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Analysis of a stochastic HIV model with cell-to-cell
transmission and Ornstein-Uhlenbeck process

Qun Liu*
School of Mathematics and Statistics, Key Laboratory of Applied Statistics of MOE, Northeast Normal University,

Changchun 130024, Jilin Province, P.R. China

Abstract In this paper, we establish and analyze a stochastic HIV model with both virus-to-cell and
cell-to-cell transmissions and Ornstein-Uhlenbeck process, in which we suppose that the virus-to-cell
infection rate and the cell-to-cell infection rate satisfy the Ornstein-Uhlenbeck process. Firstly, we
validate that there exists a unique global solution to the stochastic model with any initial value. Then
we adopt a stochastic Lyapunov function technique to develop sufficient criteria for the existence of a
stationary distribution of positive solutions to the stochastic system, which reflects the strong persistence
of all CD4T T cells and free viruses. In particular, under the same conditions as the existence of a
stationary distribution, we obtain the specific form of the probability density around the quasi-chronic
infection equilibrium of the stochastic system. Finally, numerical simulations are conducted to validate
these analytical results. Our results suggest that the methods used in this paper can be applied to study
other viral infection models in which the infected CD4% T cells are divided into latently infected and
actively infected subgroups.

Keywords HIV model; Cell-to-cell transmission; Ornstein-Uhlenbeck process; Stationary distribution;
Probability density.

1 Introduction

Acquired immunodeficiency syndrome (AIDS) has become a great threat not only to the society but also to
the human health. According to the Global Progress Report on AIDS 2021, there were about 37.7 million
people worldwide who had been infected with the Human Immunodeficiency Virus (HIV) in 2020 [1]. HIV
primarily invades CD4™ T lymphocytes cells or T-helper cells in the body of human being, which eventually
leads to the deficiency of immune system against infections. Because of the immunodeficiency, human body
will be susceptible to broad range of infectious diseases [2]. At this time, CD4% T cells play an important
role in almost all adaptive immune responses because they can secrete some differentiation factors which are
requisite for other cells in our immune system [3]. Therefore, in order to prevent and control HIV/AIDS
effectively, people have taken some preventative measures in relation to the epidemics, such as the media
and the media can convey positive messages related to the health which might change the behaviors of the
people of unaware citizen.

Recently, using mathematical modeling to study the replication process and transmission dynamics of
HIV infection has been a hot research issue in the field of epidemiology [4]. Earlier studies only focus on the
healthy CD4T T cells, the infected CD4™ T cells and the free virus particles, that is virus-to-cell infection
[5, 6, 7, 8,9, 10, 11]. However, the virus-to-cell infection is usually inefficient because target cells or donor
cells often set up some specific obstacles to prevent the transmission of the virus-to-cell mode [12]. Many
scholars have revealed that the virus can be also transmitted by the infected cells to target cells through
direct contact [13, 14]. Recent experimental study illustrates that virus-to-cell infection is less effective than
cell-to-cell transmission because many characteristics are more difficult to determine in the bloodstream
than in tissue cultures. Thus, in order to establish a mathematical model to understand the pathogenesis
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of HIV infection, there are two approaches that should be incorporated: virus-to-cell infection and cell-
to-cell transmission. In the past few decades, more and more researchers devoted to formulating suitable
ordinary differential equations models with both the virus-to-cell infection and the cell-to-cell transmission to
investigate and analyze the dynamic behaviors of HIV/AIDS [15, 16, 17, 18, 19, 20, 21]. In particular, Yang
et al. [15] established an HIV model with C'D4" T-cell proliferation, virus-to-cell infection and cell-to-cell
transmission which is similar to the following system:

Tl =0 +170) (1= 20 ) - ATV - LTI
A0 _ v o)+ BTO10 - pal(6) - on (), an
) kte) — v (1) — o (1),

where T and I denote the concentrations of healthy CD4T T cells and infected CD4T T cells, respectively,
V' represents the concentration of virions. All parameters are assumed to be positive constants and their
descriptions are given in Table 1.

Table 1: Summary of parameter meaning of system (1.1)

Parameters Descriptions

A Recruitment rate of the healthy CD4™ T cells
51 Virus-to-cell transmission rate
Ba Cell-to-cell infection rate
41 Death rate of the healthy CD4" T cells
23 Death rate of the infected CD4" T cells
143 Death rate of the virus particles
aq Remove rate of the infected CD4™ T cells
Qo Shedding rate of the free virus
r Proliferation rate of the CD4" T cells
k Average number of the virus releases

Trax Maximum capacity of the CD4™ T cells

For system (1.1), the basic reproduction number is defined by

kB1Th B2To
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which is used to determine whether the disease occurs or not, where

Tnax arA
To = 2r[7"—#1‘*'\/(7“_#1)2—# TmaX:|.

In addition, the dynamical behaviors of system (1.1) are as follows:
o If Ry < 1, the virus-free steady state Ey = (Tp,0,0) always exists and it is globally asymptotically
stable in the invariant set I', where

r= {(T,I,V)|O<T+I§ %,ogvg m}

and

< r _ . A r
A=)+ 7maXT§, i = min {TO + TmaXTo,,ug}.
e If Ry > 1, then Ey is unstable and there is also a unique chronic infection equilibrium E* =

(T*, I, V') which is globally asymptotically stable provided that p; > r(1 — %), where
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On the other hand, it is noticed that the system (1.1) is constructed under a constant environment.
However, from the viewpoint of microscopic, the interference of random factor exists in the process of virus
replication [22]. In order to take into account some crucial epidemiological factors such as, antiretroviral
(ART) therapy, infection mechanism in heterogeneous environment, etc., many scholars have developed
various stochastic differential equations (SDEs) models, specially stochastic ordinary differential equations
models [22, 23, 24, 25, 26, 27] to study the pathogenesis and replication process of HIV/AIDS. For example,
Lu et al. [22] analyzed the stationary distribution and probability density of a stochastic HIV model with
cell-to-cell transmission. Djordjevic et al. [25] obtained sufficient conditions for extinction and persistence
in mean of a stochastic SICA epidemic model for HIV transmission. Feng et al. [26] studied the asymptotic
dynamics of a stochastic HIV-1 infection model with degenerate diffusion which are governed by a threshold
parameter.

Up to now, there are several pathways to introduce stochastic perturbations in the deterministic models.
One of the most popular pathways is to think that the parameters involved in the system satisfy the Ornstein-
Uhlenbeck process which is an It6 process. Accordingly, in order to reveal the influence of environmental
noise on the cell-free transmission rate $; and the cell-to-cell infection rate B, we suppose that they are
random variables involved in randomness and satisfy the following form:

dB1(t) = p1[B1 — B1(t)]|dt + o1d B (1),
dB2(t) = pa[Ba — B2(t)]dt + o2dBs(t),

where j3; are positive constants which measure the long-time mean levels of the infection rates 3;, i = 1,2; p;
and o; are positive constants representing the speeds of reversion and the intensities of volatility, respectively,
i = 1,2; B;(t) are mutually independent standard Brownian motions defined on a complete probability space
(Q, F, {Fi}1>0,P) with a filtration {F;};>0 satisfying the usual conditions [28], i = 1, 2.

In view of Mao’s monograph [28], it is easy to see that 5;(¢) have the following unique exact solutions:

Bi(t) = Bi + (8i(0) — Bi)e " + o, /t e P t=9)dB;(s), i =1,2.
0

By direct calculation, the mathematical expectation and the variance of §;(¢) over the interval [0, t] are given

as follows )

E[Bi(t)] = Bi + (Bi(0) — B;)e " and Var[B,(t)] = ;Tj_(l —eTity i =1,2,
respectively. Apparently, the limit distributions of the random variables §;(t) are N(B;,02/2p;), i = 1,2.
_ piz=F?
In other words, the probability densities of the limit distributions are m;(z) = Vbi_g a7 i=1,2.

Moreover, it is obvious that lim;_,o+ E[5;(¢)] = 8:(0) and lim,_ o+ Var[3;(¢)] = 0, ZC 1,2. This implies that
the modeling technique is biologically reasonable to simulate the random influences of crucial parameters
in a within-host model. Motivated by the facts mentioned above, we establish the following stochastic HIV
model with Ornstein-Uhlenbeck process:

dT(t) = {)\ — T () + rT(t) (1 - % — max{B1(t), YT (£)V (t) — max{Bs(t), O}T(t)](t)} dt,
( ) = [max{B1(t), 0}T(t)V (t) + max{B2(t), 0}T(¢)I(t) — p2l(t) — cr I(t)]dt, (1.2)
AV (t) = [kI(t) — u3V (t) — a2V (t)]dt, '

dp1(t) = p1[Br — Bu(t)]dt + o1dBi (t),
dﬂQ(t) = pz[ﬂg — ﬂg(t)]dt + O'deQ(t).

Here we introduce the random variables max{3;(t),0} rather than f;(t) into the system (1.2) because
max{3;(t),0} are nonnegative while f3;(t) may be negative due to the features of the Ornstein-Uhlenbeck
process, ¢ = 1,2. When we prove the existence of a stationary distribution of positive solutions to the system
(1.2), the nonnegativity of the variables f3;(t) is extremely significant, ¢ = 1,2. Based on this consideration,
we develop the above system, that is, system (1.2).

Involving the stochastic model of HIV with Ornstein-Uhlenbeck process brings great difficulties and
challenges to the theoretical analysis of the model because the Ornstein-Uhlenbeck process can lead to an
increase in the dimensionality of the system. The main barrier is that how to construct suitable Lyapunov
functions to study the existence of a stationary distribution theoretically since the previous method of



establishing Lyapunov function is no longer applicable to our model. We need to find a new method to
construct some suitable Lyapunov functions and then verify the existence of a stationary distribution. In
comparison with the existing literature, our main innovations and contributions of this paper are summarized
as follows: (i) we adopt a novel method to establish some stochastic Lyapunov functions to obtain the
existence of a stationary distribution, which can be seen as a kind of probability distribution with some
variables from the viewpoint of stochastic process. (ii) Under the same conditions as the existence of a
stationary distribution, we get the exact expression of the probability density, which is a function that
describes the probability of the output value of the random variable around the quasi-chronic infection
equilibrium of the system (1.2).
Throughout this paper, for the sake of convenience, we introduce the following notations:

Ri:{x:(xl,...wd)ERd:xi>071gigd}and@i:{x:(ml,...md)ERd:xilegigd},

x Vy = max{z,y} for any z,y € R.

Denote by C?(R%; R) the family of all nonnegative functions V (x) defined on R such that they are contin-
uously twice differentiable in . Let Iy be the indicator function of the set A. If G is a vector or matrix, we
use the notation ||G|| to denote its norm and its transpose is denoted by GT. If G is an invertible matrix, we
use the notation G~! to represent its inverse matrix. If G is a square matrix, its determinant is represented
by |G|. In addition, if H and J are two d-dimensional symmetric matrices, we define

H > J:H-—J is at least a semi-positive definite matrix. (1.3)

By (1.3), it is clear that the matrix H is also positive definite if J is a positive definite matrix.

