of each other. We
conclude that all solutions in the phase plane con-
verge toward the trajectory at zero energy. In sum-
mary, if (1) were a viable model of the hopping
robots under consideration, then the discussion of
the first paragraph above culminating in equations
(2) and (3) would constitute a solution to part 1 of
the problem statement, and the stability discussion
of this paragraph would solve part 2.

This, in brief, constitutes the method of the arti-
cle, with the major distinction that we shall derive
difference equations from two different versions of a
nonlinear oscillatory system (8) rather than the sim-
ple spring-mass-damper system (1). For a model
based on a nonlinear spring potential (9), it will
prove most convenient to derive the return map in
modified phase space coordinates that correspond
roughly to (2). For a model based on a linear spring
potential (10), it will prove most convenient to
derive the return map in modified energy coordi-
nates that correspond roughly to (3). Contrarily, the
stability analysis of section 4 is most conveniently
undertaken in modified energy coordinates (3) for
the nonlinear spring potential model (9) and in modi-
fied phase space coordinates for the linear spring
potential model (10).

2.2. Unimodal Return Maps Arising From the Hopping
Strategy

By any account, the oscillatory dynamics of Rai-
bert’s hopping robots are quite nonlinear, and there
is no reason to hope for a simple return map. We
now offer a plausibility argument on a very intuitive
level for the appearance of unimodal functions in the
guise of return maps induced by the hopping strat-
egy in question.’

1. We are indebted to Marc Raibert for suggesting the outlinés of
this argument to us in a personal communication.
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Let {E,}n-1 continue to denote the sequence of
total energy values measured, for example, at the
instant in each cycle that the robot touches dowp
During the forthcoming stance phase, a certain '
amount of energy will be lost to friction and (at jtg
termination) the unsprung mass; this quantity is
denoted by I(E,). During the thrust portion of thig
stance phase, some energy Will be gained by the sys.
tem; this quantity is denoted by a(E,). The new
energy level at the next takeoff is now given by add-
ing losses and gains to the old level:

f(En) ‘A‘ En + a(En) - I(E,,)

No energy will be lost or gained (since we follow
Raibert in neglecting friction) during free flight, so
that f(E,) is exactly the energy level at the instant
of the next cycle that the robot lands. That is, f is
the induced return map (expressed in energy coordi-
nates) for this system, and the energy change from
cycle to cycle is governed by the discrete dynamical
system,

En+1 = f(En). (4)

At that energy level, E*, for which I(E*) =
a(E*), we have f(E*) = E*—i.e., E¥, afixed point
of f, is an equilibrium state of (4)—an analytical
rendering of Raibert’s second statement above. If
a — | is monotonically decreasing, then E* is indeed
the unique fixed point of f. For example, if / is mon-
otonically increasing (as in our model (3) above),
and we interpret Raibert’s first statement as leading
to a constant function a, then we have justified his
third statement claiming the uniqueness of £ *,
Unfortunately, as the discussion of section 2 indi-
cates, the job of analysis is still unfinished. If E* is
not a stable equilibrium state of (4), then it is
unlikely that a physical experiment would ever yield
an observable periodic hopping gait. How difficult
would it be to ensure stability? Is Raibert’s success
inevitable or will it require careful tuning of param-
eters? The analytical answer to these guestions is
given (at least to first approximation) by examining
the slope of f at E*.

If we adopt the simple viscous damper (3) as the
model for energy loss, then 0 <!’ < 1, as seen in
section 2.1. If, in addition, we adopt the model of
constant energy gain, a’' = 0, then fI(E*) =1~
I'(E*) has a magnitude between zero and unity: the
periodic hopping cycle is asymptotically stable, aqd
any gait beginning at an energy level nearby E* wil
settle down toward the one specified by E*. In fact,
a glance at the plot of such an f in Figure 1 shows
that E* is globally asymptotically stable in this casé:
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f(E )

ig. 1. An affine return map with a unique globally
ymptotically stable fixed point.

Of course in reality, the energy gain function, a,
ust eventually begin to decrease. More precisely,
our ability to supply energy is finite, the energy
dded must approach zero as the absolute energy

vel increases. If a has not yet begun to fall off too
pidly near E*, then the stability argument above is
ill persuasive. Otherwise, we obtain the situation
epicted in Figure 2 where the sum of a falling

nergy gain curve, a(E), with a rising damped

nergy return curve, E — I(E), yields a ‘‘unimodal’’
urve, f, that looks like a for low values of energy
d looks like E — I(E) for large values of energy.
though the difference in the visual appearance of
jgures 1 and 2 is slight, different modeling assump-
ons and gain values chosen within these same basic
ound rules can produce dramatically different
esults, as depicted in Figure 3.

F'ig- 2. The unimodal return map (17) resulting from a
Simplified linear spring model (10).

0.84

0.7

o0.2¢

0.1¢

N : 4 + + + M
t + t T + + +
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fig. 3. The unimodal return map (15) resulting from a
simplified nonlinear spring model (9).

2.3. The Singer-Guckenheimer Theory

The appearance of unimodal return maps in Figures
2 and 3 is most fortunate. Among their many other
special characteristics, the unimodal maps turn out
to be, from the point of view of predicting steady-
state behavior, the ‘‘next best thing”’ to linear. The
theory we rely on to arrive at these predictions was
advanced by Singer (1978), whose observations were
greatly expanded by Guckenheimer (1979). Their
results (as presented, for example in the tutorial by
Collet and Eckmann [1980]) apply to a very particu-
lar class of unimodal functions, f, which preserve
the interval [— 1, 1]. These S-unimodal maps
increase strictly toward a unique maximum at 0 and
decrease strictly over the remainder of the interval.
Moreover, they have a negative Schwartzian Deriva-

tive (Singer 1978),
)

Sy £ &R 3 (ﬂx—))z

g'x) 2\g'x)

except, possibly, at the maximum. Finally, they
have the property that f(0) = 1 and that f maps the
interval [f(1), 1] into itself.> The aims and interests
of the contemporary dynamicists, motivated in large
measure by the effort to understand ‘‘chaotic behav-
ior,”” do not necessarily correspond to those of the
present article, as we are always interested in stabil-
ity. Thus it seems important briefly to review those
aspects of the Singer-Guckenheimer theory that we

2. These conditions were originally cast in slightly different terms
involving the unit interval (Guckenheimer 1979). Although the
present discussion focuses on the tutorial version of Collet and
Eckmann, it will prove convenient in this article to use both ver-

sions of the theory.
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feel make the appearance of unimodal return maps
such an auspicious occasion in the present context.

