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This paper presents a discrete-time Geo/G/1 retrial queue with two waiting buffers to model an ATM network, in which the server
begins a single vacation in cases where the system is empty at the instant of a service completion. New arriving customer who finds
the server being on vacation can decide to either enter the retrial buffer with some probability p or leave the system with
complementary probability 1 — p. But the new arriving customer can begin its service immediately if he finds the server idle and
join the original buffer if he finds the server busy. We first carry out an extensive analysis of the model by using the supplementary
variable method and the generating function approach, and give some performance measures, such as server’s state probabilities
and mean queue lengths in the original buffer, retrial buffer, and in the system. Secondly, we give the generating function of the
sojourn time of a customer in the system and prove that Little’s law still holds in our model. Sensitivity analysis and cost

optimization are finally given for illustrative purposes.

1. Introduction

L.1. Motivation. In this work, we consider a discrete-time
retrial queue based on ATM networks. In ATM networks,
the basic time unit is a binary code, all information units are
transferred through the network in fixed size units, called
cells (also called as “customers” in queueing terminology),
and each cell contains 48 bytes of user information and 5
bytes of header. Therefore, discrete-time queueing models
are more realistic models which include the discrete-time
nature and other basic properties of the ATM cell, and
readers are referred to Bruneel and Kim [1], Takagi [2],
Ramaswami and Wang [3], Walraevens et al. [4], and ref-
erences therein.

In daily life, two phenomena in ATM networks often
occur: one is the retrial phenomenon, which often occurs
because of the repeated requests for establishing a commu-
nication channel (called as “server”) between nodes and the
repeated sending of unsuccessfully received cells; the other
is the vacation phenomenon, because sometimes the

communication channel in ATM networks needs to be
closed for some time (called as “vacation”) due to lack of
work, which aims to utilize the idle times for different
purposes. For example, computer maintenance and testing
and economizing operating cost are being assigned to do
a secondary job and so forth. However, the arriving cells are
often affected by the server vacation in ATM networks.
When the server is on vacation, some arriving cells may
temporarily leave the service area and are stored in a retrial
buffer (called as orbit), where they can repeat their attempt
to connect with the server some time later according to
a specific retrial policy, and some nonpersistent arriving cells
may leave the system forever and seek services elsewhere.
Therefore, in such situation, the retrial phenomenon is
incurred by the server’s vacation. Based on the above
characteristics of the ATM networks, we mainly focus on
investigating the performance measures of such a discrete-
time ATM network with vacation and two waiting buffers:
original buffer and retrial buffer, in which the arriving cells
can begin their services if they find the server idle or are
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willing to join a waiting queue in the service area (called as
an original buffer) if they find the server busy. However,
when the system becomes empty, the server goes on a va-
cation, and some arriving cells either leave the system due to
the urgent messages to be transmitted or are likely to enter
the orbit to seek service later.

It should be noted that one of the motivations of this paper
stems from the interesting mathematical property and its
distinction from other retrial queues and vacation queues. The
other motivations are its applications in the ATM networks.
The advantages and contributions of this work are as follows:

(i) Model. A novel ATM network retrial queue is
presented. A discrete-time Geo/G/1 retrial queue
with server vacation and two waiting buffers is
applied in the ATM network. This model is more
suitable for reflecting the characteristics of in-
formation transmission and performance analysis
for ATM networks.

(ii) Methodology and Results. We adopt the supple-
mentary variable method to have a Markovian
system and use the generating function approach to
obtain the performance measures of the system and
the sojourn time distribution. Little’s law is proved
to be true in our model.

(iii) Numerical Illustrations. Sensitivity analysis and cost
optimization are included in this work for illus-
trative purposes.

1.2. Related Works. Since the pioneering works published in
1950s, retrial queues have been extensively studied and used
to stochastically model many problems in telecommunica-
tion, computer networks, and telephone systems. A good
survey of results and fundamental methods in the area of
retrial queues can be found in the books, for example,
Falin and Templeton [5] and Artalejo and Gomez-Corral
[6]. The papers of Artalejo [7, 8] presented a classified
bibliography of the work on retrial queues, respectively, in
the decades 1990-1999 and 2000-2009. Similarly, Gomez-
Corral [9] provided a bibliographical guide to the use of
matrix-analytic techniques in retrial queues. Kim and Kim
[10] dealt with a survey on various continuous-time retrial
queueing models, in which they presented analytic results
for queue length distributions, waiting time distributions,
and tail asymptotics for the queue length and waiting time
distributions and considered the stability analysis of re-
trial queueing models. Recently, motivated by a conten-
tion problem in the downlink direction of wireless base
stations in cognitive radio networks, Gao et al. [11]
presented a repairable M/G/1 retrial queue with the
Bernoulli schedule and a general retrial policy. By using
the solution of a Riemann boundary value problem,
Dimitriou [12] derived the generating function of the
stationary distribution of the number of orbiting cus-
tomers at service completion epochs, and he also gave the
explicit expressions for the expected delay in an orbit
without solving a boundary value problem. In the study of
the continuous-time retrial queueing models, the Markov
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process is the main mathematical tool. About more works
on the Markov process, readers are referred to Dai et al.
[13], Shen et al. [14], and Shen et al. [15].