The paper is organized as follows. In the next section, we validate that there exists a unique global
solution to the system (1.2) with any initial value which is very important and necessary to analyze the
dynamic behavior of a viral infection model. In Section 3, we adopt a novel method to construct some
suitable Lyapunov functions to establish sufficient criteria for the existence of a stationary distribution,
which indicates the strong persistence of all CD4% T cells and free viruses. In Section 4, we obtain the
accurate expression of the probability density around the quasi-chronic infection equilibrium E* of the
system (1.2). In Section 5, numerical simulations are carried out to illustrate the analytical findings of this
paper. Finally, a brief conclusion scope of the main results obtained in this paper is given.

2 Existence and uniqueness of the global solution

To study the transmission dynamics of a viral infection system, we should first ensure that the solution of
the system is global. The following theorem is related to the existence and uniqueness of the global solution
of system (1.2) with any initial value.

Theorem 2.1 For any initial value (T(0),1(0),V(0), 51(0), 82(0)) € R3 x R?, there exists a unique global
solution (T(t),1(t),V(t),B1(t), B2(t))T to system (1.2) on t > 0 and the solutzon will remain in R x R?
almost surely (a.s.).

Proof. Note that all the coefficients of system (1.2) satisfy the local Lipschitz conditions, then for any initial
value (T°(0),1(0), V(0), 31(0), 82(0)) € R3 xIR?, there is a unique local solution (T'(t), I(t), V (¢), B1(t), B2(t))”
on the interval [0, 7. ), where 7, is an explosion time. Now we validate this solution is global, that is, to prove
7. = oo a.s. To this end, let ng > 1 be sufficiently large such that T(0), I(0), V(0), e#1(®) and 2 all lie
within the interval [1/ng,ng]. For each integer n > ng, we define a stopping time by [28]

1
Tp, =Iinf {t € [0,7.) : min{T(t), I(t), V(t),e 1V P2V < Z or max{T(t),I(t), V(t),e® 21} > n},
n

where throughout this paper we set inf ) = co (here () means the empty set). It is clear that 7, is increasing
as n — oo. Denote by 7o, = lim,, o T, Whence 7o, < 7. a.s. If 7o, = 00 a.s. is true, then 7. = 0o a.s. and
(T(t),1(t),V(t), Bi(t), B2(t))T € RY x R? a.s. for all ¢ > 0. In other words, to confirm the proof we need to
validate Too = 00 a.s. If this assertion is false, then there is a pair of constants T' > 0 and € € (0, 1) such that

P{roc <T} >e.



As a consequence, there is an integer ny > ng such that
P{r, <T} >¢, Yn>ng.
Define a C*-function U : R3 x R* — R, by

Z/{(T,I,V,,Bl,ﬁz):(T—1—1nT)+(I—1—lnI)+(V—1—1nV)+%12+%§.

It is noticed that the above function is nonnegative because of u —1 —Inwu > 0 for any v > 0. Applying It6’s
formula [28] to U leads to that

du(T7 I7 ‘/7 Bla /62) = LZ/{(T, I? ‘/7 ﬁla ﬁ?)dt + UlﬁldBl (t) + U2ﬁ2dB2(t)7
where LU : Ri x R? — R is defined by

r

T A
LU =X — T+ TT(I - ) — max{f1,0}TV — max{fs,0}TT — T +u—r+ T

max max

T
max{f,0}TV max{fa, 0} + 2

T + max{f:,0}V

+ max{f2,0}] + max{fp1,0}TV + max{P2,0}TT — usl —an I —

I
kI 2 2 2 2 oi | o3
+oay+ kL —pusV —aV — V+M3+Oé2+p1ﬂ1ﬂ1 + p2f2B2 — p187 — p2/53 +?+?
SA+ ot petps oy +oz+rT + TT T + max{f1,0}V + max{fz, 0} + kI + p1 181 + p222
o? o2
— By — p2fs + o+ =
2 2
ot | o} r 3 z >
<A+urtpetus+an tot o+ o +(rt7 T+ BV + |Bo| I + kI + p1S151 + p2fBafa — p1
— pafs.
(2.1)
In addition, we have
dT+1I)=\AN=mT+rT - Tz,uﬂalf}dt
< (A )7 - per|a
o L Tmax 0 TO Tmax 0 He
[ r i A r
S -)\+ TmaxT02 —mln{TO + %TO?Mz}(T_FI)]dt
=\ — (T + D)),
which implies that B
A
T(0) + 1(0), it T(0) + 1(0) > 2,
T +1(t) <9 5 X <K, (2.2)
—, ifT(0)+1(0) < =
I I
where 5
K7 := max {T(O) + 1(0), ﬂ}.
According to the third equation of system (1.2), we obtain
dv :(kil - /.L3V - OéQV)dt
<(kT — V),
and so _
kA
V(0), if V(0) > —,
V(t) < kX /]i/i?’ < Ko, (2.3)
—, if V(0 —
i3 fifis



where

.
Ko := max {V(O)7 /\}.
K3

Substituting (2.2) and (2.3) into (2.1) leads to that

o2 o2 _ _
LU <X+ py + po + pz +aq + g + ?1 + ?2 + <T+ >K1 + Ks|B1] + K1|B2| + kK1 + p15151 + p2B252

,
TmaX
— p1B; — p2133

2 2
91 |, 92
<>\+u1+u2+u3+a1+a2+2+2+<r+

+ sup {—p23 + K1|Ba| + p2B2f}
B2€R

T >K1 + kK + ﬁSUP{ p18t + Ka|B1| + p1BiBi}
max

Z:Kg.

Here K3 is a positive constant which is independent of the variables T', I, V, #; and (83. The rest of the
proof is similar to that of Zhou et al. [29] and so it is omitted here. This completes the proof.

Remark 2.1 By the proof of Theorem 2.1, we can get that if T(0)+I1(0) < X/ and V (0) < kX/(fius), then
the set

A kX
== {(T,I,V,,Bl,BQ)T ERY xR*:T+I< V< }
I i3
is positively invariant for the system (1.2).
Therefore, from now on, we always suppose that the initial value (7°(0), I(0),V(0), 51(0

system (1.2) belongs to the set Z. This shows that the unique global solution (7'(¢), I(t), V (
to the system (1.2) will also belong to the set = with probability one.

) )T of the
t t

Ba(
1(t), B2(t))"

, B2(0
), Ba(

3 Existence of a stationary distribution

In this section, we pay attention to developing sufficient criteria for the existence of a stationary distribution
which implies the strong persistence of healthy CD4% T cells, infected CD4™ T cells and free viruses. We
first give some theories about the existence of a stationary distribution (see Du et al. [30]).

For a homogeneous Markov process defined in R? which is described by the stochastic differential equation:

dX(t) = f(X(¢)dt + g(X(¢))dB(t), (3.1)

with the initial value X (0) € R, where B(t) is a d-dimensional Brownian motion defined on the complete
probability space (2, F,{F: }+>0,P). In addition, f : R — R? and g : R — RY*™ are Borel measurable.
The following lemma is related to the existence of a stationary distribution of system (1.2).

Lemma 3.1 (See Theorem 2.2 in [30]). Suppose that there exists a bounded closed domain A C R? with a
regular boundary T, for any initial value X (0) € R4, if

1 t
liminf — [ P(s,X(s),A)ds >0 a.s.,
t—oo 0
where P(s, X (s),) denotes the transition probability of X (t). Then there exists a solution of system (5.1)
which has the Feller property, and system (3.1) admits at least one stationary distribution 7(-) on RY.

Theorem 3.1 Assume that

z2 —? 2
RS kA( ff By \ﬁ$+ﬁl)"€ dz)? ) ff Payrs \ﬁ$+52) dz) .
A klo Ao )\ k)Xo Ao ?
(k2 +a1)(ps + 0‘2)(TT) s T aves) (et a)(g o e T 5

then system (1.2) has at least one stationary distribution m(-) on R% x R?, where

A r
A=A+ —T2 T .
+ T 0’ u min {TO T'max O7M2}

max




Proof. By Remark 2.1, it is easy to see that (T'(t), I(t), V(t), B1(t), B2(t))T € = a.s. Thus, all the descriptions
of R? in Lemma 3.1 should be modified as = for the system (1.2). We divide the proof process into three
steps: the first two steps are to find a nonnegative C?-function W(T, I, V, 31, 32) and a compact set D C =
such that LW < —1 for all (T,1,V, 1, 32)" € =\ D, the last step is to validate the existence of a stationary

distribution of system (1.2) by adopting Theorem 2.2 in Du et al. [30].

Step 1. (Construction of a nonnegative C2-function): Firstly, according to system (1.2), we have

L(-InT)=- % + pr — r(l - ) + max{81,0}V + max{f52,0}],

max
max{f,0}TV

L(-Inl) =— 7

- maX{BQa O}T + H2 + aq,

kI
L(—hlV) = — 7+u3—|—a2,

and
L(V) =kl — usV — asV.

In addition, it is noticed that
—(T = Ty)? = —(T = To)(T + Th) + (T — To)(Ty + T) < 0,

where Ty and —T} are the roots of the quadratic equation

J(T) =X+ (r—pm)T - T2 =0.
Accordingly
r r
FT) = — (T = To)(T + ) < — (T ~ To)(Ty + To),
max max
and so

ThW+Ty) " Ti+To ~  Tmax

Define a function W; which takes the form

L( T >< I " p_qy.

3 T
B1 v+ _
H3 + Qo Ty + T

WI(T, V) =—InT +

In view of (3.2), (3.5) and (3.6), it is easy to obtain that

LW, < — % el r(l — :ax) + max{S1,0}V + max{S3s,0}I + uglilaz (kI — usV — agV) —
< bk Ty b BV 4 Rl @O VOV + (6 OL+ T Y
A r kb1 _ kX A
<- 7t -t TmaxTO + (’u3 T+ o +52)I+ ﬁ(gl(t) vV0)+ ﬁ(&(t) v 0)
VRO S 3
7 T + (#3 o +ﬁ2>1+ 7 (&1(t) vV 0) + ﬂ(fg(t) v 0),
where B B
§1(t) = Ba(t) — B1, &2(t) = Ba(t) — Po.
Next, define

WQ(T, 1, V) =—Inl+ c1W1(T, V) —cInV + Cng(T, V),

r

max

(3.2)

(T —To)



where ¢1, ¢ and c¢3 are positive constants which will be determined later. Then by (3.3), (3.4) and (3.7), we

obtain
max{f,0}TV A A ( kB1 _ ) cr kX
W< - ——mM———— — 08T + +ay— ——+—+c + I+ = t)Vvo
2 > 7 max{Bg } H2 1 T Ty 1 13 + as B2 fijis (51( ) )
Cl;\ 02]{;] 63)\ 63/\ ( kBl ~ ) Cgkj\
+ — t)vV0) — —+c¢ +oag)— — +— +¢ + I+ — t)Vvo
ﬂ (€2(t) vV 0) v 2(ps +az) — =5 ] e B2 s (&(t) v 0)
csA
. (52( )V 0)

s A crk) ciA c3A
§—330102145)\51—2\/03>\52+M2+a1+%7+ - (51()V0)+17(f2()\/0)+C2(/~L3+042)+%0

3 kBl 2
e Vo + ﬂ(52<t>vo>+<c1+cS>(M3+a2%)L

Cgk)\

(3.8)

where

Bi(t) = max{B1(t),0}, B2(t) = max{pa(t),0}.
For the fourth and fifth equations of system (1.2), that is,

According to the references [31, 32, 33], we can obtain that /;(¢) (¢ = 1,2) have the ergodic property and

they will weakly converge to the invariant density

A piz—B;)?
ﬂ—i(x):\/fze "12 7$€R7i:1727
iyeors

which together with the ergodic theorem [34], we obtain

/00 (.13\/0)% (x )dx—/oooxém(x)dx

— 00

and - -
/ (xV0)ir ()dx:/ 227 (2)da
—00 0
oo 1 D 707‘,(1;5«;)2
=/, WJ\/%ZIE §oda (3.10)

Analogously, for the stochastic differential equations
dfi(t) = —pigi(t)dt + O'idBi(t)7 1=1,2.