Essential Global Asymptotic Stability

Recall that in part 2 of the problem statement above,
we have added a proviso requiring the guarantee of
some reasonable physical extent to the domain of
attraction. We have concluded from our work in jug-
gling that specification of the local characteristics of
an equilibrium state may not adequately encode
what we mean by dynamical dexterity. Specifically,
we have seen asymptotically stable juggles fail
miserably in the laboratory because the attendant
domain of attraction is smaller than the sensory res-
olution of the physical apparatus (Biihler et al.
1989a). However, a very different class of control-
lers consistently evinces extremely robust behavior
in the laboratory, achieving the juggling goal far
from equilibrium and persisting in the juggling
behavior in the face of severe disturbances (Biihler
et al. 1990). Similarly, the reported laboratory expe-
rience with Raibert’s hopping machines shows that
the behavior emerges from extremely varied start-up
conditions and persists remarkably well in the face
of formidable disturbances. To explain such
‘‘robust’” behavior with convergence far from equi-
librium, one requires an analysis of the domain of
attraction—the set of initial conditions that asymp-
totically approach an equilibrium state. Singer (1978)
showed that S-unimodal maps can have at most one
attracting periodic orbit. Guckenheimer (1979)
showed that the domain of attraction of such attract-
ing orbits includes the entire state space with the
possible exception of a zero measure set. Thus if an
isolated equilibrium state of an S-unimodal map is
asymptotically stable, it must be essentially globally
asymptotically stable as well. It is this feature of the
theory—the possibility of deducing global properties
from a local computation——that we find so important
in the present context.

We have provided very general arguments above
to persuade the reader that the Raibert strategy—
servoing around a desired energy state—seems for-
tuitously to lead to unimodal return maps. We will
confirm this intuitive discussion in the sequel by
demonstrating that our (simplified but more precise)
models of the hopping machine fall under the pur-
view of the Singer-Guckenheimer theory.

Change of Coordinates

Although the global stability results of the Singer-
Guckenheimer theory are stated in terms of the
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apparently restrictive class of S-unimodal maps,
they extend as well to all differentiable conjugateg.
that is, functions f, g related as f = hogop-1

where A is a smooth one-to-one and onto map W,hOSe
inverse is also smooth—in the following manner,

The sign of the Schwartzian derivative, although ot
a differentiable invariant, is left unchanged by ey

er
projective linear transformation (Singer 1978), y

T x+ d’ (6)

It is clear (cf. Collet and Eckmann [1980], §1.1.5)
that any two (bounded or unbounded) real intervalg
may be identified via such a change of coordinates,
so the restriction to the interval [—1, 1] is not
important. Moreover, because it is straightforward
to construct projective linear transformations (6) that
map [—1, 1] into itself (either preserving or revers-
ing orientation) and identify an arbitrary interior
point, ¢ € [—1, 1} with 0, the Singer-Guckenheimer
theory extends to any unimodal function from a rea
interval into itself with a negative Schwartzian deriy-
ative that relates the critical point to the end point
properly and preserves the specified subinterval. In
fact, neither the end point nor the subinterval condi-
tions are truly restrictive, as will be seen below in
section 4.2.

The practical implications of the previous observa-
tions are as follows. Suppose we encounter a scalar
map, f, of some real interval into itself possessed of
a single critical (maximum or minimum) point in the
interior of that interval. In order to apply the Singer-
Guckenheimer theory, it will suffice to find a change
of coordinates, A, that induces a conjugate, g =
he fe°h~! whose Schwartzian derivative is nega-
tive. Thenceforth, one need merely compute the
derivative of f or g (or any other more convenient
conjugate) at any fixed point (or point of higher
period). If the magnitude is less than unity, then one
immediately concludes that the equilibrium state in
question is essentially globally asymptotically stable.
The principal effort of analysis, then, is the search
for a change of coordinates whose application prod-
duces a conjugate with negative Schwartzian
derivative.?

As an example, consider the unimodal return map
depicted in Figure 3. In section 4.1 we will introduce
the change of coordinates (18) (not a projective lin-
car transformation) plotted in Figure 4. Its conjugate
(19), plotted in Figure 5, has a negative Schwartzian

3. In a peculiar sense, this is reminiscent of Lyapunov theory. It
is necessary to actually construct the change of coordinates in
order to obtain the stability result.

The International Journal of Robotics Research
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N 3 N n .
u t t 5
0.2 0.4 0.6 0.8 1

P 4. The “‘change of coordinates’ transformation (18)
Woduced to obtain from (15) (plotted in Figure 3) the
Whiugate depicted in Figure 5.

MEivative. This entitles us to apply the powerful
Meer-Guckenheimer theory.

ently accurate for all purposes, and a first
ation of its inadequacies generally takes the

f parametric variation. When studying a con-
'system, there is still greater interest in the

Biect of parametric variation, as many of the param-
BIETS in question may be directly adjusted by the
.;.},L policy. In the present context, having found

The conjugate map (19) resulting from the applica-
f the transformation (18) plotted above in Figure 4
’, t‘hﬂnge of coordinates for the original unimodal

map (15) depicted in Figure 3.

conditions that guarantee strong stability properties,
it is important to inquire over what range of param- h
eters those properties may persist. !
It is a generic property of discrete dynamical sys-
tems that locally stable fixed points that lose stabil-
ity via a parametric variation causing increasingly
oscillatory transients are replaced by asymptotically
stable period 2 orbits (Devaney 1987). This ‘‘period- !
doubling bifurcation’ also has a global analogue
within parameterized families of unimodal maps. A
full family (Collet and Eckmann 1980, §111.1) must
exhibit an accumulating cascade of period-doubling
bifurcations: i.e., from an essentially globally
asymptotically stable period 1 orbit, to an essentially
globally asymptotically stable period 2 orbit, to an
essentially globally asymptotically stable period 4
orbit, and so on. Thus unimodal families give rise to
global bifurcation diagrams of known structure.
Moreover, the structure is universal: it appears
regardless of the family or the details of the parame-
terization (Collet and Eckmann 1980).
We have used these strong predictions of the uni-
modal theory to verify its applicability in our jug-
gling work. Specifically, we have shown that a sim-
plified model of the closed-loop juggling system
satisfies the conditions for a full family and have
experimentally exhibited (at least a portion of) the
bifurcation diagram that the theory demands (Bihler
and Koditschek, 1990). In the present case the two
different variants of the robot model lead to very
different predictions concerning the appearance of
bifurcations beyond the essentially globally asymp-
totically stable period 1 orbit.