The study of the retrial queues was mainly focused on the
continuous-time. However, it is more realistic to use the
discrete-time queues to model telecommunication networks
and computer systems.

Over the past decades, Geo/G/1 queues and Geo/G/1
retrial queues with a variety of vacation policies have
been well developed, such as Takagi [2], Zhang and Tian
[16], Gao and Wang [17], Wang [18], Wang et al. [19],
Yue and Zhang [20], Luo et al. [21], and Wang [22, 23]
(not exhaustive list). However, most of these vacation
queues deal with the case of single waiting queues; i.e.,
there is only a waiting queue in the service area in the
Geo/G/1 queue or an orbit waiting queue in the Geo/G/1
retrial queue. However, it is not the case in daily life. We
often see that the waiting queue in the service area and
the waiting queue in the orbit may exist simultaneously,
for example, in ATM networks. The works on continu-
ous-time retrial queues with two waiting buffers with
different characteristics (such as finite or infinite waiting
buffer, unreliable server, and constant retrial or general
retrial policy) can be found in Krishna Kumar et al. [24],
Do [25], Falin [26, 27], Sherman and Kharoufeh [28] and
Gao et al. [11], and references therein. However, the
discrete-time retrial queues with two waiting buffers have
not yet received much attention. It should be remarked
that an excellent and complete study on discrete-time
queueing system with two waiting buffers was presented
by Liand Yang [29], in which an arriving customer either
joins the waiting space with probability a in the service
area or enters the orbit with probability @ =1 -« if he
finds the server busy upon arrival. Enlightened by the
previous works and the applications of discrete-time
retrial queue in the ATM networks, this work is devoted
to present the performance analysis of a discrete-time
retrial queue with server vacation and two waiting
buffers. Remarkably, the models are different in Li and
Yang [29] and Gao et al.” study [11]; on the one hand, we
consider the case that the customers arriving during the
server busy period always join the waiting buffer in the
service area; i.e., these customers are willing to wait in the
service area for their services but not to choose to retry
after some time later. On the other hand, the customer
who arrives during the server vacation period either joins
a retrial buffer with probability p or leaves the system for
ever with probability p=1-p. To the best of our
knowledge, so far, no work has been done on studying the
discrete-time Geo/G/1 retrial queue with server vacation,
two waiting buffers, and general retrial times by using the
supplementary variable method and generating the
function approach.

The outline is as follows: In Section 2, the mathematical
model is introduced. In Section 3, a detailed analysis of the
queueing model is presented. In Section 4, the sojourn time
analysis is worked out. In Section 5, sensitivity analysis and
cost optimization are given. In Section 6, conclusions are
provided.
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2. Model Description

We consider a discrete-time Geo/G/1 queue with EAS (early
arrival system, see Takagi’s study [2] for details), in which
there are two waiting buffers in the system: one is the original
buffer in the service area and the other is the retrial buffer
(called as orbit), and the server can take a single vacation.

Specifically, let the time slots be numbered by t =0,
1,2,.... A potential external customer arrives within the
interval (t,t*) just after the beginning of slot f, and a po-
tential service completion occurs within the interval (¢, t) just
before the beginning of slot . We assume that the single va-
cation policy is taken by the server; that is, if the system be-
comes empty after a service completion, the server leaves for
a vacation with random length V. When the vacation ends, the
server immediately becomes available until the system becomes
empty after a service completion once again. The vacation
begins at the slot t* after a service completion with no customer
staying in the system and ends at the slot ¢. If the arriving
external customer finds the server busy or idle, he immediately
joins the original buffer under first-come, first-served (FCFS)
discipline or begins his service. Otherwise, if the arriving ex-
ternal customer finds the server being on vacation, he enters the
orbit with probability p or leaves the system forever with
probability p = 1 — p. The customers in the orbit can access the
server according to the FCFS schedule when the original buffer
is empty and the server is idle. Various time epochs at which
events occur are shown in Figure 1.

Thereinafter, we denote X = 1 — x for Vx € (0,1). The
detailed model description is as follows:

(1) Independent and identically distributed (ii.d.)
interarrival times with generic random variable
A f(l)llow the geometric distribution P(A =k) =
AL, k=1;ie, A is the probability that there is an
arrival in each slot and A is the probability that no
customer arrives in each slot.

(2) The service times are i.i.d. random variables with
generic random variable B, probability mass function
(p.m.f.) P(B = k) = by, k>1, probability generating
function (p.g.t.) Gz (z) = Z,‘ﬁlzkbk, and j-th factorial
moments ¢4, j = 1, 2. The server can handle only one
customer at a time according to the FCFS discipline.