It is easy to get that &;(¢) (¢ = 1,2) have the ergodic property and they will weakly converge to the invariant

density o e
ﬁ'i(q:):ﬁ;e i, xzeR, i=1,2.
K3



By the ergodic theorem, we have

/00 (zV0)7;(z)dx = /00 x7;(z)dx

— 00

“F (3.11)

\fgl

2‘/7rp2 1,2
Substituting (3.9), (3.10) and (3.11) into (3.8) leads to that

LW2 - 3\/0162k)\ﬂ1 —2 03)\52 + ( \/ C102]€>\51 -3 \/ 0102k>\51> (2\/03)\32 - 2\/63)\32) + H2 + a1

+c()\+ ko | Ao )+c( +a)+c(/\+ ko, Aoz >
' 2fips/pr | 2lmpz) MR 2fpia/TpL | 2fi/Tps
_ kj\ 00
+ (a1 + cg)( il + 52)] + M <§1(t) Vo -— / zﬁl(x)dx)
M+ o s 0

n A(ﬁ:%) (gg(t) VO — /OOO xﬁz(w)dﬂv>v

where .
B=( [ @voin@d (L T By ) e ’
1= _Oox m(x)dx ) = = | sm \/[Tlx—l— 1] e x ),
B (/w( VO)in <)d>2 (1/°° <”2 +B>;z2d)2
5 = €T x = — B —X 2 e X .
—o0 ™ 75’2%@ VP2
Let _ _ >
<)\ ki)\O'l + /\0'2 ) c ('u +a ) k‘)\ﬁl
T 17 m = 2 3 2 = A k’iol 5\0’2 ’
2[ip3/Tp1  20\/TTp2 (13 + 2)(F + gp e + 572

c <>\+ /€)\O’1 + /\0'2 ) o )\52
3 TO 2/1#53 /77_(_p1 2/1 /77.‘_[)2 %0+ 7k5\01 +2ﬁ5\0712.p2’

2[ap3/TP1
then we have
o kAB) . FAB) b AP
- A ko Ao ’ - A kXo Ao ’ - A kXo Ao ’
(s +02)(F; + gy Vs + Taym) (3 +02)* (7 + spsvir T 2ryems) (5 + Ty T Zayems)
and hence

kAB AB - e
Lwe < - A f;al oo T kj\olﬁz Aoa t (3 c1e2kAfy =3 \ ClCQk/\Bl>

(M3 + OLQ)(TO + 2[p3/Tp1 + Qﬁ\/ﬂpz) To + 2[p3/TP1 + 2[1/Tp2
~ kB _ EX(er + o
( c3A\By — 2 03)\52) +po+ar+ (e + C3)< b ; +52>I + M <§1( )V / xﬂl(m)dx)
0
5\

U3+« L3
(01 + ca) (52( )V /0 h xfrg(a:)dx)

_—(M2+041)(Rg—1)+(01+63)( ] 5)1+3W(\F \F>+2\/§(\/ﬁ»2_\/g>

M3+ a2

+ 2O (¢ vo- [Tanr) + XD (g0 vo- [Tamar),

K3

(3.12)



where

s kABy N ABa
0~ Ao Ao Ao Ao
(nz + 1) (s + a2)(7; + g + 370oes) ('“2 + ) (T + g v T )
k f ﬁl\/ﬁ(\/—x—‘rﬁ1)36 Idm) f /32\/@(\/—.134—62)26 le‘)
= + )
A kXo Ao A kXo Ao
(’u2 + al)(MS + a2)(T0 + 2ﬂ#3\/ﬁ + Qﬂ\/;Pz) ('u2 + 041)(?0 + 2ﬂu3\/;p1 + Qﬂ\/;m)
Next, define
A kX
Ws(T,I,V) = —In (—T I) In (—V) Wa(B1, B2) = bt B3
Iz fLft3 2 27
then applying It6’s formula [28] to W5 and W; leads to that
kI — —
LW3 _ R ,u:o,V OégV
A _ T -1 L2 Ve
I Hp3
)‘ + 716 - (T% e 10)T = pel —onl kI — gV — agV
- A_T_T KXy
" s (3.13)
At g 16 —min{ gy + g To,po} (T 1) — ol KL — sV — aoV
- A EX
a-T-1 s~V
< a1I (6] _
STIopop mooy R
M HE3
and
o2 o2
LWy =p1B81(Br — B1) + p2B2(Ba — B2) + = + 7
3.14)
- 2 2 (
=p1B1581 + p2BaBa — p18T — p2Bs + ? + 72

Define a C2-function W(T, I,V, 31, B2) : = — R as follows
W(T’ Ia MﬂhﬂQ) :MWQ(Ta Ia V) —InT—-InV + W3(T7]7 V) + W4(51a182)7

where M is a sufficiently large positive constant satisfying the condition

—M(pg + 1) (R§ — 1) + Ky < =2, (3.15)
and
]{75\ 5\ = = ’]"5\ 0'2
Ky:= sup { ﬂ1_* +|51|+|52|+P15151+025252}+M1+2/J3+M+Oz2+ + =
(B1,82)€R? 2085 w Thaxl 2
+ (L% < 00
5 .

In addition, it is noted that W(T, I, V, f1, 32) is not only continuous, but also tends to oo as (T, I, V, 31, $2)7
approaches the boundary of =. As a consequence, it should be lower bounded and achieves this lower bound
at a point (7°,1°, V0, 3% BNT in the interior of Z. Then a C%-function W : Z — R, is defined by

W(T, I, V, By, B2) =W(T,1,V,B1, B2) — W(T°, 1°,V°, Y, B9)
=MWo(T,I,V) —InT —InV + Ws(T, I, V) + Wa(B1, B2) = W(T°, 1°,V°, 37, B9).
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According to (3.2), (3.4), (3.12), (3.13) and (3.14), we obtain

kB - A kI arl %
IW<-M RS -1+ M -2 = — — 183
W< (p2 +a1)(Ry — 1) + (Cl+03)<u3+a2 +52> TV I By P11

— p2B35 + p11S1 + p2fafa + BM N/ creakA (\f \/>) + MEXer + ¢5) (ﬁl(t) VO-— /000 xﬁl(x)dx>

i3

+2Meph (\//3:—\/@ MX( 01“3) (fg(t)\/O—/ a:frg(ac)dx)—i—m—i—TT T4 BV + |Ball
0 max

+2,u3+/£+042+?+?

S—M([LQ—FO[l)(Rg—l)+M(Cl+63)<

k3 _ A kI a1 asV
AT L
p3 + oo T Vv -T-1 FA_vy

s

— pafi3 + %Wﬂ + %|52| + p1B1B 4 pafafa +3M Y/ C102/€)\< V51— ﬁ) +2M v/ C3)\<\/g - \/372)
4 MEMer + c3) (él (t)vo- /oo xfn(x)dx> 1 MMt es) <£2(t) VO-— /Oo Ifrz(z)dﬂc) +p1t2us
B 0 H 0

i1

K3

Tl (2 T2

:=G(T,1,V, b1, B2) + 3M /crcak (3 \/E) M Cl +03) (fl(t) V0-— /OO $7~T1(37>d33)
0

+ 2M\/c?(\/ﬁ: - \/E> L ( zﬂg(a:)dx>,

+ o+ o+

H

7
(3.16)
where
kBl = A kI all 0&2V
G(T,I,V, =—M RS -1+ M -z - = _ _ N
(T, 1V, B, ) = — M(pz + n)(R§ — 1) + (Cl+c3)</¢3+a2+62> R Tl o
M Hes
5 _ _ rA o2
— p1B; — P2ﬂz+7|51|+ |52|+/)15151+/)25252+N1+2N3+/1+012+T ﬁ-ﬁ-?l
max
2
+ 22

?.
Step 2. (Construction of a compact set): Define a closed bounded set D, by

kX

1 1
DE={(T,I,V,Bhﬂz)TeE:T>e7I>e,V>e2,T+I< 2V < =& 8 < =B < }
i3 € €

‘:l\y\

where € is a sufficiently small positive constant satisfying the following conditions

—% + K5 <1, (3.17)

€< ! (3.18)
M (cy +03)(M3+a2 +B)

—% + K5 < 1, (3.19)

_% + K5 < —1, (3.20)

~ 2K < -1 (3.21)

—? + K5 < -1, (3.22)



S+ K < L. (3.23)

Here K5 is a positive constant explicitly given in the expression (3.25). Next, we can divide the set =\ D,
into the following seven subsets D¢ ., i =1,...,7, where

€,1)

D¢y ={(T,1,V,B1, )" €E:T <€}, D¢y ={(T,1,V,B1,82)" €E:1<¢},

A
Dy ={(T,I,V,p1,B)" €2:V <& I>¢}, D,y = {(T,I,V,Bl,ﬂg)TeE:TJrI> Me2,126},

_ kX . _ 1
D£75 = {(Tala‘/a/BM/BQ)T €e=Z: V> m —63,V Z 62}7 De76 = {(Tala‘/a/@hBQ)T SH= |/81‘ > E}’

— 1
ec,7 = {(Ta‘[a‘/aﬂlaBQ)T SIS |ﬁ2‘ > 6}.
Apparently, =\ D, = Ui7=1 D¢ ;. Next, we will show that G(T,1,V,B1,P2) < —1 on the region D¢. That is

to say, we need to show its satisfaction on the above seven sets.
Case 1. For any (T,1,V, 1, 32)T € D¢ 4, by (3.16), we obtain

A k3 _ kX b _ _
G(T,1,V,p1,P2) < — T + M(c1 +C3)<M3 flaz +ﬂ2>1— %1 - %2 5+ @Wﬂ + ﬁ\/@ﬂ + p15151 + p2B2p2

2 2
91 92

9 _
+ p1 + #3+M+a2+Tmaxﬂ+2 5

A MXMc +ec kB _ kX A _ _
=-7t (i 3)( A "‘52)_[)15%_[)253‘4‘_|ﬂ1|+|52|+915151+P25252
T Iz p3 + a2 2 2 Afi3 Iz
EID P S\ S QU |
H1 M3 T [ 2 Toacfl 5 5
A
< 21K
< T+ 5
S—i—i-Ks
€
<-1
(3.24)
which follows from (3.17) and
kA A - - MMe +¢ kB -
Ks:= sup {‘2%‘22%4'|51+|52+P1ﬁ1ﬂ1+,02ﬁ2ﬂ2}+ (E 3)< b1 —I—ﬁ2>
(B1,B2)€R? B3 w v u3 + Qo
_ A o? o3
4w+ 2us+ptoart ——+—+ = < o0
Tmaxﬂ 2 2
(3.25)