2.4. Summary of Our Results

Our solution to the problem statement of section 1.2
takes the form of two theorems presented in section
4. These are obtained from a simple application of
the Singer-Guckenheimer theory to appropriately
chosen conjugates of the physically derived return
maps of section 3. Both results present the same
conclusions with regard to the problem statement
proper: there is always a unique equilibrium hopping
height, and there is a (calculated) range of gains
over which this equilibrium is stable; when stable,
its domain of attraction includes almost every initial
condition.

However, the two models differ markedly with
respect to the larger questions concerning paramet-
ric variability. Is the Raibert energy scheme so
robust that any reasonable choice of gains will suc-
ceed, or can the desired equilibrium behavior be
lost? Our central result with regard to the nonlinear
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spring model depicted in Figure 3, Theorem 1, indi-
cates that the latter is true. That model represents a
full family with respect to the physically adjusted
parameters and thus includes a cascade of period-
doubling bifurcations to chaos. Our central result
with respect to the linear spring model depicted in
Figure 2, Theorem 2, indicates the reverse. Over the
range of physically valid parameter values there are
no bifurcations: the strongly stable equilibrium
behavior persists. We will further discuss this dis-
crepancy between the two results in the conclusion
of this article.

3. Two Models

In this section we follow closely Raibert’s verbal
description of a planar one-legged hopping robot
(Raibert 1986, pp. 33—34) to capture its vertical hop-
ping dynamics. In section 3.1 we will present this
derivation and then describe two further simplified
models, which form the basis for the remainder of
this article. The ‘‘nonlinear spring model” (9) retains
the realistic nonlinear spring characteristics but
misses other important features. In contrast, the
“‘linear spring model’”’ (10) has a simpler linear
spring but is otherwise a closer rendering of the real
system. Not surprisingly, such different simplifying
assumptions concerning the hopper’s dynamics will
have significant implications for the subsequent anal-
ysis. In section 3.2 we will motivate the relevance of
these drastically simplified models by comparing
their simulated response graphically with the empiri-
cal data reported by Raibert. Finally, the return
maps for these models are derived in section 3.3.

3.1. The Dynamics of a Vertically Hopping Robot

Our abstraction of the vertical hopper is shown in
Figure 6. It consists of a body of unit mass and a leg
of mass ', expressed as the fraction of the body
mass. Together, the body and the leg form a pneu-
matic cylinder with length x. and area A. This
arrangement acts simultaneously as a prismatic joint
and as an energy storage mechanism where the force
is inversely proportional to the leg’s length. Raibert
divides one complete vertical hopping oscillation
into four phases: compression, thrust, decompres-
sion, and flight phase. The first three phases, in
which the leg is in contact with the ground, are also
called the stance phase. Depending on the phase,
control is effected by either sealing the pneumatic
cylinder or connecting it to an external pressure.

We will now derive a dynamical model in the
body height y and then present two simplified ver-
sions.
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Flight

Thrust

Compr./
Decompr.

Fig. 6. Simplified model.

Compression

Compression beings with touchdown, which occurs
at the fixed height x = x.« as the leg is fully
extended during flight with length .. At this
instant, all the kinetic energy of the unsprung leg
mass is lost in an inelastic impact with ground. Dur-
ing compression, the control valve remains closed,
which fixes the spring constant as m = pAXw,
where p.q is the fixed initial pressure in the leg at
touchdown.

Thrust

At bottom (¢t = t,), where leg compression is maxi-
mal, the control valve connects the pneumatic cylin-
der to a constant thrust pressure p,; for a fixed
thrust time 8, resulting in a constant force 7 = puA.
At the conclusion of the thrust phase at time fer = I
+ &, the control valve is closed again.

Decompression

The thrust strategy defines a new effective spring
constant, 12 = Txer, which is necessarily a function
of the body position at the end of the thrust phase
Yer. The decompression phase ends with liftoff,
when the leg is fully extended again, and thus the
body position is x; = x:.a. At this instant, the body
accelerates the leg upward. Assuming again a com-
pletely inelastic collision between body and leg, both
have the same velocity just after liftoff. As a result
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of conservation of linear momentum in the absence
of external forces, the body’s velocity just after lift-

off is
_ 1
14 7y

XI Xl— > (7)

where x;— is the body velocity just before liftoff.

Flight

During flight we assume that friction is negligible
and gravity is the only force present. The pneumatic
cylinder is connected to the initial pressure p,;,
which keeps the leg fully extended.

This verbal description of the complete vertical
hopping dynamics can formally be summarized,
together with (7), as

m/x) — vy — g

. T Y&
X7 Y xelx) = vk — ¢
—8
if ¥ <0, x € (xea, x») compression
if t € (ty, tp + 8) thrust ®8)
if x>0, x € (Xer, x) decompression
if x> X flight,

~ where x» = Xe: < X1 = Xea-

In order to obtain closed-form return maps, in
section 3.3 we must integrate the continuous-time
dynamical model. However, in contrast to the linear
case (1), the nonlinear differential equations (8) do
not admit closed-form integration, and we are forced
to strip away a number of crucial aspects. We will
now introduce two somewhat complementary further
g simplified versions of this model that admit closed-

' form integration.