(3) The vacation time V follows general distribution
with pmf. P(V=k)=v, k=1, pgf G,(z2)=
Y52 2k, and j-th factorial moments v j=12

(4) Only the retrial customer at the head of the orbit can
access to the server if he is idle and the original queue
is empty. Successive interretrial times are i.i.d.
random variables with generic random variable R;
pmf. P(R=k)=r,, k>0, and pgf Gyp(z)=
Y202 1

(5) Interarrival times, service times, vacation times, and
retrial times are mutually independent.

Remark 1 (special case). When the vacation time V takes
fixed value 1, the model is changed to the standard discrete-
time Geo/G/1 queue.

3. Analysis of the System

For the discrete-time retrial queue considered in this paper,
we are chiefly concerned with some performance measures:
server’s state probabilities, numbers of customers in the
original buffer and retrial buffer, busy cycle, and sojourn
time. However, our discrete-time retrial queueing model is
not a Markovian queue. Thus, in this section, we introduce
some supplementary variables (including the remaining
retrial time, the remaining service time, and the remaining
vacation time) to make the queueing model Markovian and
set up a set of Kolmogorov equations satisfied by the sta-
tionary distribution of the system. Based on this, we obtain
these important performance measures.

At time t*, the state of the system can be described by
the Markovian chain X (¢) = {(N, (), N, (¢),U (¢), ] (£))},
(t >0), where J(t) denotes the state of the server, where

0, theserverisidleattimet*,
J#®) =41,

2, the serveris onvacation at timet*.

the server is busy at time t*, (1)

N, (t) denotes the number of customers in the original
queue (excluding the one in service); N, (f) represents the
number of customers in the orbit; U (¢) is a supplementary
variable, which denotes the remaining retrial time when
J(t) = 0 and N, (¢) >0, or the remaining service time when
J(t) = 1 or the remaining vacation time when J (t) = 2.

The state space of the Markov chain {X(t),t>0} is
{(0,0)} U {(ny,u,0),n,> Lu>1}U{(ny,ny,u,1),n,n,>0,u
'>1}u{(ny,u,2),n,>0,u>1}, where the state (0,0) de-
notes that the server is idle and the number of customers in
the orbit is zero; the state (n,,u,0),n,>1,u>1, indicates
that the server is idle, n, customers are in the orbit, and the
remaining retrial time is u; the state (n,,n,,u,1),n,,n,>
0,u>1, represents that the server is busy, there are n,
customers in the original buffer and n, customers in the
retrial buffer, and the remaining service time is u; the state
(ny,u,2),n, >0,u>1 denotes that the server is on vacation,
n, customers are in the orbit, and the remaining vacation
time is u.

Our first goal is to find the stationary distribution of the
Markov chain {X(t),t>0} under the stability condition
p=Au <L

Moo = lim P(N, (1) = 0,](t) = 0),
ﬂnz,u,o = tBnOOP(NZ (t) = nsz(t) = u,](t) = O);
n,>1,u>1,

lim P(N,(t) = n, N, (t) =, U(t) = u, J () = 1),

—00

”nl,nz,u,l = ¢

n 20,n,20,u>1,
Mz = Jim P(Ny(8) =, U(8) =u, ] (£) = 2),
n, >0, u>1.

(2)

For the stationary distribution of the system, the Kol-
mogorov equations are as follows:
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(t+1)” t+1 (t+1)*

D

¢ :potential arrival epoch

A\ :retrial epoch

U — %

* : potential departure

O : beginning of vacation @ : ending of vacation

FIGURE 1: Various time epochs in an early arrival system (EAS).

oo = XT[O’O + XTL’O’I)Z, (3)

nnz,u,O = A(77'—712,u+1,0 + ruﬂO,nz,l,l + ru”nz,l,z)’

(4)
n,>lu>1,
_ o0
Mot = O 0AbuTT0 0 + by | ATy iy 10+ A Z Tl i0
i1
+ bu(/\ﬂo,nz,l,l AT 00+ lroﬂo,nzﬂ,l,l)
+ A0, w1 + by ()”Tnz,l,z + )‘roﬂnzﬂ,l,z)»
n,20, ux1,
(5)
nnl,nz,u,l = A7Tr11,1'12,14+1,1 + A7.[711—1,712,144-1,1
+b, (Aﬂnﬁl,nz,l,l + A”nl,nz,l,l)) (6)
n=21n20uxl,
T = On MVuTlop 11 + AP, i1 )

+(1= 8, AP, tpir M 20, u21,

where §, (=0ifn,>1 or 1 if n, = 0.

To obtain the performance measures of the system and
analyze the sojourn time of an arbitrary customer, we define
the following transforms:

(e8]
Hu,O (ZZ) = Z zgznnz,u,O’
n,=1
(o]
Iy (x,2,) = Z xunu,o (22)s

H ZI’ZZ) - Z z Zl ZZ 1y,1,,U,1>
1n,=0n,=0 (8)
I, (x,2,2,) = Z quu,l (z1,22),

u=1

ul(zz) - Z Z2 1,127

m=

I, (x,2,) = Z xunu,z (2,)-
u=1

Based on (3)-(7), we will derive the expressions of
IT, (x,2,), 11, (x,2,,2,), and I1, (x,2z,) from simple to
complex.

