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Analysis of a stochastic HIV model with cell-to-cell

transmission and Ornstein-Uhlenbeck process

Qun Liu∗

School of Mathematics and Statistics, Key Laboratory of Applied Statistics of MOE, Northeast Normal University,

Changchun 130024, Jilin Province, P.R. China

Abstract In this paper, we establish and analyze a stochastic HIV model with both virus-to-cell and
cell-to-cell transmissions and Ornstein-Uhlenbeck process, in which we suppose that the virus-to-cell
infection rate and the cell-to-cell infection rate satisfy the Ornstein-Uhlenbeck process. Firstly, we
validate that there exists a unique global solution to the stochastic model with any initial value. Then
we adopt a stochastic Lyapunov function technique to develop sufficient criteria for the existence of a
stationary distribution of positive solutions to the stochastic system, which reflects the strong persistence
of all CD4+ T cells and free viruses. In particular, under the same conditions as the existence of a
stationary distribution, we obtain the specific form of the probability density around the quasi-chronic
infection equilibrium of the stochastic system. Finally, numerical simulations are conducted to validate
these analytical results. Our results suggest that the methods used in this paper can be applied to study
other viral infection models in which the infected CD4+ T cells are divided into latently infected and
actively infected subgroups.
Keywords HIV model; Cell-to-cell transmission; Ornstein-Uhlenbeck process; Stationary distribution;
Probability density.

1 Introduction

Acquired immunodeficiency syndrome (AIDS) has become a great threat not only to the society but also to
the human health. According to the Global Progress Report on AIDS 2021, there were about 37.7 million
people worldwide who had been infected with the Human Immunodeficiency Virus (HIV) in 2020 [1]. HIV
primarily invades CD4+ T lymphocytes cells or T-helper cells in the body of human being, which eventually
leads to the deficiency of immune system against infections. Because of the immunodeficiency, human body
will be susceptible to broad range of infectious diseases [2]. At this time, CD4+ T cells play an important
role in almost all adaptive immune responses because they can secrete some differentiation factors which are
requisite for other cells in our immune system [3]. Therefore, in order to prevent and control HIV/AIDS
effectively, people have taken some preventative measures in relation to the epidemics, such as the media
and the media can convey positive messages related to the health which might change the behaviors of the
people of unaware citizen.

Recently, using mathematical modeling to study the replication process and transmission dynamics of
HIV infection has been a hot research issue in the field of epidemiology [4]. Earlier studies only focus on the
healthy CD4+ T cells, the infected CD4+ T cells and the free virus particles, that is virus-to-cell infection
[5, 6, 7, 8, 9, 10, 11]. However, the virus-to-cell infection is usually inefficient because target cells or donor
cells often set up some specific obstacles to prevent the transmission of the virus-to-cell mode [12]. Many
scholars have revealed that the virus can be also transmitted by the infected cells to target cells through
direct contact [13, 14]. Recent experimental study illustrates that virus-to-cell infection is less effective than
cell-to-cell transmission because many characteristics are more difficult to determine in the bloodstream
than in tissue cultures. Thus, in order to establish a mathematical model to understand the pathogenesis
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of HIV infection, there are two approaches that should be incorporated: virus-to-cell infection and cell-
to-cell transmission. In the past few decades, more and more researchers devoted to formulating suitable
ordinary differential equations models with both the virus-to-cell infection and the cell-to-cell transmission to
investigate and analyze the dynamic behaviors of HIV/AIDS [15, 16, 17, 18, 19, 20, 21]. In particular, Yang
et al. [15] established an HIV model with CD4+ T-cell proliferation, virus-to-cell infection and cell-to-cell
transmission which is similar to the following system:





dT (t)

dt
= λ− µ1T (t) + rT (t)

(
1− T (t)

Tmax

)
− β1T (t)V (t)− β2T (t)I(t)

dI(t)

dt
= β1T (t)V (t) + β2T (t)I(t)− µ2I(t)− α1I(t),

dV (t)

dt
= kI(t)− µ3V (t)− α2V (t),

(1.1)

where T and I denote the concentrations of healthy CD4+ T cells and infected CD4+ T cells, respectively,
V represents the concentration of virions. All parameters are assumed to be positive constants and their
descriptions are given in Table 1.

Table 1: Summary of parameter meaning of system (1.1)

Parameters Descriptions

λ Recruitment rate of the healthy CD4+ T cells
β1 Virus-to-cell transmission rate
β2 Cell-to-cell infection rate
µ1 Death rate of the healthy CD4+ T cells
µ2 Death rate of the infected CD4+ T cells
µ3 Death rate of the virus particles
α1 Remove rate of the infected CD4+ T cells
α2 Shedding rate of the free virus
r Proliferation rate of the CD4+ T cells
k Average number of the virus releases

Tmax Maximum capacity of the CD4+ T cells

For system (1.1), the basic reproduction number is defined by

R0 =
kβ1T0

(µ2 + α1)(µ3 + α2)
+

β2T0

µ2 + α1
,

which is used to determine whether the disease occurs or not, where

T0 =
Tmax

2r

[
r − µ1 +

√
(r − µ1)2 +

4rλ

Tmax

]
.