- In the nonlinear model (9), the spring characteris-
tics of the physical hopper are maintained. How-
ever, we assume that the dominant force during the
Stance phase is the spring force and therefore neg-
lect the viscous friction as well as gravity. In addi-
tion, we set the thrust time & to zero. This “‘instan-

1. taneous thrust phase’’ still incorporates the

qualitatively important feature of changing the spring
Constant for the subsequent decompression phase.
The resulting nonlinear spring model is character-
ized, together with (7), as

m(Uy) if ¥<0,xE(x, x») compression
X=qm(/x) if ¥>0,xE(xs,x) decompression
-8 if x> xa flight.
©)

To derive the linear spring model, we start again

with (8) but replace the pneumatic nonlinear spring
with a linear spring, with rest position yo. Further-
more, we assume that the spring constant is
unchanged before and after the thrust phase,

(m = m). Finally, we neglect the mass of the leg,
u' = 0, which eliminates equation (7). Thus the
linear spring model may be specified as

mxo —Xx) — vw—¢g

y=47" Y — 8
mxo — x) — vk~ g
-8
if ¥x<0,x€ (x, x») compression
if t € (1, t, + 8) thrust (10)
if x>0, x€ (xer, x) decompression
if x> X flight.

3.2. Simulations

In this section we will motivate the two particular
choices (9) and (10) by a comparison of numerical
simulations with empirical data presented in Rai-
bert’s work (Raibert 1986, p. 40). We argue that
their relevance to the physical phenomena and to
each other is sufficiently great to motivate their sub-
sequent analysis below.

Figure 7 presents a plot of the physical system
taken from Raibert’s book. This is a steady-state
orbit. Starting at the top, the vertical hopper goes
through touchdown (note the counterclockwise
direction) and compression to bottom. Some part of

0.7

z (m)

TOoP

LIFT-
OFF

BOTTOM

TOUCH-
0.5 | pown

0.4F

I 1 L

0.3 -
-3 -2 -1 ) 1 2 3
3 (m/s)

Fig. 7. Raibert’s hopper.

595

Koditschek and Biihler




VELOCITY
o

S J) S
-3 N
‘ |
i |
_4' 1 A HJJ} L P SR A
2 .3 4 5 .6 7 .8 .9

POSITION

Fig. 8. Full linear spring model.

the trajectory until liftoff constitutes the thrust
phase, which is not clearly distinguishable in this
plot. After liftoff, the hopper completes the cycle at
the top. The same sequence of events attaches to
our simulation plots—Figures 8 through 11—with
the exception that they evolve in a clockwise fash-
ion. Our figures depict transient trajectories as well:
a dashed trajectory leaves from initial conditions
outside the closed curve and a solid line trajectory
leaves from inside.

Figure 12 depicts some sample trajectories of the
full nonlinear spring model (8), where we have
neglected the mass of the leg. There are some differ-
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Fig. 9. Tuned simplified linear spring model.
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VELOCITY
3
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_1‘5'.,.-;”-“,‘%/,,

-2 =15 -1 =.05 0 .05 A
POSITION

Fig. 10. Untuned simplified linear spring model.

ences with the experimental data shown in Figure 7,
In particular, these trajectories do not have the same
symmetry. However, qualitatively the plots seem to
correspond for reasonable initial conditions, even
under reasonable parametric perturbations. Note
that for sufficiently large initial velocities, the simu-
lated ball may impact with such great kinetic energy
that the reaction spring force potential at the bottom
point exceeds the simulated fixed thrust pressure
feeding the valves. This effect can occur in all the
models examined here.

A simulation of our simplified nonlinear spring

VELOCITY

__5 L el L PR TR E
0 2 4 6 8 1 12 14
POSITION

Fig. 11. Stable period I orbit: simplified nonlinear spring
model.
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mass, the qualitative behavior remains unchanged,
while the fixed point moves away from the dissipa-
tion regime.

The linear spring version (10) of the robot model
was adopted to permit an analysis involving a differ-
ent energy loss mechanism than afforded by the pre-
vious version. The complete model is simulated in
Figure 8, with the parameter settings reported in
Table 1: this plot bears a striking resemblance to the
physical data plotted in Figure 7. For purposes of
analytic tractability, we find it desirable to further
simplify this linear spring model, arriving at the
dynamical systems presented in section 3.3, wherein
the new spring constant during decompression is
identical to that during the compression portion of
the stance phase. Figures 9 and 10 present simula-
tions of trajectories from the simplified linear system
POSITION with two sets of parameters as given in Table 1.
Although the transition between the thrust and
decompression phases seems exaggerated here rela-

VELOCITY

Fig. 12. Stable period 1 orbit: complete nonlinear spring

model. tive to the earlier figures, the resemblance is still

clear. To get some qualitative feeling for the unde-
model (9) is close to the complete nonlinear model sirable artifacts introduced by the simplified linear
and is shown in Figure 11. Here we have again model, the reader should note that our setting for
neglected losses caused by the acceleration of the gravity departs from reality in the simulation plotted
jeg mass at liftoff. Now, all energy dissipation in Figure 9, whereas the simulation plotted in Figure
occurs in the (presumably spurious) potential-dissi- 10 has parameter values closer to those of Figure 8,
pation regime. In fact, the trajectory’s bottom posi- yet presents a more distorted phase portrait.

tion enters alternatively in the energy dissipation
and the energy addition region and converges to the

i . 3.3. Two Return Ma
bottom position where the pressure in the leg as a o Return VIaps

result of compression is exactly equal to the thrust In this section, we derive from the oscillatory
pressure. Interestingly enough, our analysis in sec- dynamics above two simplified discrete dynamical
tion 4.1 shows that the stability mechanism of the models of Raibert’s hopper—the return maps intro-
fixed point of (9) does not rely on entering the duced in section 2—that summarize the manner in
energy dissipation regime: by introducing a leg which the energy at one hop determines the energy

Table 1. Simulation Parameters

Initial Spring
Liftoff Thrust Thrust Friction Spring Gravit. Relax. Mass
Initial Position Pos. Time Force Const. Const. Const. Pos. Ratio
Figure

Number x(0) Xi 8 T Y M g Xo u
8 0.91 0.98 0.5 0.05 41.86 2.33 46.5 10 1 1
0.44 0.5 0 0.05 41.86 0.58 46.5 5 0.1 1
10 -0.16 -0.18 0 0.05 41.86 2.33 46.5 10 0.215 1
11 1.15 1.4 0.5 0 41.86 0 5.81 0/10 N/A 1
12 0.8 0.9 0.5 0.01 41.86 2.33 5.81 10 N/A 1
13 0.02 0.5 0 41.86 0 2.33 0/10 N/A 1
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at the next. The return map for the nonlinear spring
system (9) is most easily derived in modified phase
space coordinates loosely corresponding to (2) in the
tutorial version of section 2. The derivation of the
return map for the linear spring model (10) is most
conveniently effected using energy-like coordinates
loosely corresponding to (3) in the tutorial version.