Case 2. For any (T,1,V, B1,2)T € D¢ 5, according to (3.16), we have

kB - kX A
G(T, 1.V, B, ) < = M(pz + 01)(R§ — 1) + M(ex +C3>( - +/32>I— SOt G0 A + 21

H3 + ae
3\ 2 2
> > _ o} o3
+P15151+P25252+M1+2M3+/~L+Oé2+T — + =+ ==
maxit 2 2

s kB =

<—M(pe +a1)(Rg — 1)+ M(c1 + ¢3) + B |1+ Ky

w3 + ae

kB _
§M(u2+a1)(Rgl)+M(cl+03)< ﬁl +ﬂ2>6+K4
u3 + Qo

<-2+1
:—17
(3.26)

12



which follows from (3.15) and (3.18) and

kX A ~ ~ _ rA o?
Ky:= sup {pl %7@ §+|51|+|ﬂz|+p15151+ﬁ25252}+u1+2u3+u+a2+ o
(Brp)erz L 2 2 Fims Z Tmaxpt 2
o3
— < 0.
+ 9 00

Case 3. For any (T,1,V, 31, 82)" € D¢ 3, in view of (3.16), we have

kp
u3 + oo

kI _ kX b _ _
G(T,1,V,p1,P2) < — v + M(cy +C3)( +52>[ % - % 5+ m|ﬂl| + ﬁ|l32\ + p16151 + p2B202

rA
2 = BRSNS )
+ p1 + M3+u+a2+TmaXﬁ+ 5 + 5

<_ﬂ+ M/\(61+C3)< k‘Bl
U

=Ty i

+p1+2p3 + o+ o +

Tmax 2 2 2

k
S—*26+K5
€
k
<-1

(3.27)
which follows from (3.19).

Case 4. For any (T,1,V, B1,52)T € Dg 4, from (3.16) it follows that

041[ kBl = P1 52 P2 o k'j\ X =
T,1 <M 1-Pp2_ P2gay 27 -
G(T,1,V,B1,B2) < %—T—I+ (61+C3)<,u3+a2+52) 251 5 2+ﬁu3|51\+ﬂ|52|+01/3151
- _ rA o? o3
2 21, 72
+ p2B2P2 + 1 + M3+M+Oé2+TmaXﬂ 5 T
a1 MMer +¢ kB . EX A -
=-x - + (i 3)< o +52)—p1 f—&§+f\ﬂ1|+i|ﬁ2|+0151ﬁ1
s-T—1 f p3 + oz 2 2 i3 Iz
_ X 2 o2
+p2BaBa i+ 2+ it ost o+ o+
maxft 2 2
S—L§+K5
€
«
=LK,
€
S_la

(3.28)
which follows from (3.20).
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Case 5. For any (T,1,V, 1, 82)" € D¢ 5, according to (3.16), it is easy to see that

O[QV kBl = P1 52 P2 2 k‘;\ 5\ =
G(T, I <——+M - I— _ A
(T,1,V,B1,B82) < [Z\s —V+ (C1+03)(u3+a2 +52> 5 P1 2ﬁ2+ﬁu3|ﬂ1|+ﬂ|ﬁ2|+p16151
2 2

91 , 92

+ p2Bafo + p1 + 203 + [+ s +

Tl 2 T2
asV MMX(c1 + ¢ kB - kX A -
et ML) (I ) D g B4 D1l i
A=V Iz ps + Qo 2 2 fLht3 Iz

3 _ rA
+ pafefo + 1+ 2us + o+ g + oyl z2
Tmax,u 2 2

S*af + K5
€

:*%4’[{5
€

<-1

(3.29)
which follows from (3.21).

Case 6. For any (T,1,V, B1,2)T € D¢ g, by (3.16), it is clear that

PL g2 kB 2 Pl o P2 kA by _
G(T, 1V, <_Pigy oy [Py P kA by
( IR 7ﬂ1752)— 2 + (Cl +C3)<M3+042+52> 2 1 ) 2+ﬁu3|61|+ﬂ‘ﬂ2|—|—p1ﬂlﬂl
— B N 0_% O_%
+ p2Pafo + 1 + 2us + o+ oo + 4Ly 22

Tmaxit 2 2
_ kX A _
+ 52) - ﬂﬁf - @53 + ——|B1| + =|B2| + p1B151
2 2 ft3 Iz

2 2
91, %

Ay
Tmax,u 2 2

P1 2 M)\(Cl+03)( kB

< Plgy 229
2 I ps + az

+ p2Bafa + p + 2p3 + i+ s +

(3.30)
which follows from (3.22).

Case 7. For any (T,1,V, B1,2)T € D¢ 7, in view of (3.16), it is easy to obtain that

P2 o2 kB 5 PLs P20 KA A B
T.1 <Pz [P P2, FA 2
G(T,1,V,p1,P2) < 5 P2+ (c1 +c3)<M3+a2+52> ) 2+ﬂu3|51|+ﬁ\52|+mﬁ1ﬁ1

3 _ rA
+P25252+u1+2u3+u+a2+T _ 4+ L4 22
max M 2 2

MMe +¢ kB _ EX b )
<- G GRS () - ot - Bt s+ Sl + i
2 H M3+ o 2 2 s [i
5 P A o’% ag
+ p2B2fe + p1 + 2u3 + i+ a2 + + 91, %

Tl 2 2

P2
<-= 4K
< 262-1- 5
<-1,

(3.31)
which follows from (3.23).

On the basis of (3.24), (3.26), (3.27), (3.28), (3.29), (3.30) and (3.31), we can easily conclude that there
is an adequately small € such that

G(Tvlv‘/vﬁlaﬂ2) S —1 for any (T7I7‘/761)62) S E\De (332)
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Let

ki 2 A kI arl
Kg := sup {—M(M2+a1)(RS—1)+M(01 +03)( +/32)I ————— -
(T.1,V,81,82)€ERY xR2 0 M3+ Q2 T v % -T-1
asV kX A o?
— o B =B+ =B+ = |52|+P15151+P25252+M1+2M3+M+042+ + o
Tps \%4 2785 TmaX/j/ 2
2
93
+ 2}
Then
G(T,1,V, By, B2) < K¢ < oo for any (T,1,V, B, f2) € R} x R%. (3.33)

Step 3. (Existence): For any initial value (7°(0), I(0), V(0), 81(0), 82(0)) € =, integrating both sides of
(3.16) from 0 to ¢ and then taking the mathematical expectation, we get

EW(T(t)v I(t)v V(t)ﬂ 51 (t)v 52 (t))
t

_EW(T(0), 1(0), V(0), 31 (0), 82(0)) '
_ ; +t/0 E(LW(T(s),1(5), V (s), B1(s), Ba(s)))ds

SEVTOLIOLVOLAOBO) L [ (1), 1(5), V), 815, Bt
0

0<

1M cl@kMEU_Z(xvo)é (2)dz — f/ (Bu(s )vo)éds]
oM c3A1EU_O;(xvo)% 2@ )dm—l/ (Bals )vo)%ds] +WEE/Ot(fl(s)\/O)ds—/oooxfrl(x)dx}

) 3
+M’\(C;+C3>E [1 /Ot(gQ(s) v 0)ds — /OOO xﬁ'g(x)dl‘] .
(3.34)

According to the ergodicity of 3;(t) and &;(¢) (i = 1,2) and the strong law of large numbers [35], we have

tlg]EUZ(wO)é 1 (z )d:c"/ (B1(s )vo>éds} Eumxém(x)dz] /Uooxém(x)dx()a.s., (3.35)

tli)]%loIE[/_O;(x\/O)é 2(x )dx—l/ (B2(s)VO )% s} :E{/Oooxém(x)dx] —/Oooxém(:c)dx:Oa.s., (3.36)

75ll)rgo]E [1 /t(fl(s) Vv 0)ds — /000 aﬁrl(x)dw} = E{/OOO xfrl(gc)dac] - /OOO 7 (z)dz =0 a.s., (3.37)

and

tll)r&E {1 /t(fg(s) V0)ds — /000 xfrg(x)dx} =E {/000 £L'7~T2(£E)d$:| - /OOO x7a(z)dr =0 a.s. (3.38)

Taking the inferior limit on both sides of (3.34) and combining with (3.35), (3.36), (3.37) and (3.38), we
obtain

EW(T(O)’I(O)’Z(O)’Bl (0), 52(0)) + liminf % /t]E(G(T(s),I(SL V(s), B1(s), B2(s)))ds
0

t—o00

0 <liminf
t—o00
(3.39)

t—o0

=lim inf % / E(G(T'(s),I(s),V(s), B1(s), B2(s)))ds a.s.
0

15



In addition, in view of (3.32) and (3.33), we get

mgQAEw@@ﬂwW$m¢m@wS

o]
= liminf 3 | E(G(T(s), 1(5), V(5), B1(5), B2(8)) (0.1 v (908151 B2())eDey B3

e YA
+hggl£f¥/0 E(G(T'(s),1(s),V(s), B1(5), B2(8)))L{(T(5),1(5),V (5),51 (s),82(s)) €(E\ D, )} &S
1 e
< Keliminf - [ 14(1(s),1(5),v/(),61(5), B2 ()€ D, }d8 — WMINE = [ 1(7(5).1(5),v ()1 (5).82()) €2\ D)} 45
0 0
NS A
< —1+(Kg +1)liminf ;/0 L{(T(5),1(5),V (5), 1) 52(s)) €D } 45

(3.40)
By (3.39) and (3.40), it is easy to conclude that

1 t
lim inf — / L{(T(5),1(5),V (),61.(5),a(s)) €D } S = >0 as. (3.41)

Ke+1

By the definition of event probability and Fatou’s lemma [30], (3.41) is equivalent to the following form
¢

liminf = [ P(s, (T(s), I(s), V(s), B1(), Ba(s)), Do)ds >

t—oo { 0 K6—|—

> 0 a.s,

where P(t, (T, I,V, 1, 52),A) is the transition probability of (T'(t),I(t), V(t), 51(t), S2(t)) belonging to the
set A. Thus, in view of Lemma 3.1, we obtain that system (1.2) has at least one stationary distribution (-)
on Ri x R2, which has the Feller property. This completes the proof.

Remark 3.1 Actually, Bz (i = 1,2) can be regarded as anomalous integrals of parametric variables with
respect to the intensities of volatility o; (1 = 1,2) and if o; (i = 1,2) tend to zero, we obtain

K 3
. 3 71/‘2
allgr(lwﬂl gllgrclw (f/ﬁlﬁ (,/1I+51) ¢ dz)

252.
In this situation, we have
lim  Rf
0’1—>0+,<72—>0Jr
2
WAz [ By fx—i_ﬁl)se ") M= 7 Bayrs \ﬁm+52) e " dx)?
:m—>ol+ugz—>o+( +an)(us + a2) (A + Koy | Aoy )+( n )(iJr Aoy AJQ)
7 Ha TS TNy T ap yrpr T 2/ P2 T OUN\T, T Shus e T 2hyrpe
_ kB Ty BT,
(po +ar)(ps +az)  p2+an

= Ro.