Firstly, multiplying (4) by x* and z,* and summing over
u and n,, we obtain

-1 -
2y (6.2) = (G (0 = 1) (T (22) + 1Ty, 0,2,)

_(”0,0,1,1 + 7To,1,2)> - an,o (2,)-

9)
Taking x = A yields that
(GR () - ”0)<H1,2 (z,) + 1111 (0, 2,)
(10)
_(”0,0,1,1 + ”0,1,2)) =114 (2,).
Combining (9) and (10), we have
x  Gp(x) -Gy (/\)
I1 s = — 11
o(x.25) -1 GR(A)— MI, 4 (2,). (11)
Secondly, it follows from (7) that
x —(Ap +Apz _
%Hz (x,23) = AGy (%)m0,1,1
_(E + Apzz)Hu (22)-
(12)
Letting x = 1p + Apz, in (12) leads to
Gy(Ap+A
(e = PP,
Ap+Apz, o

Inserting (13) into (12), we have that

Gy (x) - Gy(Ap +1pz,) -

I, (x,2,) = —(E " /lpzz) XATg 01 ;- (14)

Thirdly, from (5) and (6), we have
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) 2y022) = (G 0 o1 1

— X 1\X%21,2, —E B\X) (21 (12, (7T
+11,, (2,) + Ty (1, 2,))
+ XHI,O (z,) + Arg (IT;,1 (0, 2,)

+11, 5, (25) = (o011 + 70,1.2)))

~ 12,1111 (0,2,)) — 2, (A + Azy)

(21 - Gp(0))IT,; (ZI’ZZ))'
(15)
Putting x = A+ Az, in (15) leads to
z, -Gy +1z))

zz(/l + /\zl) GB(X " /\zl) 11, (21, 2,)

= Z1(AZ2(”0,0 +11,(2;) + 10, (1>Zz)) (16)

+ XH1,o (z,) + X"0 (T, (0,25) + 11, 5 (2)

= (mo011 + ”0,1,2))) - 12,11, (0, 2,).
Following from (15) and (16), we obtain that
x—(X+1z) Gp(x) - Gy(A+1z,)
GB(X + )tzl)

11, (x,21,2,) =

. (X + )lzl)HL1 (21,2).
(17)
Now, we derive the expressions of II,;(z,) and

I, , (2}, z,), respectively, from (11) and (17). Letting z, = 1
in (16), we can get

XZznl,l (0,2,) = Az, (15 + 111 5 (2,) + 11 (1, 2,))
+ A0, o (2,) + Aro (11, (0, 2,) (18)
+1015(2,) = (o110 + o12))-

Combining (16), (17), and (18) yields that

~-(A+2A
Mnl (x’zl’zz)
A+ 1)
G -G -1)_
:( 5 ()= G ! ) 1))mu(o,zz).
z, —GB(A +Azl)
Taking x = 1 in (11) leads to
M1-Gr (1)
I, (1, 2,) = ( & )H1,o (22). (20)

MGrL) = 1)

Moreover, combining (3), (10), (13), (18), and (20) leads to

I, (0,2,) + 11, (2,) _(”00,1,1 + ”0,1,2)

2,

) (X”o,o,u -1, (Zz))

Gy M (1 -z, (21)
_ z, I_GV(/\_p+Apz2) .
Gr V) (1 -2z,) Ap + Apz, 0oLl
Then, from (10), (11), and (21), one can have that
Ggp(x) - Gr (A
- 2LOH0-G)
x=-1 Gr(M)(1-2,)
- (22)
Gy(Xp +1pz,) \<
. 1 I ——— )LHO)O)LI.
Ap +Apz,
Letting z, = 0 in (13) leads to
Gy (Ap) ~
o1, = 11, (0) = V/l(pp) ATto0,1,1- (23)

Substituting (13) and (23) into (21), we can obtain

XGV(E)+<1 _GV(EMPZZ))

I1 0, =11 — —~
11(0:2,) [+ p Ap + Apz,

2z, +AGR () (1 - zz)}
: = 70,0,1,1
GrM(1-2,)
(24)
Inserting (24) into (19) yields that

X

I, (%, 21, 2,) =m
1

(Gp(x) —Gy(A+1z,)) (2, - 1)
z, - Gy(A +1z))

—Go(hp Gy(Ap+2A
X )L+)LGVEP)+ 1- V(_p+ pzz)
Ap Ap +Apz,

2+ G () (1 - Zﬂ]x
GR(X)(I—ZZ) 770,0,1,1
(25)

From (14), (22), and (25), we should find the probability
Ty,1,1 to obtain the expressions of IT, (x, z,), IT; (x, 2, 2,),
and IT, (x, z,). From (3) and (23), we know that

T %G, 0p)

oo = X”o,l,z = 1 E

To,0,1,1- (26)



Using the normalization equation 7y, + 11y (1,1)+
IT,(1,1,1) + II,(1,1) = 1, we obtain that

o011 = K (27)

where K= X[(A/A)(Gy (Ap)/Ap) + ((1 = Gx(1))/Gr (W)p
(v1 = D+ (p/ (1 =p))(1+ (MA(Gy(Ap)/Ap) +p (v, = DIGy
D)+ 7,].