The Nonlinear Spring System

During stance, the nonlinear spring system is of the
form

. 1
X=n>, (1)
X
which can be integrated easily. In fact, on any
domain where neither y nor y vanish, we may either
solve this system for k; as a function of i, and ini-
tial conditions, (xo, Xo)
=22 - id, (12)
Xo
or, because this function is invertible, for i as a
function of xi,

22 2

X1 = Xo CXP{ 27

Starting at the bottom point, (x», X»), and apply-
ing (12) gives the body velocity just before liftoff,

Xi— = 27x In LAy
Xb
The body velocity just after liftoff is then calculated
using (7),

i = 27Xbp1nf , (14)
b

2
with p £ (1 N M,) , wE O, 1).

During flight, the hopper is subjected to a con-
stant negative acceleration as a result of gravity,
with no losses caused by friction. Because liftoff and
touchdown positions are identical, the body’s veloc-
ity just after liftoff and just before touchdown are
equivalent. At touchdown, the kinetic energy of the
foot is lost. However, this does not affect the body’s
velocity, and thus % = 7. From touchdown to
bottom, applying (13) yields

2 =2
_ X,dexp{_ z(_d} _ X,exp{_ _)(1_}
2m 2m

x/exp{—mxbln&},
m

Xb

Xb.next

il
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where the last expression obtains by substitution o,
i? from (14). Now, denoting x» 2 X(fwrsorrom), we
have derived the return map as

r
Xns1 = 8(Xn); glx) & xleXp{— n—”xln&} i
1 X

: (15)
This function is plotted in Figure 3 with parameter

values y; = 1, rw/m = 6.

The Linear Spring System

Alternatively, consider the linear spring system (10),
In addition to the assumptions in section 3.1, we will
now assume that the spring constant n; has been
chosen, along with the relaxation position, yo, to
place the zero potential energy position exactly on
the ordinate of the original coordinate system, These
assumptions may be rendered analytically as

o’(1 + B = m = m = glxo,

where we use the parameterization introduced in (1)
for convenience below.
Under these assumptions system (10) takes the

form
—2wBx — (1 + BZ)X
. —20By + 7
X= ) —20Bi — (1 + BAx
-v
if x <0, x€ (Xea> Xb) compression
if t€ (ty, tpb + 8) thrust (16)
if ¥>0,x€E (Xer, x) decompression
if x> xa flight.

We will find it convenient to integrate system (16)
using polar coordinates obtained from a normalized
version of total energy, E, and mechanical phase, 8,
reviewed in Appendix section A.1. At time #, the
bottom of the stance phase, suppose the hopping
ball is at state (— x5, 0), with energy

E, = o*(1 + BY)xs.

Set the value of the normalized phase angle at this
bottom point to be 6, = m, so that the angle at the
next bottom point will be Oy, pexe = — 7 (notice that 6
decreases with time). The task now at hand is to
determine the value of the normalized energy at the
next bottom point, Ep, nex:, as a function of its pre-
vious value, E,.

According to (16), at the bottom point the hopper
experiences a fixed thrust and viscous damping over
the period of time, & & ., — 1, with the result that

(Xel: /.\’et) = (— Xb» 0+ (Xh Xl)a
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where (x:» ) is a constant vector that depends on
5, as derived in the appendix. It follows that

E.; = [l//t - \/E_‘b]2 + ‘»l’?

 where the ‘‘normalized thrust vector’”, (¢, i), is

cters (25) in appendix A.
For future reference, note that the normalized
phase angle at the end of the thrust phase is

U

6,= —m+arctan | —— ] .

' <\/E_b - (l/r)
For this assignment to make sense, it is necessary
that VE» > 4. This formal requirement expresses
the model’s fidelity to the physical reality that the
thrust phase occur entirely during stance phase. In
its absence, the model might allow the robot’s state
to enter a physically invalid regime wherein the
effects of thrust are felt even after liftoff has
occurred. The technical condition that enforces this
requirement will be introduced in section 4.2.
Appropriate conditions on the system parameters to
ensure this condition are given by corollary 8 in
Appendix section A.2.

The trajectory between the end of thrust, ¢.,, and
the moment of liftoff, ¢, is governed by the linear

from 6., to 6, thus gives
E; = E.. exp{—2B[6.. — 61}

tive acceleration as a result of gravity with no dissi-
pation. It follows that the normalized energy is
unchanged, E,;, = E;, and the normalized phase
angle is set back by half a revolution, 6,4 = 6 — m.
Between touchdown, f,4, and the next bottom
state, ¢, nexs, the system evolves again according to
(23). It is now possible to substitute back and
express the energy at the next bottom state, Ep nexr
as a function of that at the previous bottom state,

Eb.nex!

= E,; exp{2B[0s.nexs — Oral}

= E;exp{—286;}

= E. exp{2B[6, — 0.1} exp{—2B6}
= (4 — VE* + 43)

X exp {—2[3[77 — arctan (——\/E_bw'_ l,l/,)]}

L f(E,).

Thus we obtain a first-order discrete nonlinear

TR e e

expanded as a function of the original system param-

system solved in equation (23). Integrating backward

In flight, the hopper is subjected to a constant nega-

dynamical system in the normalized energy at suc-
cessive bottom points,

En+l = f(En) (17)

This function is plotted in Figure 2 with parameter
values w = 20, 8 = 0.2, § = 0.01, 7 = 1, that sat-
isfy the sufficient conditions listed in corollary 8.