In addition, the dynamical behaviors of system (1.1) are as follows:
• If R0 < 1, the virus-free steady state E0 = (T0, 0, 0) always exists and it is globally asymptotically

stable in the invariant set Γ, where

Γ :=

{
(T, I, V )|0 < T + I ≤ λ̄

µ̄
, 0 ≤ V ≤ kλ̄

µ̄µ3

}
,

and

λ̄ = λ+
r

Tmax
T 2
0 , µ̄ = min

{
λ

T0
+

r

Tmax
T0, µ2

}
.

• If R0 > 1, then E0 is unstable and there is also a unique chronic infection equilibrium E+ =

(T+, I+, V +) which is globally asymptotically stable provided that µ1 > r(1− T+

Tmax
), where

T+ =
T0

R0
, I+ =

(µ3 + α2)(R0 − 1)( λ
T0

+ rT+

Tmax
)

kβ1 + β2(µ3 + α2)
, V + =

kI+

µ3 + α2
.
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On the other hand, it is noticed that the system (1.1) is constructed under a constant environment.
However, from the viewpoint of microscopic, the interference of random factor exists in the process of virus
replication [22]. In order to take into account some crucial epidemiological factors such as, antiretroviral
(ART) therapy, infection mechanism in heterogeneous environment, etc., many scholars have developed
various stochastic differential equations (SDEs) models, specially stochastic ordinary differential equations
models [22, 23, 24, 25, 26, 27] to study the pathogenesis and replication process of HIV/AIDS. For example,
Lu et al. [22] analyzed the stationary distribution and probability density of a stochastic HIV model with
cell-to-cell transmission. Djordjevic et al. [25] obtained sufficient conditions for extinction and persistence
in mean of a stochastic SICA epidemic model for HIV transmission. Feng et al. [26] studied the asymptotic
dynamics of a stochastic HIV-1 infection model with degenerate diffusion which are governed by a threshold
parameter.

Up to now, there are several pathways to introduce stochastic perturbations in the deterministic models.
One of the most popular pathways is to think that the parameters involved in the system satisfy the Ornstein-
Uhlenbeck process which is an Itô process. Accordingly, in order to reveal the influence of environmental
noise on the cell-free transmission rate β1 and the cell-to-cell infection rate β2, we suppose that they are
random variables involved in randomness and satisfy the following form:

dβ1(t) = ρ1[β̄1 − β1(t)]dt+ σ1dB1(t),

dβ2(t) = ρ2[β̄2 − β2(t)]dt+ σ2dB2(t),

where β̄i are positive constants which measure the long-time mean levels of the infection rates βi, i = 1, 2; ρi
and σi are positive constants representing the speeds of reversion and the intensities of volatility, respectively,
i = 1, 2; Bi(t) are mutually independent standard Brownian motions defined on a complete probability space
(Ω,F , {Ft}t≥0,P) with a filtration {Ft}t≥0 satisfying the usual conditions [28], i = 1, 2.

In view of Mao’s monograph [28], it is easy to see that βi(t) have the following unique exact solutions:

βi(t) = β̄i + (βi(0)− β̄i)e
−ρit + σi

∫ t

0

e−ρi(t−s)dBi(s), i = 1, 2.

By direct calculation, the mathematical expectation and the variance of βi(t) over the interval [0, t] are given
as follows

E[βi(t)] = β̄i + (βi(0)− β̄i)e
−ρit and Var[βi(t)] =

σ2
i

2ρi
(1− e−2ρit), i = 1, 2,

respectively. Apparently, the limit distributions of the random variables βi(t) are N(β̄i, σ
2
i /2ρi), i = 1, 2.

In other words, the probability densities of the limit distributions are πi(x) =
√
ρi√
πσi

e
− ρi(x−β̄i)

2

σ2
i , i = 1, 2.

Moreover, it is obvious that limt→0+ E[βi(t)] = βi(0) and limt→0+ Var[βi(t)] = 0, i = 1, 2. This implies that
the modeling technique is biologically reasonable to simulate the random influences of crucial parameters
in a within-host model. Motivated by the facts mentioned above, we establish the following stochastic HIV
model with Ornstein-Uhlenbeck process:




dT (t) =

[
λ− µ1T (t) + rT (t)

(
1− T (t)

Tmax

)
−max{β1(t), 0}T (t)V (t)−max{β2(t), 0}T (t)I(t)

]
dt,

dI(t) = [max{β1(t), 0}T (t)V (t) + max{β2(t), 0}T (t)I(t)− µ2I(t)− α1I(t)]dt,
dV (t) = [kI(t)− µ3V (t)− α2V (t)]dt,
dβ1(t) = ρ1[β̄1 − β1(t)]dt+ σ1dB1(t),
dβ2(t) = ρ2[β̄2 − β2(t)]dt+ σ2dB2(t).