Summing the above results, we have the following
Theorem 1.

Theorem 1. If p <1, the joint distribution of the number of
customers in the original buffer, the number of customers in
orbit, the remaining retrial time, the remaining service time,
and the remaining vacation time and the server state, is
determined by its transform as follows:

G 0p)

— >

T,
0,0 /\ /\P

b zz(GR(x)_GR(X))
x-1 GrM)(1-z,)

. <1 - —G"(E +1pz2) >XK,

Ap +Apz,

I, (x, 2,) =

X

IT, (%, 21, 2,) :m
1

(Gp(x) - Gp(1 +1z,)) (2, - 1)
z, - B(X + Azl)

x |:A+17GV(AP)+ <1

B Gy(Ap +Apz,)
Ap

Ap +Apz,

2+ MG (M (1 —zz)]/\K
Gy (X)(l ‘Zz) ’

Gy (x) - GV(E + )tpzz) K

(o) = v apey)

(28)

Letting x =1 in Theorem 1, we have the following
corollary.

Mathematical Problems in Engineering

Corollary 1. The expressions for the partial generating
functions when the server is idle with nonempty orbit, busy,
and on vacation, respectively, are as follows:

Gy(Ap+ 1
no(l,zz)zlizz <1_ v/\(_P+ P22)>
2 p+Apz,

(1-GxM) 2K
Gy(H) A’

1-Gy(1+1z))
Gy(A+1z,) - 2,

. [A+XGVEP)+<1
Ap

I, (1,2}, 2,) =

) Gy(Ap +Apz,)
Ap +Apz,

At AGr (1) (1 - zz):|’_\_K
Gr(M)(1-2z,) A’

1 —GV(EHLpZZ)_K
Ap(1-2,)

I, (1, 2,) =
(29)

In the following subsections, we give some performance
measures of our queueing system.

3.1. Steady-State Probabilities of the Server. The steady-state
probabilities that the server is idle, busy, and on vacation,
respectively, denoted by P;, Py, and Py, are given by

AGy(Ap) 1-Gr(A) -
PI=7To,o+1—[o(1>1)=[)L Vﬁp + GR(RD P(Vl_l)]/\K,
_ _ GyGp)  Ap g
PB—HI(I,I,I)—I_ </\+A ¥ +GR(X)(7/1 1) JAK,

Py =11, (1,1) = »,AK.
(30)

3.2. Mean Number Customers in Original Buffer and in Orbit.
Let L, ; be the mean number customers in the original buffer
when the server is in state 1 and L, ; be the mean number
customers in orbit when the server is in state j, j =0,1,2;
then, from Corollary 1, we have that
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M
z,=1,z,=1 2(1- P)2

0
Ly, =$H1 (Lz1,25)
1

' (A +/\G‘i/\p) .\ Ap

e

d — A
=it {5020
1-G, (M) -
Gr(M)
9 p P
L =_H 1,Z ,Z = —
| I YNy

. A _
. (()Lp -G ) (v, - 1) + TPvZ)/\K,

d Ay —
L,, =—I1,(1,2,) = TP%M{-

dz,

z,=1

Let L, be the mean original buffer size. Since no cus-
tomers exist in the original buffer when the server is idle and
on vacation,

L =L, (32)

Furthermore, let L, be the mean number of customers in
the orbit:

Ly=Lg+L; +L,,. (33)

The mean total customers in the system including the
one in service if any, denoted as L, can be obtained by using

L,=L, +L,+Py (34)

3.3. Busy Cycle Analysis. Let ® be the time between two
consecutive vacations, which is called a busy cycle, T, T,
and T}, respectively, be the time periods during which
the server is on vacation, idle, and busy, then O =
Ty +T;+Tg. Using the alternating renewal theory, we
have that

E[Ty] 7 -
Ef0] - E[0] P, = 7,AK, (35)
which leads to
1
E[®] = =—. 36
(0] 3 (36)

Furthermore, we obtain that

7

AGy(Ap) 1-Gr(A
E[TI]=E[®]P1=X V;—pp) G (RX()) (n-1),
R

=G, (Ap

E[Ty] = E[1Py = {1+ V;—p‘”) G ))

R
(37)

4. Sojourn Time Distribution

In this section, we consider the distribution of the sojourn
time in the system of a test customer (TC). Let T be the TC’s
sojourn time with p.gf. Gy (2) = Y50 z"P(T = k), which
begins from the TC’s arrival epoch to the TC’s departure
epoch.

To derive the expression of G (z), let D be the busy
period in the standard Geo/G/1 queue, which begins at the
epoch when one customer arrives and finds the server idle
to begin his service immediately and ends at the epoch
when one service is completed and the server becomes idle
again. From Tian et al. [30], we know that the p.g.f. G, (2)
of D satisfies Gp(z) = Gz(z(A+AGp(2))) and E[D] =
th/l=p.