4. Stability Analysis of the Two Analytical
Models

In this section we formally solve the problem stated
in section 1.2. We show that both models of Rai-
bert’s hopper have a unique equilibrium hopping
state and find that the domain of attraction is almost
global when it is stable. We do so by an application
of the Singer-Guckenheimer theory discussed in sec-
tion 2. Specifically, we demonstrate that both the
functions (15) and (17) are smooth S-unimodal by
finding an appropriate change of coordinates. For
the nonlinear spring model (9) examined in section
4.1, it is most convenient to use energy coordinates
and appeal to the version of theory originally pro-
posed by Guckenheimer (1979). For the linear spring
model (10) examined in section 4.2, it seems easier
to use modified phase space coordinates and appeal
to the version of the theory in the tutorial of Collet
and Eckmann (1980).

4.1. The Nonlinear Model

Consider the function
g(x) = xiexp { - l’} ,
T X

from (15), and the transformation into energy coordi-
nates (in point of fact it is more convenient to use a
scaled version of the potential energy) plotted in
Figure 4, i : (0, x;) — (0, =), given by

h(x) £ In(x/x) (18)
whose inverse is

h='(E) = xiexp{—E}.
The conjugate, f £ h o g° h~' takes the form

f(E) = aEexp {-E}; a2 mau/m, (19)

and was plotted in Figure 5.*

4. It is interesting to note that this function has been examined in
the context of biological population dynamics (Guckenheimer et
al. 1977).
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It is clear that f is a map from IR™ into itself, as
the function is bounded and takes only positive val-
ues. Moreover, a simple computation shows that f
has fixed points at 0 and E* £ In a. Of the two
fixed points, the one at 0 is uninteresting, as it cor-
responds to a degenerate ‘‘zero height hop’ at the
liftoff point (x;, in the phase space coordinates).

LEMMA 1. f (19) has a unique fixed point in the
interior of the domain (0, ) if and only if @ > 1 in
which case the end point, 0, is an unstable fixed
point.

Proof: The result follows from direct computation:
f'(0) = « has magnitude less than unity, if and only
if the second equilibrium state corresponding to an
interesting nondegenerate hop is outside of the phys-
ical range of the model, that is, E* = In a < 0.
‘ O

Thus for the model to make sense, we must
assume that @ > 1. In terms of the physical model
as described in section 3.1, this condition requires
that

i _ puAXa - P

> 1.
™ DiaAXea Did H

This means that for a fixed point to exist, a lower
bound on the thrust pressure is the touchdown pres-
sure for a massless leg or an even higher value of
Praf . Otherwise.

More interestingly, for sufficiently large spring
potential energy at bottom, E, or equivalently for
small enough bottom heights, x, the pressure in the
pneumatic cylinder as a result of the compression is
larger than the thrust pressure. The effect of thrust
is then to actually dissipate some of the hopper’s
energy. This happens whenever the hopper’s body
height at bottom, x, is less than

Pu _ X

Xdiss = Xi
P 2

The fixed point in terms of successive bottom
heights is

x* = h~Y(E*) = xexp{—E*} = Z(—’,
o

and therefore the fixed point stays well away from
the boundary to the dissipation regime,

x* = - Xdiss = Xdiss
n

as long as the leg mass p’ is not zero, and therefore,
(1/w) > 1. This is well in agreement with the physi-
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cal operating regime (as deduced from data plots and
experimental settings in Raibert [1986]), which doeg
not seem to enter this spurious dissipation regime,
It is now easy to establish the relevance of the
Singer-Guckenheimer theory to the model (19).

LEMMA 2. f (19} is an S-unimodal map.

Proof:
because

It is clear that f is unimodal on IR™*,

f =
vanishes at exactly unity and takes positive values
on the interval (0, 1) and negative values on the
interval (1, «). Moreover, f' = (1 — 2/E)f and f
= —(1 — 3/E)f so that its Schwartzian derivative
may be readily computed as

(E—-2?%+2
2(E - 1)

-[1 - VEIf

<.

S = -

Finally, applying the projective linear transforma-

N E . .
tion, 4 : E— 1T E’ results in a conjugate

F & Ko foh~! that maps the unit interval into itself
with f(0) = f(1) = 0 and also has a negative
Schwartzian derivative as required by the definition
in Guckenheimer (1979).

a

LEMMA 3. {Fa}Z=. is a full family of S-unimodal

maps.

Proof: According to the definition of Guckenhei-
mer and Holmes (1983, §5.6) we find parameter val-
ues ap, @, such that the critical point is mapped to
itself by f., and mapped to the right end point by
... In energy coordinates, the critical point of fo is
always unity, and f.(1) = a/e. Thus we may take ao
= e¢and @) = .

ad

Following these observations, all further under-
standing of the steady-state behavior of this model
follows ‘‘automatically” from the Singer-Guckenhei-
mer theory introduced in section 3.3. We need sim-
ply study the derivative at the fixed point as the
parameter varies over the physically meaningful
range. For example, when 1 < a < e?, then E* is
asymptotically stable, because f'(E*) = 1 —Ina
When a > e2, then E* is unstable, and a stable
period 2 orbit appears. Each asymptotically stable
periodic orbit has a domain of attraction that
includes all but a set of measure zero in the state
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ace- These observations may be summarized as

hopper model has an

cally stable hopping
2 Ata = e*thereisa

i reation to an lobally asymptotically
stable period 2 hopping orbit that persists for some
mmval of gains followed by a sequence of period-
doubling bifurcations, with essential global asymp-
jotic stability for each periodic orbit in turn.

JEOREM 1. The nonlinear
ntially globally asymptoti

fl<a<e

essentially g

-4.2. The Linear Model
onsider instead the function

f(E) & (VE — W) + i?)

and the transfor

ized-phase-angle-at—end-of—thrust" coordinates

ybh L[y, o — [0, m/2) given by

h~(E) & arctan {\/Ewl— lP[] ,

_ [ :
h(x) = [tan(x) * w’] ’

from (17,

é h"‘1 o f o h
sin(x) exp{B(m — 0}

Il

* In the sequel, it will pro
the composition of simp
defined by the parameter

p & ylin = 0l + Bz>’§+ 8

from (25). To this end, define the projec
transformation,

and note that if

k(u) & arctan° h!