Moreover, by the expressions of Ro and R, we can conclude that R < Ro

. Consequently, we generalize
the results of the deterministic system (1.1).
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4 Probability density for system (1.2)

In this section, we will focus on getting the explicit expression of the probability density of the distribution
7(-). Mathematically, the existence of the probability density of system (1.2) is more in-depth and specific
than that of the stationary distribution. Firstly, equivalent transformations of system (1.2) are given.

4.1. Equivalent transformations of system (1.2)

Firstly, we define a quasi-chronic infection equilibrium E* = (T*, I*,V*, 3, 83)T involved in stochasticity
by the equations

*

A= T*+rT*(1 - — max{f7,0}T"V* —max{8;5,0}T"I* =0,
max

max{f;,0}T*V* + max{f;5,0}T*I* — poI* — oy I* =0,
kI — V™ — apV* =0,

p1(B1—B7) =0,

p2(B2 — B3) = 0.

(4.1)

By solving Equation (4.1), we get that if RS > 1, then
T*:T+>O7 I*:IJ’_ >Oa V*:V+>07 ﬂT:Bh B;:BQa

where TF, It and V1 are the same as in Section one.
Let (1,70, 23,24, 75)T = (T —T*,1—1*,V = V*, 31 — B}, B2 — B5)T. According to the Itd’s integral and
system (1.2), the corresponding linearized system of (1.2) around E* takes the form

dry = (—a11$1 — Q1272 — G13T3 — A14T4 — a151:5)dt,

dzo = (a2121 — G222 + A23%3 + A24T4 + G2525)dt,

dxs = (azexs — agszs)dt, (4.2)
dry = —prradt + UldBl(t)7

dxs = —poxsdt + O'Qng(t),

where

2r * K Sk * T A r * k% k% K Y 7k
a1 :ul—r—l—T T —|—,81 —‘rﬁzl = FJ’_T T >0, a12:62T > 0, algzﬁlT >0,a14=T"V* >0,
a5 =TI >0, a21:51V +62 >0, aggzug—l—al—BQT :T>0, (123261T >0, a0, =T"V* >0,

ags =TI > 0, azy =k >0, ags = pusz + az > 0.

It is easy to see that ai13 = as3, a14 = @24, 15 = as5 and ageas3 > a23a32.
Before introducing the corresponding probability density, we need to introduce a significant definition
and two lemmas.

Definition 4.1 [36]. The characteristic polynomial of the square matriz A, is defined as pa,(X) = A" +
A"V ap_ 1A+ an, then A, is called a Hurwitz matriz if and only if A, has all negative real-part
eigenvalues, i.e.,

ay as as cee QA92k—1
1 as aq e QA2k—2
0 a1 as ... agk—
Hy = v =350, k=1,...,n,
0 1 as c.. Q2k—4
0 0 0 ... oa

where the complementary definition is a; = 0, j > n. Additionally, the corresponding necessary conditions
for A, to be a Hurwitz matriz are as follows

(Z) aj>0, ]:1,,71, (ZZ) AiGir] > Gi—10442, Z.:L...,n72, apg = 1.
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Lemma 4.1 [37]. For the algebraic equation HZ + AgXg + XoAL = 0, where Hy = diag(1,0,0,0) and Xq is
a real symmetric matriz, and the standard matriz
—T1 —T2 —T3 —T4
1 0 0 0
A=l 0 1 0o o
0 0 1 0

If 1 >0, 173>0, 74 >0 and 117273 — 732 — 7'127'4 > 0, then Xq is a positive definite matriz, where

T2T3 — T1T4 0 73 0
2 2 - 2 2
2(T1TaTs — T4 — TET4) i 2(T1ToTs — TS — TiT4) i
3 1
0 0 —
2 2 2 2
Sy = N 2(TiToT3 — T4 — TP Ta) ~ 2(TiToT3 — T — TP T4)
= 3 1
— 0 0
2 2 2 2
2(T1TaTs — T4 — TET4) 2(T17oTs — TS — TiT4)
0 . T1 0 . T1T2 — T3
2 2 2 2
2(T1ToTs — TS — TiT4) 214 (T1ToTs — T4 — T{T4)

Here Ag in this form is called the standard Ry matriz.

Lemma 4.2 [37]. For the algebraic equation HZ + AyB + @ojlg = 0, where Hy = diag(1,0,0,0), O¢ is a
real symmetric matriz, and the standard matriz

—l =y —l3 =l
- 1 0 0 0
Ao = 0 1 0 0
0 0 0 —ag1

If 11 >0, I3 > 0 and l1ls — I3 > 0, then the matrix ©¢ is semi-positive definite which takes the form

Iy 1
2 0 9
2ils — Is) ) 2ils — Is)
0 _ 0 0
0 = 2(l1ly — 13)
_é 0 171
2inls — 1) s(hls — Is)
0 0 0 0

Here flo in this form is called the standard Rs matriz.

4.2. Probability density of stationary distribution 7(-)

Theorem 4.1 Let (T(t),I(t),V(t), B1(t), B2(t))T be a solution of system (1.2) with the initial value (T(0),
1(0),V(0), B1(0), B2(0)T € R3 x R%. If R§ > 1, then there ewists a probability density of a multivariate
normal distribution ®(T,1,V, 1, 32) around the quasi-chronic infection equilibrium (T*,I*,V*, 85, 8:)T,
which takes the form

BT, 1,V, B, ) = (2m) 5] e HTT T WV il o )T (T V=V i a5

where X is a positive definite matriz, and the specific form of ¥ is given as follows.
(1) If p1 = 0, then

% = & (J10doJsJaJ1) M Ool(JrodoJs T2 1) T + &5 (JaoJr0 18 T12011) T Ao (Jao0Jr0S18 12 011) T
(2) If p2 # 0, then
Y= ff(J5J4J3J2J1)71201[(J5J4J3J2J1)71]T + §§(J15J14J13J12J11)71202[(J15J14J13J12J11)71]T~
(8) If po = 0, then
Y = E(JrJsJ3J2J1) 100 [(JrJsJs T2 1) YT 4 €2 (JirdieJizTi211) " Aol (JirJi6 13 J12d11) Y
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where

asz(ag + azz — aip) z
p1 = @12 + a1 + as2 —ayy, p2 = » , &1 = —a1ap1p201, {2 = —a15p1p202, §1 = —G14P1071,
1

&2 = —a15p102, &1 = 01403201, {2 = A1503202, T1 = A11+022+033, T2 = G11022+011033+022033+A12021 —A13032,
T3 = A11022a33 + 12021033 + 013021032 — A11013032, 11 = @11 + @22, l2 = a11a22 + 12021 — a13a32,

_ - " 3 2

li = as1 + aze + ass, lo = as1as3 + azass — arzase, X, = 2(py + piT1 + p172 + 73) (1172 — T3),

Soo = 2(p5 + p3T1 + pato + T3) (1172 — T3),

and
000710 1000 0 10 0 00
10000 01000 010 00
J1=01000,J2=01100,J3=00a§200,
00 1 00 0 00 1 0 0 0 pT 10
00001 00001 00 oo
1 0 0 0 0 —a14p1p2 —T1 —T2 —T3 —Q15P1P2
0 pP1P2 —(a12+a22+a33)p2 agg 0 0 1 0 0 0
J4: 0 0 P2 —ass 0 ,J5: 0 0 1 0 0 y
0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 O 1 0 0 0 0
0 p —(012+(L22) 0 0 01 0 0 O 0 —azx —azz3 azx O
Jo=1 0 o 1 00|, s=looo1o0|, =0 o 1 o0 o],
0 0 0 1 0 0 0 1 0 O 0 0 0 1 0
0 O 0 0 1 0 0 0 01 0 0 0 0 1
—a1ap1 —(a11 +ag2) —ai1a22 + a13a32 — a12a21 —al3p1 —a15P1 0 00 01
0 1 0 1 0 0 0 O
Jr = 0 0 1 0 0 , Ji1 = 01 0 0 O
0 0 0 1 0 0O 01 0 O
0 0 0 0 1 0O 0 0 1 0
a1aa3z  —(ag1 + ag2 +ass) 1303z — A21a33 — G22A33 (21032 415032 10 00 O
0 1 0 0 0 01 0 0 O
Jig = 0 0 1 0 , Jio = 01 1 0 O
0 0 0 1 0 0 00 1 0
0 0 0 0 1 0 0 0 0 1
—aispip2 —T1 —T2 —T3 —Q14P1P2
0 1 0 0 0
Jiz=J3, Juu=Js, Ji5= 0 0 1 0 0 , J16 = Js,
0 0 0 1 0
0 0 0 0 1
—aispr —(a11 +a22) —aiage + aizase — 12021 —aizPr —G14P1
0 1 0 0 0
Jip = 0 0 1 0 0 s = Js, Jio = Jo.
0 0 0 1 0
0 0 0 0 1
ajsazy  —(ag1 + aze +asz) G13G32 — G21G33 — (22033 (21032 (14032
0 1 0 0 0
Jop = 0 0 1 0 0 :
0 0 0 1 0
0 0 0 0 1
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Y01

1 (T2 — 73) + T2(p172 + T3)

Sh1
0
_pntT
Sh1
0
0

p%(TlTQ — T3> + 7'2(,027'2 + 7—3)

202
0
paT2 + 73
262
0
0
p1l1 + Iy
20 (prly + o + p2)
0

O = 1

AR Y
0
0
_ pll_l +_l_2
20 (prly + lg + p2)
0

1

24 (pily + 1z + p3)
0
0

pgll + l2
201 (p2li + 1o + p3)
0

Ay = 1

204 (paly + Is + p3)
0

0
_ pgzl +7[2
20y (p2ly + 1o + p3)
0

1

20 (paly + Iy + p2)
0
0

0 _'017;7:'73 0
01
ptT _ath
35 201
p1+7
0 0
%01
it 0 pim(pr+7) + 1T — T
S P1T3E5;
0 0 0
0 _w 0
202
paTe + T3 P2+
— 0 - *
252 202
P2+ 11
0 0
202
_p2tm 0 pai(p2 +71) + T2 — T3
P3N P273259
0 0 0
1
0 _ 0
) 20 (puly + Iy + p?)
0 0 0
21 (prly + Iz + p2)
0 p1+ 0 0
2p1l1lz(p1ly + 12 + p3)
0 0 0 0
0 0 0 0
1
0 o _ - 0
) 20 (puly + Iy + p?)
L 0 0 0
20 (pily + Iy + p?) .
l
0 - Plj- 1 - 0
2,011112(plll + 1l + pl)
0 0 0 0
0 0 0 0
1
0 _ 0
: 201 (p2ly + 1o + p3)
0 0 0
201 (p2ly + 12 + p3)
0 p2+ 1 0
2p2l1la(p2ly + la + p3)
0 0 0 0
0 0 0 0
1
0 o _ 0
) 20 (paly + Iz + p2)
_ _ 5 0 0 0
201 (p2l1 + 1o + p3) _
l
0 _ ,02:0- 1 . 0
2p2l1l2(p2ls + 12 + p3)
0 0 0 0
0 0 0 0
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Proof. For the sake of simplicity, let X = (z1, 22, 73,74, 25)7, B(t) = (0,0,0, By(t), B2(t))T,

—ai1 —ai2 —ai3 —ai4 —ais 00 0 0 O

az1  —a22 a3 a24 ass 000 0 O

A= 0 aszs  —ass 0 0 , H= 00 0 0 O
0 0 0 —p1 0 0 0 0 o1 O

0 0 0 0 —p2 0 0 0 0 o9

With these notations, system (4.2) can be rewritten into the following equivalent form
dX(t) = AX(t)dt + HdB(t). (4.3)

In the light of the continuous Markov processes theory [38], system (4.3) has a unique probability density
®(x1,x9,x3, T4, T5,t), which is determined by the following five-dimensional Fokker-Planck equation
7] 0 o? 0? o3 02

i X0+ G AXORX 0. 0)] = 5 55 (X(0).0) - T 55 2(X(0),0) = 0. (4.4)

Next, we will give the accurate expression of the probability density by solving Equation (4.4). It is
noticed that 0®(X (t),t)/0t = 0 under a stationary case, then (4.4) becomes

9
(9l‘1

0
[(—a1121 — a1222 — a1323 — @144 — a1525)P) + %[(amxl — G222 + A23%3 + A24T4 + QA2515) D]
2
2 82 2 82
D -2 p=0,
2 Oxj 2 Ozg

9 b B (4.5)
+ 87563[(032@ — agzxs)®] + afm(*mm@) + 8765(*/72355@) —

Because the diffusion matrix H is a constant matrix, then the probability density ®(X) can be described
by a normal distribution according to the work of Roozen [39], that is,

P(X) = mexp{ — ;XTQX},

where @ is a real symmetric matrix and m is a positive constant satisfying the normalization condition
Jos ®(X)dX = 1.