Theorem 2. Ifp <1, the expression of the p.g.f. Gy (z) can be
given by

Gr(2) = p(Py - 10,,(1)) + G (2) [PI +11,, (1)

+</\+AGV7(AP)+A—I)

¥ G M (v, - 1))w(z) (38)

+p(X+1Gp (2))E(2) (v (2) - ¢(z))]11<,

where

: Gp(z) -1
wl(z) = z —(X +AGy (z))’

_ Gy (Az)
=T “12)(1- G (12))Gp (2)
7(2) = &£(2)Gp (2), (39)
v(z) = Gy (z) - i, (Ap +Apt(2))

z—(Ap +Apt(2))
6(2) = Gvilp + Apr(z)).
Ap +Apt(2)

Proof. Assume that the TC arrivesin (t,t"), according to the
state of the system at time (f —1)7, we have that



Gr(2) = lim P(N,((t-1)")=0,7((t-1)") =0)Gy(2)

+ Z Z lim P(N,((t=1)") =m,U((t-1)") =

011
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L] ((t-1)") =0)Gg(2)

+ Z lim P(N,((t=1)7) = m,U((t= 1)) = L] ((t=1)") = 2)Gy(2)

n,=0

+ Z Z Z lim P(Nl((t—l) Y=np Ny (=D =np, U((t=1DY) =4, ] ((t-1)") = 1)z (G (2))""!

n;=0n,=0 i=1

+p lim Z ZP(NZ((t— D) =nm,U(t-1)") =i J((t-1)")=2)

n,=0 i=2

+p Z Z lim P(N,((t=1)") =m,U((t-1)") =i, J((t-1)") =2)2"'T, (2)

n,=0 i= 2

=Gy (2)(P +10,,(1)) +

Gg(z)
z

where T,, (with p.g.f T, (z)=E [z7%]) denotes the sojourn
time of the TC who is in the (1, + 1)-th position in the orbit,
which begins at the epoch when the server completes his
vacation and ends at the epoch when the TC leaves the
system. O

In the following, we finds the expression of T, (2).
Assume that the vacation ends at the epoch n, considering
whether an external customer arrives or not, we have the
following.

Case 1. If there is an external arrival in the time interval
(n,n*) (with probability 1), the server will begin a busy
period with length D, and then the customer at the head of
the orbit can immediately begin retrying to access to the
server. Let T (w1th p.g.f. T ,(2)) be the sojourn time of the
TC who is in the (n, +1)- th position calculating from the
epoch when the customer at the head of the orbit begins
retrying to access to the server to the epoch when the TC
leaves the system. In this case, we have T, =D + Tn2~

Case 2. If no external customer arrives in the time interval

(n,n*) (with probability 1), then the customer at the head of

the orbit immediately begins retrying to access to the server.

In this case, we have T, = T
Then,

ny°

T, (2) = A+ AD ()T, (2). (41)

However, for TO, in this case, the TC is in the first
position of the orbit, there exists two cases: one is that if the
next external customer arrives later than the TC does, then
T, equals the sum of the retrial time and the service time of
the TG, i.e, Ty = R + B; the other is that if the next external

I1, (z, Gy (2),1) + ﬁ(PV -

00 00
i-1 T
2. ) ia? B[22,

n,=0 i=2

I, (1)) +

[Nlas

(40)

customer arrives earlier than the TC does, then after a busy
period with length D, the TC begins accessing to the server
again; thus, Ty = A + D + T,, where T, has the same dis-
tribution as T, and A, D, and T, are independent random
variables. Thus, we obtain that

T, (2) = Zrk)tzGB(z)+Z/\ AZrzGD(z)TO(z)

m=k

= Go (121G (2) + (1 - Gy (12))G (2,

(42)
which leads to
G (A2)Gy (2)

T,(z) = - = :
o) = s 12)(1 - Gr(12))Gp ()T, (2)

(43)

Similarly, for Tnz)”z >1, conditioning on whether the
next external customer arrives earlier or later than the
customer at the head of the orbit, we have

~ Xk ~
T, (2) = Y nd 2Gp ()T, ,(2)
k=0

+ i PR i ru?Gp (T, (2)

k=1 m=k (44)

= Gy (A2)Gp ()T, (2) + .

- (1-Gr(12))Gp ()T, (2),
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which yields that
T, (2) = 1(2)T, _, (2). (45)

It follows from (41)-(45), and we can obtain

n,+1Gg (2)
Gp (Z)’

T, (2) = (1(2))

(46)
ny+1 GB (Z)

T,,(2) =(A+1Gp (2)) (z ()" 5 @
D

Substituting (46) into (40) leads to
Gr(2) = p(Py —10,,(1)) + Gy (2) [p, +11;, (1)

R (z,Gp(2),1)
z

IL, (2,

By equation (13) and Theorem 1, the above equation can
be changed as

+p(1+1Gp(2)E(z)  (47)

Gr(z) = (PV le(l))+GB(z)|:PI+H12(1)

+<A+M+A_P

" G M (v, - 1)>w(z) (48)

+ p(X+1Gp (2))E(2) (v (2) - ¢<z)>]u<,

which completes the proof of Theorem 2.