. exp {_23 [ﬂ — arctan (ﬁ)]}

mation to the “normal-

arctan ( (i i) xo B — x)}) ) require E > y? in ord

ve helpful to express g as
ler constituent functions

tive linear

710, 0) — [0, Up) ru— ul(l + pu),

then
g=keg &9 5 gin ¢ expiB(m — O}

LEMMA 4. The conjugate, & is unimodal with nega-

tive Schwartzian derivative.

Proof: Because g is the composition of C* maps, it
is smooth. Note that kis a diffeomorphism between
the intervals [0, 1/p) and [0, =/2]. Thus to establish
unimodality, it suffices to show that £ has single
critical point, C, that is a local maximum.

We have &' = —&° (B — cot (x)); thus
¢ & arctan(1/g) is the sole critical point of £.
Moreover,
g = —glB ~ cot)? + 1/sin?1 <0 22)

sothatcisa local maximum.
To see that g has a neg _tive Schwartzian deriva-

tive, first note that hand h -1 are projective linear
transformations and hence have a 7ero Schwartzian.
Because S(arctan) < 0, it now follows that S(k) <0.

Further calculation shows that

-1
20 5) = T e
(20) S(8) /(cos( ) Bsi ( ))zv Gv,

>

y 2 cos(p) | .
sin(p) |’
21 + 3% 280 ~ B
201 — gy 3T g
ive, because Gisa

and this quantity i always negat
positive definite matrix for all 8. Thus (Singer 1978)
) < 0.

S(g)x) = SKNEW) - (&' ()?* + S

N>

G

In the derivation of (17) it was remarked that we

er for the model t0 be physi-

cally valid, and indeed, the change of coordinates
d above is defined only on that

(20) introduce
domain. Ensuring that the return map, f, preserves
this domain is equivalent tO ensuring that the conju-

gate g preserves the interval [0, m/2). Some neces-

sary conditions for this to be true are given as
@1) lemma7 in the appendiX. Not surprisingly, they will
play a significant role in the final result of this sec-

tion.
Again we see there is an uninteresting fixed point
at0anda second interesting one in the interior

©, w2l

LEMMA 5. The left endpoint,
point of g- In addition, g has
the interval (0, /2],

0, is an unstable fixed
a unique fixed point in
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Proof: To justify the first statement perform the
direct computation, g'(0) = k'(g(0)) - g'(0) =

1 - exp{Bm} > 1. To justify the second statement,
it is convenient to introduce the quotient function,
q(x) £ g(x)/x.

First observe that if there is any additional fixed
point, it is unique: let p denote the least unity cross-
ing of g (i.e., fixed point of g) that is greater than
zero. Because g takes values greater than unity in
some neighborhood of 0, according to the first state-
ment of this lemma, it follows that q'(p) =< 0, and
this implies

0=pq'(p) =¢'(p) - 1,
or g’'(p) = 1. It now suffices to observe that
gu=g~r2_kuog- +k/°g-_g-ll<0’

for easy computation shows that k' > 0, k" < 0,
while g” < 0 is seen from (22). Thus g’ < 1 on

(p, 72), and g can never exceed the identity func-
tion on that interval.

We now demonstrate that at least one additional
fixed point indeed exists. Assume g > 1 on the
interval (0, c]—if not, then the existence of the
fixed point follows by continuity of g—and let r
denote the image of the critical point, r = g(c) €
[¢, #/2]. Note that g(r) < r, because r is the maxi-
mum value of g, and that g(g(r)) > g(r). The latter
is true by hypothesis for g(r) < ¢ and guaranteed
otherwise, as g is monotonically decreasing above c.
It follows that g maps the interval [g(r), r] into itself
and must take a fixed point there according to Brou-
wer’s Fixed Point Theorem. It remains to note that

&(r) = sin(r) exp{B(m — )} >0 = k~'(0),

or, equivalently, g(r) > 0.
a

It is already apparent from the last line in the
proof of lemma 5 that no variation in the parameters
p, B will admit a full family, because g(r) = 0. More
importantly, the constraints imposed on p and 8 in
order to have a physically meaningful model also
preclude the possibility of limit behavior other than
the desired steady-state hopping gait.

THEOREM 2. Every physically valid instance of the
linear hopping model (16) has a single essentially
globally asymptotically stable fixed point.

Proof: Consider the two cases of the fixed point,
p, occurring in the interval (0, ¢) and [c, #/2]. In the
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first case, the arguments of lemma 5 imply g'(p) <
1; hence p is asymptotically stable. Using an argy.
ment identical to the one given in Devaney (1987,
prop. 5.3), it is easy to establish that p attracts a]|
initial conditions except 0.

In the second case, the proof of lemma 5 demop.
strated that [g(r), r] is preserved by g, and lemma 4
shows that g is S-unimodal. Thus after a projective
coordinate transformation from [0, 7/2] to [—1, 1]
that takes c to 0, the hypothesis of Collet and Eck-
mann (1980, prop. 11.5.7) holds, and any asymptot;.
cally stable equilibrium state is essentially globally
asymptotically stable. It remains to show that g'(p)
> —1 in this case. We have

g'(x) = k'(¢(x) - &' (x)

e ()
1+ ("o g)x? \I — pg(x)
 [Man(x) — Blg(x)

_ (h~'° §)’(x)

[1+ (™" 8)(x)] - g(x)

If p is a fixed point of g, then (A~ ' * g)(p) =
tan(p). Substituting above, we obtain

- [1/tan(x) - B].

g'(p) = (cos® + (p — B) cos sin — pp sin?)(p)
> — pB sin*(p)
> —1.

where the last inequality follows from lemma 7 in
Appendix section A.2.