Substituting these results into (4.5), we obtain the constant m = (27) %|%|~2 and Q satisfies the
following algebraic equation

QH?>Q+ QA+ ATQ =0. (4.6)

If the matrix @ is positive definite and so it is invertible, we define Q~! = £, then the algebraic equation
(4.6) can be transformed into the following equivalent form

H? + A + 34T = 0. (4.7)

In consideration of the finite independent superposition principle [38], (4.7) is equivalent to the sum of
the following two algebraic sub-equations,

H? + AY; +35,AT =0, i =1,2,

where H? = diag(0,0,0,0%,0), H3 = diag(0,0,0,0,03), and the symmetric matrices ¥; (i = 1,2) are their
solutions, respectively. It is easy to see that ¥ = ¥ + ¥y and H? = H? + H3.

Denote by
—a11 —ai2 —a13
A® = az1  —azz a3
0 azz  —ass

To validate that the matrix A®) is a Hurwitz matrix, in view of Definition 4.1, we need to validate that all
the eigenvalues of A®) have negative real-parts. To this end, define the characteristic equation of A®) by

@A(a)(/\):)\3+7’1/\2+Tg)\+7'3:0, (48)
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where

T1 = a11+a22+ass, T2 = G11022+011033+022033+aA12021 —A13032, T3 = G11022033+012021033+013021032—011013032.
On the basis of the expressions of T*, I*, V*, we have

T >0, T3 > a1(assass — assazz) >0, 7172 — 73 > a11(a11a22 + a11a33 + a12a21 + aseass + a3, + azs) > 0,

which shows that all the roots of the characteristic equation (4.8) have negative real-parts and hence the
matrix A®) is a Hurwitz matrix.

Now we are in the position to give the specific form of ¥ and validate its positive definiteness. We realize
it in two steps.

Step 1. Consider the algebraic equation

H? + A%, + 3, AT =o. (4.9)

Define A; = JlAJfl7 where the ordering matrix J; takes the form

0 0 0 1 0
1 0 0 0 0
J1 = 01 0 0 O
001 00
0 0 0 0 1
Direct calculation leads to that
—p1 0 0 0 0
—a14 —0ai1 —ai2 —a13 —ais
A = a24 azi —a22 az3 azs
0 0 as2 —Aass 0
0 0 0 0 —py

Define Ay = J2A1J{1, where the elimination matrix J> is given by

1 0 0 0O
01 0 0 O
Jo = 01 1 00
0 0 0 1 0
0 0 0 01
Then we have
—p1 0 0 0 0
—ai4 a2 —ai —ai2 —aiz —ais
Ay = 0 j41 —(a12 + a22) 0 0 )
0 —aso ass —ass 0
0 0 0 0 —p2

where
p1 = a12 + a1 + az2 — a.

In the light of the value of p,, we will consider the following two cases:

(1) p1 # 0; (2) p1 = 0.
Case 1. If p; #0, let A3 = J3A2J3_1, where the elimination matrix J3 takes the form

10 0 00
01 0 00
00 1 00

Js =
00 82 10

P1
00 0 01
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Then it is easy to obtain that

—p1 0 0 0 0
a13a32 — ai2pP1
—Q14 Q12 —Q11 — —_  —@13 —ais
A — p1
3 0 D1 —(a12 + ag2) 0 0 ’
0 0 D2 —azz 0
0 0 0 0 —p2

where
asz(a21 + asz — ai1)
P2 = .
b1

Based on the value of ps, we study the following two conditions

(i) p2 # 0; (ii) p2 = 0.
Case 1.1. If ps #0, let Ay = J4AsJ; ! where the standardized transformation matrix Jy is given by

1 0 0 0 0
0 pip2 —(a12+ag +ass)pa a3z 0
Jy=10 0 D2 —aszz 0 |,
0 0 0 1 0
0 0 0 0 1
then
—p1 0 0 0 0
—app1p2 —(a11 + age +az3) ages) Gae4) —G15P1P2
Ay = 0 1 0 0 0 ,
0 0 1 0 0
0 0 0 0 —p2
where
ay(23) = —To = —(a11a22 + a11a33 + az0a33 + a12021 — a13a32),
ay24) = —T3 = — (11022033 + a12a21a33 + 4130210432 — A11013032).

In addition, let As = J5A4J5 1 where the standardized transformation matrix Js is given by

—Q14pP1P2 —7T1 —T2 —T3 —Q15P1P2
0 0

0
Js 0
1
0

_ o O

1 0
0 0 1
0 0 0
0 0 0
By simple computation, we have

—(m+p1) —(mpr+71) —(ep1+73) —T3p1 aspip2(p2 — p1)
1 0 0 0

As

0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 —po
In addition, Equation (4.9) can be transformed into the following form

(J5J4J3J2J1)H12(J5J4J3J2J1)T+A5(J5J4J3J2J1)21(J5J4J3J2J1)T+ (J5J4J3J2J1)21(J5J4J3J2J1)TAg = 07

that is,
Hg + A5¥o1 + E(nA? =0, (410)

23



where Yo, = §f2(J5J4J3J2J1)21(J5J4J3J2J1)T and & = —ayup1p201. By solving Equation (4.10), we

obtain
pi(mime — 73) + T2(p172 + T3) 0
261
p1T2 + T3
0 v
261
Yo1 = _ P1T2 £+ T3 0
o1 N
0 _P1 ’ T1
261
0 0

where ¥ = 2(p3 + pir + p172 + 73) (1172 — T3).
It is noticed that the matrix Yoy is positive semi-definite and its submatrix

4
E((n) =

is positive definite. Therefore, the matrix ¥y = &7(J5JyJ3JoJ1) 1 801[(J5aJ3J2J1) 17T is also positive

P%(Tﬂ'z - TS) + 72(p17'2 + T3)

. 0
261
0 p1T2 + T3
261
T2+ T3 0
61 N
0 _Pl ’ T1
25

P12 + T3

0
X6
0 Pt T
261
1+ 7 0
261
0 piTi(pr +71) + im0 — T3
;017'3231
0 0
P72+ T3 0
261
0 Mt T
261
P11+ 1
" 0
X6
0 piTi(p1 + 1)+ T2 — T3

P1T3205;

semi-definite and there exists a positive constant 7; such that

Case 1.2. If pp =0, let Ag = JsAszJ; 1 where the standardized transformation matrix Js is given by

then

As

Jr =

10

Y1=m

o O O O
o O O

Direct calculation gives that

Aq

SO O oo

0

0
0
1
0

o O o oo

1 0 0 0 0
0 p1 —(a2+aw) 0 0O
Js=| 0 0 1 0o o0 |,
0 0 0 10
0 0 0 0 1
—p1 0 0 0 0
—auapr  —(a11 +az2) —ana +a13az2 — a12a21  —aizpr —aispi
= 0 1 0 0 0
0 0 0 —as3 0
0 0 0 0 —p2
Next, define A7 = J; AgJ- L where the standardized transformation matrix .J; takes the form
—apsp1 —(a11 +ag) —aiia + aizazx — aj2a21  —ai3pr —aispi
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
—(p1+1h) —(pilh +12) —pila azpi(ass —p1) aispi(p2 — p1)
1 0 0 0 0
- 0 1 0 0 0 ,
0 0 0 —ass 0
0 0 0 0 —p2

24




where
l1 = a11 + az, lo = a11a22 + a12a21 — a13a32.

Similarly, Equation (4.9) can be rewritten into the following equivalent form

(Jr s Js oy ) HE(J7Js T3 J2J1) T + A (Jr Je Js o J1 )21 (Jr Je Ja o J1 )T + (JrJe T3 Jod1 ) 21 (JrJe T3 Jod1 )T AL = 0,

i.e.,
H + A700 + 69AT =0, (4.11)
where éo = 51_2(J7J6J3J2J1)21(J7J6J3J2J1)T and 51 = —Q14P101. By solving Equation (4.11), we have
pili + 1o 0 B 1 0
20 (p1ly + Iz + p?) ) 201 (p1ly + Iz + p?)
0 0 0 0
O — 201 (p1ly + 12 + p)
0= B 1 0 1+l 0
201 (p1ly + la + p3) 2p1l1la(p1ly + lo + p3)
0 0 0 0 0
0 0 0 0 0
Apparently, the matrix O is positive semi-definite and its submatrix
plll + l2 0 _ 1
20 (p1lh + 1o + p?) ) 201 (pr1lh + 1z + p?)
~ 0 0 0
ey = 20 (prly + 1o + p3)
_ ]. 0 pl —+ ll
201 (prly + 12 + p3) 2p1l1la(prly + 12 + p3F)
0 0 0 0

is positive semi-definite. Hence, the matrix £1 = £2(JrJgJ3J2J1) 100[(JrJ6J5J2J1) T is also positive
semi-definite and there exists a positive constant 7; such that

1000 0
00000
Sy = |0 0 0 0 0
00010
00000

Case 2. If pP1 = O7 i.e., a12 + a21 + a2 —aj; = 0, let Ag = J8A2J8_1, where the ordering matrix JS is
given by

1 0 0 0O
01 0 0 O
Js=| 0 0 0 1 0 [,
001 0O
00 0 01
then we have
—p1 0 0 0 0
—G14 QA12 —a11  —013 —a12 —a15
Ag = 0 —as2 —as3 asz 0
0 0 0 —(aiz+ax) 0
0 0 0 0 —p2

Next, define Ag = JgAgJy L where the standardized transformation matrix Jg takes the form

1 0 0 0 0
0 —azx —azz3 azz O
Jog = 0 0 1 0 O
0 0 0 1 0
0 0 0 0 1

25



It is easy to calculate that

—p1 0 0 0 0
114032 *(azl + ag + 633) a13G32 — 421033 — 422033 a21a32 a15032
Ag = 0 1 0 0 0
0 0 0 —(a12 + asz) 0
0 0 0 0 —p2