Using Theorem 2 and Gp (1) =Gp(1) =&(1) = 7(1)
=1L w(l) = (u/1-p),w(l)—¢(1) =v, — 1, we can obtain
the mean sojourn time in the system of an arbitrary TC as
follows:

d
=—Gyp (2)

E(T) i

z=1

(1 - pP, +PH12(1)) dGB(Z)

+)LK[</1 +)LGV (Ap) + Ap

d
PG (”1_1))&2“’(2)

z=1

d d
+ P(AdeD (2) - +&f(z)

d
+ p(a

z_1>(‘”“)‘¢“”

)

d
z=1 _& ¢ (Z)

(49)

After some laborious calculations, we have

dz -1 2(1 —p)z)

d _ l Uy
&f(z) —( +

4o _<+ ) _1
AR MR U Ty PRy T

d v [ _
d—Z‘V(Z) _ =—2(P+P

d
E‘P(z) o =p(v - 1)(

1
- = l .
(1-p)Gr (1) )

Inserting the above equations into (49) leads to

- T [z
E(T) =m(1 —PPV+PHL2(1))+M<L(1 _zp)z

.<A+AG\iAp) Ap (v, )>
Ap Gr()

. p
+p2(p+(1—p)GR(A>)

+p(v, — 1)(1 —

1
- 4__1 .
P((l—p)GR(A) ))]

Here, we can verify that
Py !41 1 A Gy (E)
—== +- =
A1 A Ap

GR ()L (v - 1)>)LK

= !‘1( - pP, +pll;, (1))
L, u

A 2(1-p)?

L+<l+ H )( 1
p \1 1-p)\Gy (D)

(50)

)

(51)

Ap GR(A)(1 )) o

Lyg+Ly; + 1Ly, P
B > e _1
A p{(vl )(1_p

(1 1 )( : 1)
A l—P GR(/\)
( 1 1))
(1 P)GR(/\)

+ % (ﬁ + %)]XK.
2\ (1-p)Gr ()

(52)
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Therefore, we obtain that

Pp+ L +Lyg+ Ly, +Ly, L
A A

which shows that Little’s law holds for our discrete-time Geo/
G/1 retrial queue with sever vacation and two waiting buffers.

E(T) = (53)

5. Sensitivity Analysis and Cost Optimization

In this section, we present some numerical examples to show
the effect of some parameters on performance measures of
the system (i.e., sensitivity analysis) and the optimization
problem based on a given cost structure. We assume that the
arrival rate A = 0.45, service time follows a discrete phase-

0 1/3
y, = 5/3, and p = 0.75. The retrial time R follows a discrete
phase-type distribution PH,(j3,S), B = (1/5,4/5), andS =
172 0
0 3/4)
In the following subsection, we first give the sensitivity
analysis based on the above results.

type distribution PH,, (&, T), a = (1/3,2/3), T = ( 12 0 )

5.1. Sensitivity Analysis. Considering different distributions
of vacation time V, respectively, with deterministic distri-
bution with p.g.f Gy, (z) = z” and negative binomial dis-
tribution with p.g.f Gy (2) = (vz/(1 - vz))?, we present the
effect of D and v on Py, E[T], and E[®] for different values
of p, respectively, in Figures 2-4 and in Figures 5-7. Some
findings are given as follows.

(1) If p =1, Py takes the fixed value no matter what
distribution the vacation time follows, which is be-
cause when p =1, all customers who arrive at the
system during the vacation period enter the orbit and
no customer is lost, and the busy probability Py is the
same as that in the standard Geo/G/1 queue, i.e.,
Py =p.

(2) Figure 2 shows that when D = 1, the value of p has
no effect on Py, E[T], and E[®], i.e., Py, E[T], and
E[®], respectively, take fixed values, which are
corresponding to the busy probability, mean sojourn
time, and mean busy cycle in the standard Geo/G/1
queue.

(3) Py, E[T], and E[®] are increasing as p increases
given that vacation time (i.e., D or v) is fixed and is
larger than 1. The reason is that as p increases, more
customers who arrive during the vacation period
enter the orbit, which leads to the increase in busy
period and thus makes the server’s busy probability,
mean sojourn time of the TC, and mean busy cycle
increase.

(4) Under given p, Py is decreasing as mean vacation
time increases, but E[T] and E[®] are increasing as
mean vacation time increases, which agrees with our
expectation.

Mathematical Problems in Engineering

0.7

0.68

Py 0.66
0.64
0.62

0.6

—%— p=0.15
—A— p=035

—— p=0.65
-6 p=1

F1Gure 2: Effect of D on Py for different p values.

13 T T T T T T T

D
—%— p=0.15 —— p=0.65
—A— p=035 ——p=1

FiGure 3: Effect of D on E[T] for different p values.