5. Conclusions

We have now solved the problem stated in section
1.2. We have furnished in section 3 (simplified)
mathematical models of the hopping machine with
respect to which the desired behavior is encoded as
an equilibrium state. We have shown in section 4
that two very different instances of these models
evince a unique and stable equilibrium state whose
domain of attraction is almost every state. More sig-
nificantly, we have suggested that there may be
something even more fundamentally ‘‘right”’ about
Raibert’s approach, because it seems to give rise t0
a class of closed-loop systems whose local stability
properties have immediate global consequences.
This same class appears in our analysis of juggling
robots whose controllers borrow from Raibert’s
methods and whose empirical performance displays
similar robustness characteristics (Biihler and Kodit-
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schek 1990). Not surprisingly, however, i.t seems fair
o say that these results raise more questions than
pey answer.
First, the question remains, is our analysis rele-
. qant? This, of course, is not a matter of mathemat-
ics but of whether the trade-offs in modeling
petween accuracy and tractability have been prop-
erly chosen. Is the appearance of the unimodal
return map and its strong global implications a dis-
tracting accident, or is it an intrinsic consequence of
energy servoing methods in dynamical environments
a5 we seek to argue? Recent empirical studies of our
jugeling robot corroborate quite convincingly the
pifurcation phenomena predicted by the theory
(Bithler and Koditschek 1990). However, in the
present study, our two models yield two distinct
conclusions with regard to bifurcation phenomena.
The linear spring model indicates that any physically
meaningful parameter values (e.g., those specified
by lemma 8 that do not permit the model to enter a
regime where the thrust phase occurs simultaneously
with the flight phase) give rise to the desired steady-
state behavior. This would imply that the Raibert
strategy is sufficiently ‘‘robust” that any physically
reasonable choice of controller gains should give
rise to successful hopping. On the other hand, the
nonlinear spring model encompasses the complete
bifurcation diagram of a full unimodal family of
maps. This suggests that a wrong choice of gains—
for example, too high a thrust value, =——may lead to
stable steady-state behavior characterized by
repeated long-high-hop, short-low-hop alternations
as seen in the simulation plotted in Figure 13. In
point of fact, Raibert has reported such “‘limping
gaits,”’> but they seem to be associated with oscilla-
tions produced by higher degrees of freedom that do
" not appear in any of our simplified models. Vakakis
“and Burdick (1990) in their interesting numerical
study of this model have shown that it is structurally
unstable but that bifurcations to period 2 and higher
orbits nevertheless persist under some physically
reasonable perturbations. Thus a much more careful
round of modeling with more systematic attention to
physical realism seems indicated in the present con-
text,
~ Second, and more fundamentally, even if the
_ empirically apparent soundness of Raibert’s
- approach is theoretically explained by the Singer-
: Guckenheimer theory, are we justified in elevating
" the latter to a criterion of design for robotic interac-
 tions with intermittent dynamical environments? On

. 5. Raibert coined this phrase in a personal communication with
the authors,
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Fig. 13. “A limping gait’’: simplified nonlinear spring
model with a stable period 2 orbit.

the one hand, it seems to require exactly integrable
dynamics. On the other hand, it is at present an
intrinsically one dimensional theory—that is, its
direct relevance is limited to one-degree-of-freedom
mechanical systems. We plan to address exactly
these questions in future work in this area.

Appendix: Details of the Linear Spring
Model

A.l. Details of the Return Map Derivation

While in stance, except for the thrust phase the hop-
ping model is governed by the time-invariant linear
system

dix|_Jlx]. 4= 0 1
dz[x] “A[x]’ A‘[—wZ(HﬁZ) —ZwB]'

In order to integrate the linear spring system, we
will find it convenient to introduce the following lin-
ear change of basis,

i P
2
we| VTP VTEF

R

to the real canonical form (Hirsch and Smale 1974,

Theorem 6.4.2):
_B 1
v [ i B] |

In the new system, we may define the “‘pormal-

AL WAW! =
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ized energy’’ to be
E £ [y, ]Ww™W m

and the *‘normalized angle’’ to be

2y~ 172
6 £ arctan <w(1 " 3253/2: f )B(l ;\: Bz)_m)_{) ,
yielding the normal polar coordinate system
E = —2wpE
b= -w
whose solutions may be parameterized by 6 as
E(6) = E(60) exp{2B[6 — 6,]}. (23)

Direct integration shows that

(X: X)et = (_be 0) + (Xl’ Xt)
where

X — T 2w,68 — (1 — e—ZBS)
[*'] ) W[ wB(1 — ¢~2089) ] (24)

In the normalized energy coordinate system we have

(/{t & Xt

M W [x]
- | (o + B2y, + B + B~ "x) 25
= (1 + B "5, - @)

LEMMA 6.  If the thrust time, §, is sufficiently small
then

Xi'/x < 8.

Proof:  Using the expressions from (24) we obtain

Xt _ i 2wd ]
X @B \1 — exp{—2wps} '
Now, assuming a sufficiently small 8, the expo-

nential term in the above equation is approximated
by the truncated Taylor series

exp{—2wB8} ~ 1 — 20886 + 2?3282
and thus

X 1
< 1
S 1 — wps

A.2. Analytical Details

LEMMA 7. For g to map the interval [0, 72] into
itself it is necessary that p < 1 and hence both
wx./x; < 1land B < 1.
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Proof: The image of k is exactly [0, #/2]; thus the
conclusion that g preserves this interval follows
from a demonstration that the image of g is con-
tained within the domain of k—that is, we require
g(c) = 1/p.

Because sin ¢ = (1 + 82)='2, we have

g(c) = (1 + B2 exp{B(m - arctan(1/8))}
>(1 + g~ 2 exp{Bn/2}

o L+ Bm2 + p*w*8
(1 + B2)]/2

> 1,

and it follows that p must be less than unity. How-
ever, because

P = Ul = w(B + D-(xli) + B

from (25), it follows that both B and wy,/y, must be
less than unity as well,

a
COROLLARY 8. For g to map the interval [0, #/2]
into itself it is sufficient that
B i
< . < ———
2Bexp{nB} <1; & T+ P (26)

Proof: As demonstrated in lemma 7, it will suffice
to show that g(c) < 1/pis a consequence of these
conditions. As in that lemma, we have

g(c) = (1 + B*)~"2 exp{f(m — arctan(1/B))} f
< exp{Bm}.
On the other hand,
p<o(l + B85+

when § is small according to lemma 6. Thus for 1 >
£(c)p, it would suffice that

B + 1
B

1> Bexp{Bn} [ dw + 1] ,

and this follows from the hypothesis that gives

B+ 1

dw + 1] < 2B exp{pw} < L.

B exp{Bm} [
0
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