Let Ajg = JloAngol, where the standardized transformation matrix Jyq is given by

aigazy  —(ag1 + ag2 +asz) aizase — (21033 — A22G33  A21032 (15032
0 1 0 0 0
Jio = 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

It is easy to obtain that

—(p1+1h) —(pili+12) —pila az2ia32(p1 — a12 — a22) aisasz(pr — p2)
1 0 0 0 0
A = 0 1 0 0 0 ,
0 0 0 —(a12 + aaz) 0
0 0 0 0 —p2

where ~ ~
Iy = a1 + aga + ass, ly = az1a33 + azxa33 — aizass.
Moreover, Equation (4.9) can be equivalently transformed into the following form
(JroJoJs JoJ1 ) HE (J10JoJs J2J1) T + A1 (J10do I T2 J1 )21 (JroJoJs Jo 1) +(T10Jo s J2J1) 21 (JroJo JsJo 1) T Ay = 0.
The above equation can be rewritten as the following equivalent form
Hg + AlOéO + éoA,{O =0, (412)

where Ho = diag(l,0,0,0,0), (:)0 = 51_2(J10J9J8J2J1)21(J10J9J8J2J1)T and 5_1 = 14Q32071. By solving
Equation (4.12), we obtain

pily + 1o 0 B 1 0
201 (p1ly + la + p?) ) 201 (p1ly + I + p3?)
0 — 5 0 0 0
O — 201 (p1lh + 12 + p?) B
o= 1 +1
o _ _ 0 _ P17 1 0
2l1(p111 + 1o + p%) 2p111l2(p111 +Is + p%)
0 0 0 0 0
0 0 0 0 0
Note that the matrix O is positive semi-definite and its submatrix
le + ZQ 0 _ 1
20 (o1l 412 + p7) ) 201 (p1ly + 12 + p?)
_ 0 — 0 0
ol = 20 (prly 4 la + p3) _
_ 1 0 p1+lh
201 (p1ly + Iz + p3?) 2p1l1la(p1ly + ls + p?)
0 0 0

is positive semi-definite. Thus, the matrix ¥ = &2(Jy0JoJgJ2J1) 1 O0[(J10JoJsJ2J1) 1T is also positive
semi-definite and there exists a positive constant 7; such that

00000
00000
Sy =m0 00 0 0
00010
0000 O
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Step 2. Consider the algebraic equation
HZ + ASy + 5,47 = 0. (4.13)

Let Ay = J11AJ1_11, where the ordering matrix Ji; takes the form

Jin =

oo o~ O
oo~ OO
o= O OO
= O O OO
S o oo+

then we obtain
—p2 0 0 0 0

—a15 —aixp —a12 —a13 —ai4
An = azs  Gp1  —Q22  G23 Q24
0 0 aso —ass 0
0O 0 0 0 —p

Next, let Ao = Ji0 A1 Jl_zl, where the elimination matrix Jyo is given by

1 0 0 0 0
01 0 0 0
Jia = 01 1 0 0
00 0 1 0
0 0 0 0 1
Then
—pa 0 0 0 0
—a1s a2 —ai —ai2 —aiz —ai4
Ap = 0 D1 —(a12 +az2) 0O 0 ,
0 —agzz as2 —azz 0
0 0 0 0 —pm
where

p1 = Q12 + az1 + @z — aq1.

In view of the value of p;, we will study the following two cases:

(1) p1 #0; (2) p1 = 0.

Case 1. If p; # 0, following the derivation process in Step 1, we define A3 = J13A12J131, where the
elimination matrix Ji3 takes the form

1.0 0 00
01 0 00
00 1 00
Jiz=J3 =
00 82 19
b1
00 0 01
Then we compute that
—p2 0 0 0 0
a13a32 — G12P1
—a15 @12 —Q11 — < —ai3 —aig
A — P1
13 0 D1 —(a12 + ag2) 0 0 ’
0 0 D2 —azz 0
0 0 0 0 —p1

where
_asz(az +azz —ay)
p2 = .
P1

27



On the basis of the value of py, we consider the following two conditions

(i) p2 # 0; (ii) p2 = 0.

Case 1.1. If po £ 0, let A1y = J14A13J1_41, where the standardized transformation matrix Jy4 is given

by
1 0 0 0 0
0 pips —(a12+age +ass)pa a3z 0
Ju=Jys= 0 0 D2 —azz 0
0 0 0 1 0
0 0 0 0 1
We obtain that
—po 0 0 0 0
—a1sp1pe —(a11 + ag2 4+ asz3)  Gia23) G1a24) —G14P1D2
Ay = 0 1 0 0 0 ,
0 0 1 0 0
0 0 0 0 —p
where
a14(23) = —T2 = —(a11022 + a11033 + a22033 + a12021 — A13032),
a14(24) = —T3 = —(a11022a33 + 12021033 + A13021032 — 11013032)-

Next, define A5 = J15A14Jf51, where the standardized transformation matrix Jis takes the form

—Qisp1P2 —T1 —T2 —T3 —@Q14P1pP2
0 1 0 0 0
Jis = 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
Then it is easy to see that
—(p2+11) —(pam1+712) —(pam2+73) —p2m3  auapip2(p1 — p2)
1 0 0 0 0
Ay = 0 1 0 0 0
0 0 1 0 0
0 0 0 0 —p1

Thus, Equation (4.13) can be transformed into the following form

(JisJiaJ1a i i1 ) HE (JisJiaJi3 i d11) " + Avs(JisJiadizJi2J11) e (JisJia iz Ji2J11) T
+ (J15J1ad13J12J11) S (Jis 1413 J12011) T Al = 0,

that is,

HE + A15502 + S2Al5 =0,
where 202 = 52_2(J15J14J13J12J11)22(J15J14J13J12J11)T and 52 = —QA15P1P202. By solving Equation (4.14),

we have

p3(T172 — 73) + T2(p2T2 + T3)

22
0
_ p2T2 + T3
202
0
0

E()2

pP2T2 + T3
2o
0
p2+ 7
22
0

where ¥, = 2(p3 + p371 + pa7o + 73) (1172 — T3).
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_ Pa2T2 + 73

202
0
p2 + 11
202
0
0

(4.14)

0 0
_Pztﬁ 0
5o
0 0 |-
paTi(p2 +71) + T2 — T3 0
027'3232
0 0



It is easy to conclude that the matrix g5 is positive semi-definite and its submatrix

p3(T172 = 73) + Ta(p272 + 73) 0 _ p2T2t T3 0
202 22
0 p2To + T3 0 P2t T
$@ _ IS 202
02— p2T2 + T3 p2 + T
T 0 * 0
262 22
0 _p2tT 0 p2Ti(p2 +T1) + T1Te — T3
22 p2T33 50

is positive definite. Accordingly, the matrix Yo = £3(J15J14J13J12J11) " 1802 [(J15 1413 J12J11) "1]T is also
positive semi-definite and there exists a positive constant 75 such that

00000
01000
So=m |0 0 1 0 0
00000
0000 1

Case 1.2. If po =0, let A1 = J16A13J1_61, where the standardized transformation matrix Jyg is given
by

1 0 0 0 0
0 pr —(aiz24ax) 0 0
Jg=Jg=1] 0 0 1 0o o0 |,
0 0 0 1 0
0 0 0 0 1
then
—p2 0 0 0 0
—a1sp1 —(a11 +age) —ai1a22 + a13G32 — a12G21  —a13P1 —A14P1
A = 0 1 0 0 0
0 0 0 —Aass 0
0 0 0 0 —p1

Next, define A7 = J17A16J1_71, where the standardized transformation matrix Ji7 takes the form

—aisp1 —(ai1 +a) —aiia + aizaze — ai2aa1  —a13p1 —a14P1

0 1 0 0 0
Jir = 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Direct calculation gives that

—(p2+1) —(p2li +12) —p2lo aizpi(ass — p2) arapi(p1 — p2)

1 0 0 0 0

Ay = 0 1 0 0 0 ,
0 0 0 —ass 0
0 0 0 0 —n

where
li = a11 + agz, lo = a11a22 + a12a21 — a13a32.

Similarly, Equation (4.13) can be rewritten into the following equivalent form

(JizJieJ13Jia 11 ) HE (JizJieJis i d11) T + Az (JirJieJisJizJ11) e (JirJie JizJi2J11) "
+ (JirJ16J13J12J11) o (JirJ16J13J12011) T AT, = 0,

ie.,

H2 + A7Ag + AgAT, =0, (4.15)
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where Ao = 552(J17J16J13J12J11)22(J17J16J13J12J11)T and 52 = —a15pP102. By SO]ViIlg Equation (4.15),
we obtain

p2l1 + 12 0 _ 1 0
201 (paly + 1o + p3) ) 201 (paly + 1o + p3)
0 0 0 0
A — 2l (p2l + 12 + p3)
0= B 1 0 p2+ 1 0
211(,0211 + 1o + p%) 2p21112(p2l1 + Iy + pg)
0 0 0 0 0
0 0 0 0 0
It is obvious that the matrix Ao is positive semi-definite and its submatrix
p2l1 + 1o 0 _ 1
201 (p2ly + 12+ p3) ) 201 (p2ly + 12 + p3)
~ 0 0 0
A(()4) = 214 (pgll + 1y + p%)
_ 1 0 p2 + 1
211 (p2ly + l2 + p3) 2p2l1la(paly + 12 + p3)
0 0 0

is positive semi-definite. So the matrix X = £2(Jy7J16J13J12J11) ~  Ao[(J17J16J13J12J11) 1T is also positive
semi-definite and there exists a positive constant 73 such that

00 0 00O
0 0 0O
o720 0 0 0 O
000 00O
00 0 0 1
Case 2. If p; = 0, ie., ajo +as; +azx —aj; = 0, let A1z = JlgAngfgl, where the standardized

transformation matrix .J;g takes the form

1 0 0 00
01 0 0O
Jg=Jgs=| 0 0 0 1 0
001 00
0 00 0 1
By simple computation, we obtain
—p2 0 0 0 0
—a15 Q12 —a11  —ai13 —ai2 —ai14
Aig = 0 —as2 —a3s3 aso 0
0 0 0 *((112 + 022) 0
0 0 0 0 —p1

In addition, let A9 = JlgAlg;Jl_gl7 where the standardized transformation matrix Jig takes the form

1 0 0 0 0

0 —az2 —asz asx O
Jog=Jog=1] 0 0 1 0 O
0 0 0 1 0
0 0 0 0 1
Direct calculation leads to that
—p2 0 0 0 0
15032 —(a21 + ag2 + asz) ai13G32 — A21033 — A22a33 Q21032 (14032
Ay = 0 1 0 0 0
0 0 0 —(a12 + a22) 0
0 0 0 0 —p1
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Define Agg = JgoAng{()l, where the standardized transformation matrix Joq is given by