5.2. Cost Model. In the sequel, we will discuss the optimal
vacation length under a given cost assumption because
determining an optimal policy to achieve the minimum
cost is very important in queueing theory. For the discrete-
time Geo/G/1 retrial queue with two waiting buffers and
a fixed vacation time, we consider the cost elements as
follows:

Ch1 = unit time cost of every customer in the original
buffer
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250

200

150

E[O]

100

50

—#— p=0.15
—A— p=0.35

—— p=065
- p=1
FiGURE 4: Effect of D on E[@] for different p values.

—#%— p=0.15
—A— p=035

—— p=0.65
- p=1

FiGure 5: Effect of v on Py for different p values.

Cho = unit time cost of every customer in the orbit
Co = unit time cost for keeping the server idle
C; = unit time cost for keeping the server busy
C, =unit time cost for the server being on vacation
C; = setup cost per cycle
Firstly, assuming that the vacation time V follows de-
terministic distribution with fixed length D,D>1 rather

than the variable, then v, = Dand v, = D(D - 1). Taking D
as the decision variable, our objective is to find the optimal

11

—%— p=0.15
—A— p=035

—— =065
—o—p=1

FiGure 6: Effect of v on E[T] for different p values.
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E[O]
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—%— p=0.15
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—— p=065
—— p=1

Figure 7: Effect of v on E[@] for different p values.

value D, say D* to minimize the cost function C (D), where
C(D) denotes the long-run average cost per unit time and
can be expressed as

1
C(D) = CyyLy + CppLy + CoPp + C Py + CyPy + Csm.
(54)

The cost minimization problem can be mathematically
illustrated as follows:
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C (D)

85
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—%— p=045
—%— p=0.65
—#— p=1

FIGURe 8: C(D) v.s. D for p = 0.45, 0.65, and 1.

C(D") = minC(D),
° (55)
subjectto D>1.

Owing to the highly nonlinear and complex nature of the
optimization problem, it is an arduous task to find the
optimal solution D* analytically. In the following, we
present some numerical examples for illustrative purposes
and find the optimum solution D* by Matlab. Taking C, =
2000,C;,, = 20,C), = 10,C, =7,C, = 25, and C, = 25, we
depict the effect of D on the cost function C (D) for different
values of p = 0.45,0.65, and 1 in Figure 8.

Similarly, in the second numerical example, we consider
that the vacation time V follows negative binomial distri-
bution with p.g.f Gy (z) = (vz/1 - ¥2)* and take v as the
decision variable, and then the cost minimization problem
can be mathematically illustrated as follows:

C(v") =minC(v),

(56)
subjectto 0<v<1,
where
C(v)=Cy L, +CpL, + CyP; + C, Py + C, Py, + Csﬁ.
(57)

We present the effect of v on the cost function C(v) for
different values of p = 0.45,0.65, and 1 in Figure 9, where
C, =2000,C;, = 20,C;, = 10,Cy = 7,C, = 25, and C, = 25.

From Figures 8 and 9, we can see that the optimal values
D* andv* and minimal values C(D*)and C (v*) exist and
are given in Table 1, which can be obtained by applying the
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FIGURE 9: C(v) v.s. v for p = 0.45,0.65, and 1.

TaBLe 1: Optimal values D*andv* and minimum values

C(D*)and C (v*).
Deterministic Negative binomial
P distribution distribution
D* C (DY) v C(v")
p =045 17 75.4573 0.1484 81.9648
p =0.65 12 77.3477 0.2041 83.9525
p=1 8 78.5946 0.2935 85.2095

computer software Matlab. Table 1 exhibits that (i) C(D*)
and C(v*) increase with increasing p; (ii) as p increases, the
optimal vacation time length decreases; i.e., D* decreases
and v* increases.

6. Conclusions

In this paper, based on the characteristics of the ATM
network, we presented a discrete-time Geo/G/1 retrial queue
with two waiting buffers and single vacation, where retrial
customers are incurred by the server’s single vacation; that
is, arriving customers during the server vacation period
either choose to join the retrial buffer or leave the system
without service. We studied some important system char-
acteristics by using the supplementary variable method and
generating the function approach. Distribution of the so-
journ time of any arbitrary customer was studied by using
the generating function method. Finally, we presented the
sensitivity and cost optimization analysis. As further po-
tential future study, we can generalize this retrial queueing
model with two waiting buffers to some different cases, as
follows:
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(i) Retrial customers are incurred by the unavailability
of the server, in which an arriving customer who
find the server busy or on vacation either joins the
waiting buffer with probability p, or joins the retrial
buffer with probability p, or leaves the system for
ever with probability p,, where p, + p, + p; = 1.

(ii) Retrial queues with working vacation policy, where
retrial customers are incurred by the lower service
rate of the server during the working vacations.

(iii) In view of the feedback phenomenon in the retrial
queue, one can consider the case that retrial cus-
tomers are incurred by those feedback customers.

(iv) In reality, the capacity of the buffer in service
systems is often finite. Hence, one can consider that
an arriving customer who finds no vacant space
either enters a retrial buffer or leaves the system for
ever.
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