15032 *(021 + ag2 + a33) 13432 — (21033 — 422033 A21032 A14032
0 1 0 0 0
Jog = 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
Then
—(p2 + Zl) —(P271 + 72) —pals as1as2(p2 — a12 — aze)  aisasz(p2 — p1)
1 0 0 0 0
Agg = 0 1 0 0 0 ,
0 0 0 —(a12 + az) 0
0 0 0 0 —p1
where

l1 = ag1 + ass + ass, lo = aziass + azeazs — aizass.
Similarly, Equation (4.13) can be transformed into the following equivalent form
(JaoJ19J18T12011 ) HE (Jao J10J18T12J11) " + Aoo(JaoJroJ18J12J11) 2 (Joo J10J18J1211) T
+ (JooJr9J1sJ12J11) B2 (J20 19 J18 J12J11) T A2y = 0,

that is, - ~
HZ + AsgAg + AgAL =0, (4.16)

where AO = 5_2_2(J20J19J18J12J11)22(J20J19J18J12J11)T and 52 = A1503209. By SOIViIlg Equation (416),
we have

pgl_l + l_2 0 _ 1 0
201 (p2ly + Iz + p3) ) 201 (p2ly + Iz + p3)
0 _ — 0 0 0
A — 201 (paly + Iz + p3) _
’ _ ! 0 p2+ 1 0
201 (p2li + 1o + p3) 2p2l1l2(paly + 1z + p3)
0 0 0 0 0
0 0 0 0 0
Clearly, the matrix A is positive semi-definite and its submatrix
pali + 1o 0 _ 1
201 (pals + 1o + p3) ) 201 (p2ly + 12+ p3)
_ 0 - — 0 0
AW = 201 (paly + ls + p3) )
_ 1 0 p2 + 11
2l (paly +la + p3) 2p2l1lz(paly + 12 + p3)
0 0 0 0

is positive semi-definite. So the matrix Yo = g%(J20J19J18J12J11)_1A0[(J20J19J18J12J11)_1]T is also positive
semi-definite and there exists a positive constant 7, such that

00000
00000
S =7 |0 0 0 0 0
00000
0000 1

31



Now we validate the matrix ¥ = ¥ 4+ X9 in Eq. (4.7) is positive definite. If ps # 0, then the covariance
matrix

M=%+ X9
1 0 0 0 O 00 0 0 O
01 0 0 O 01 0 0 0
=m0 0 0 0 0f+m|0o 0100
00 0 1 0 00 0 0 O
00 0 0 O 00 0 01
1 0 0 0 O
01 0 0 O
=(mAm) [0 0 1 0 0
0 00 1 0
0 0 0 0 1

is positive definite. Similarly, we can validate that under the other two cases, the covariance matrix ¥ is
also positive definite. Accordingly, we obtain that the stationary distribution 7(-) around the quasi-chronic
infection equilibrium (7%, I*, V*, 85, B3)" follows a unique probability density ®(T,I,V, 1, 32), which takes
the form

(T, 1,V, 1, o) = (2m) F[5]~Hem HT-T NI L Y oV B a RNV =V a8 B )

where the specific form of ¥ can be determined by the above discussion. This completes the proof.

5 Numerical simulations

In this section, we supply some numerical simulations to validate our theoretical results. For the stochastic
system (1.2), we adopt the Milstein higher-order method mentioned in [40] and the discretization form of
the stochastic system is as follows:

. , , , TI 4 o . .y
Titl =T7 4 [/\ - T7 + rTV (1 - ) —max{8],0}77V? — max{35,0}T7 I | At,

I = [ 4 [max{p], 0}T9V7 + max{B],0}T9I7 — (up + on ) I] At, (5.1)
VIt = VI 4 [kI7 — (u3 + a2)VI]AL, :
ﬁ{+1 =Bl + p1(@1 — B)At + o1V Atey 4,

It = B+ p2(B2 — B) At + 02/ Ates 5,

where (T7,17,V7, 6{, 6§)T represents the corresponding value of the jth iteration of the equation (5.1). At
is the time increment which is positive, 07 denote the intensities of white noises, gij (i=1,27=1,...,n)
are mutually independent normal random variables following the distribution N(0,1). We choose actual
parameter values from the published references, and all the values of biological parameters are given in
Table 2.

Next, in view of numerical simulations, we mainly focus on validating two aspects:

(i) there exists a stationary distribution of system (1.2) if the condition R§ > 1 holds;

(ii) the existence of the probability density.
Example 5.1. In order to get the existence of a stationary distribution numerically, we choose p; = 0.5,
p2 = 0.5, 01 = 1075, 05 = 5 x 107° and the other parameter values are presented in Table 2. By direct

calculation, we obtain

—~ 1 .2 By)3 e~ 2"
s RGETam (et B)se do)’ Moz iym (a + B)ie™™ da)? 2.524 > 1
= I EX A A 2\ A o .
(2 + a1)(ps + a2) (7 + 2@#3\0/;? + 2@%) (u2 + a1)(7; + 2,1;@:7#% + Qﬁ;%)

In other words, the conditions of Theorem 3.1 are satisfied. By Theorem 3.1, we obtain that system (1.2)
has a stationary distribution 7(-) which shows that all CD4% T cells and free viruses are persistent a.s. See

Fig. 1.
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Table 2: List of parameters

Parameters Unit Value Source
A pul Tday T 10 [41, 42]
m day™" 0.1 [42, 43]
r day ™" 0.1 [5, 41]

Tnax pl ™t 1500 [41]
B plday ! 1.3 x 107° 8, 43]
Ba plday 2x 1073 [44]
th2 day™* 0.5 [41, 43]
k virions/cell 3000 [9, 10]
13 day ™! 23 [11, 41, 42]
o day ™! 0.01 Estimated
Qs day ™! 0.02 Estimated

Frequency histogram and marginal density function of stochastic T(t)

; ;
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4 Frequency histogram and marginal density function of stochastic I(t)
T T

T T T T T
= Deterministic infected CD4" T cells [ Frequency histogram

= = Stochastic infected CD4" T cells Marginal density function | -
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Fig. 1. The left column shows the time series diagrams of the healthy CD4% T cells, the infected CD4%
T cells and the free viruses in the stochastic model (1.2) and their corresponding deterministic model (1.1)
with p; = 0.5, po = 0.5, 0y = 1076 and 05 = 5 x 107°. The right column shows the marginal density
functions and frequency histograms for T', I and V, respectively.

Example 5.2. To validate the existence of the probability density around the quasi-chronic infection
equilibrium, we choose p; = 0.5, p» = 0.5, 07 = 107%, 05 = 5 x 107° and the other parameter values
are presented in Table 2. Then we have E* = (T*,I*,V*, 31, B2)T = (138.0550,17.1164,2230.6402, 1.3 x
1072,2 x 10~*)T and

[ o 3.\ o2 °% Z By)be "
RS kA= f_‘l—{ﬁ(ﬁx+ﬂl)ée dz)” n M= I—B(ZTM(V%I+M§6 “ 2524 > 1
0= o Ao Ao 22 o |
(Mz + al)(Mg + 042)(%0 + 2/15;\\/;? + 2;7/?/712:%) (MQ t a1)(%0 + 2’15;\\/;? * 2’]/:/;%

That is to say, the conditions of Theorem 4.1 hold. So system (1.2) has a Gaussian probability density near
the quasi-chronic infection equilibrium E*. In addition, we obtain po = 140369.8291 > 0. Hence, by the
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second case of Theorem 4.1, it is easy to get the specific expression of the covariance matrix X,

Y =€2(JsJyJ3Jody) T 01 [(Js Jadz T2 Jy) T 4 €2 (JisJiaJisTiad11) " 0o (JisJia iz Ji2J11) T

21.3617 —2.7380 —362.4600 —9.5512 x 10~7  —0.00001832
—2.73802 2.0658 269.1870 4.9024 x 10=7  0.000009404
= —362.4600 269.1870 35080.9 0.00006253 0.001200 ,
—9.5512 x 107 4.9024 x 10~7  0.00006253 1.0 x 10712 0
—0.00001832 0.000009404 0.001200 0 2.5 x 107

and the corresponding probability density (7', 1,V, 81, f2) is given by
(I)(T7I7 ‘/:Bh 62)

1
=(2m) %% exp{ — 5(T — 138.0550, 1 — 17.1164, V — 2230.6402, 8; — 1.3 x 107°, B, — 2 x 10~3)Tn "1
x (T —138.0550, I — 17.1164,V — 2230.6402, 31 — 1.3 x 1077, 3y — 2 x 10—3)}

= 136249280.8326 exp { — —(T — 138.0550, T — 17.1164, V — 2230.6402, ; — 1.3 x 107°, B — 2 x 107 3)T8 !

1
2
x (T —138.0550, 1 — 17.1164,V — 2230.6402, 51 — 1.3 x 1077, 3y — 2 x 103)}.

Thus, ®(T,1,V, 1, f2) has the following five marginal probability densities

aﬁ — 0.08632670'02341(717138‘0550)2, aiq) — 0.2776670.2420(1717.1164)27 aﬁ — 0.002130670.00001425(‘/72230.6402)27
ol aVv
aﬁ = 398942 280467500000000000(51*1.3><1075)2 87@ — 7978 845667200000000(52*0.002)2
O . " 02 ' '

Fig. 2 illustrates this.
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Fig. 2. Numerical simulations for: (i) the frequency histogram fitting density curves of T, I, V, 81 and [
of system (1.2) with 50000, 50000 iteration points, respectively. (ii) The marginal probability densities of T,
I, V, 1 and (3 of system (1.2). All of the parameter values are the same as in Fig. 1.

6 Conclusion

In this paper, based on both biological significance and mathematically reasonable hypotheses, we develop
and analyze a stochastic HIV model with cell-to-cell transmission and Ornstein-Uhlenbeck process to describe
the replication process and the pathogenesis of HIV infection in the population. Firstly, we validate that
system (1.2) has a unique global solution with any given initial value. Then we adopt a novel method to

34



construct some suitable stochastic Lyapunov functions to establish sufficient criteria for the existence of a
stationary distribution, which is a kind of probability distribution with some variables from the viewpoint
of stochastic process. Especially, under the same conditions as the existence of a stationary distribution,
we derive the accurate form of the probability density, which is a function that describes the probability
of the output value of the random variable near the quasi-chronic infection equilibrium of system (1.2).
Mathematically, the existence of a stationary distribution implies the weak stability in stochastic sense
while the existence of the probability density of system (1.2) is more in-depth and specific than that of
the stationary distribution. Biologically, the existence of a stationary distribution and probability density
indicates the persistence and coexistence of all CD4% T cells and free viruses.

Numerically, on the basis of the actual parameter values in the existing literature, we get two important
conclusions: (i) small environmental noise makes each population fluctuate extremely little which can still
retain some stochastic weak stability to some extent; (ii) we obtain the specific form of the probability
density around the quasi-chronic infection equilibrium E* of system (1.2).

On the other hand, there are remain lots of significant topics deserve further consideration. For example,
in this paper, we assume that the parameters f; and [y satisfy the Ornstein-Uhlenbeck process. It is
interesting to assume that the other parameters involved in system (1.1) satisfy the Ornstein-Uhlenbeck
process which may make the model fit the actual situation better. In addition, it is also significant to analyze
the influences of other types of random perturbations (such as nonlinear perturbations, colored noise, Poisson
jumps et al.) on HIV models. To our knowledge, there is little literature to study viral infection models with
Lévy jumps or Poisson jumps since there are many barriers to deal with the corresponding Fokker-Planck
equation in the discontinuous situation. This is because we lack appropriate mathematical methods and
skills. These issues are expected to be resolved in the near future since the relevant work is now underway.
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