(1.2)

Here we introduce the random variables max{βi(t), 0} rather than βi(t) into the system (1.2) because
max{βi(t), 0} are nonnegative while βi(t) may be negative due to the features of the Ornstein-Uhlenbeck
process, i = 1, 2. When we prove the existence of a stationary distribution of positive solutions to the system
(1.2), the nonnegativity of the variables βi(t) is extremely significant, i = 1, 2. Based on this consideration,
we develop the above system, that is, system (1.2).

Involving the stochastic model of HIV with Ornstein-Uhlenbeck process brings great difficulties and
challenges to the theoretical analysis of the model because the Ornstein-Uhlenbeck process can lead to an
increase in the dimensionality of the system. The main barrier is that how to construct suitable Lyapunov
functions to study the existence of a stationary distribution theoretically since the previous method of
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establishing Lyapunov function is no longer applicable to our model. We need to find a new method to
construct some suitable Lyapunov functions and then verify the existence of a stationary distribution. In
comparison with the existing literature, our main innovations and contributions of this paper are summarized
as follows: (i) we adopt a novel method to establish some stochastic Lyapunov functions to obtain the
existence of a stationary distribution, which can be seen as a kind of probability distribution with some
variables from the viewpoint of stochastic process. (ii) Under the same conditions as the existence of a
stationary distribution, we get the exact expression of the probability density, which is a function that
describes the probability of the output value of the random variable around the quasi-chronic infection
equilibrium of the system (1.2).

Throughout this paper, for the sake of convenience, we introduce the following notations:

R
d
+ = {x = (x1, . . . , xd) ∈ R

d : xi > 0, 1 ≤ i ≤ d} and R
d

+ = {x = (x1, . . . , xd) ∈ R
d : xi ≥ 0, 1 ≤ i ≤ d},

x ∨ y = max{x, y} for any x, y ∈ R.

Denote by C2(Rd;R+) the family of all nonnegative functions V (x) defined on Rd such that they are contin-
uously twice differentiable in x. Let IA be the indicator function of the set A. If G is a vector or matrix, we
use the notation ∥G∥ to denote its norm and its transpose is denoted by GT . If G is an invertible matrix, we
use the notation G−1 to represent its inverse matrix. If G is a square matrix, its determinant is represented
by |G|. In addition, if H and J are two d-dimensional symmetric matrices, we define

H ⪰ J : H− J is at least a semi-positive definite matrix. (1.3)

By (1.3), it is clear that the matrix H is also positive definite if J is a positive definite matrix.
The paper is organized as follows. In the next section, we validate that there exists a unique global

solution to the system (1.2) with any initial value which is very important and necessary to analyze the
dynamic behavior of a viral infection model. In Section 3, we adopt a novel method to construct some
suitable Lyapunov functions to establish sufficient criteria for the existence of a stationary distribution,
which indicates the strong persistence of all CD4+ T cells and free viruses. In Section 4, we obtain the
accurate expression of the probability density around the quasi-chronic infection equilibrium E∗ of the
system (1.2). In Section 5, numerical simulations are carried out to illustrate the analytical findings of this
paper. Finally, a brief conclusion scope of the main results obtained in this paper is given.

2 Existence and uniqueness of the global solution

To study the transmission dynamics of a viral infection system, we should first ensure that the solution of
the system is global. The following theorem is related to the existence and uniqueness of the global solution
of system (1.2) with any initial value.

Theorem 2.1 For any initial value (T (0), I(0), V (0), β1(0), β2(0)) ∈ R3
+ × R2, there exists a unique global

solution (T (t), I(t), V (t), β1(t), β2(t))
T to system (1.2) on t ≥ 0 and the solution will remain in R3

+ × R2

almost surely (a.s.).

Proof. Note that all the coefficients of system (1.2) satisfy the local Lipschitz conditions, then for any initial
value (T (0), I(0), V (0), β1(0), β2(0)) ∈ R3

+×R2, there is a unique local solution (T (t), I(t), V (t), β1(t), β2(t))
T

on the interval [0, τe), where τe is an explosion time. Now we validate this solution is global, that is, to prove
τe = ∞ a.s. To this end, let n0 ≥ 1 be sufficiently large such that T (0), I(0), V (0), eβ1(0) and eβ2(0) all lie
within the interval [1/n0, n0]. For each integer n ≥ n0, we define a stopping time by [28]

τn = inf

{
t ∈ [0, τe) : min{T (t), I(t), V (t), eβ1(t), eβ2(t)} ≤ 1

n
or max{T (t), I(t), V (t), eβ1(t), eβ2(t)} ≥ n

}
,

where throughout this paper we set inf ∅ = ∞ (here ∅ means the empty set). It is clear that τn is increasing
as n → ∞. Denote by τ∞ = limn→∞ τn, whence τ∞ ≤ τe a.s. If τ∞ = ∞ a.s. is true, then τe = ∞ a.s. and
(T (t), I(t), V (t), β1(t), β2(t))

T ∈ R3
+ × R2 a.s. for all t ≥ 0. In other words, to confirm the proof we need to

validate τ∞ = ∞ a.s. If this assertion is false, then there is a pair of constants T > 0 and ϵ ∈ (0, 1) such that

P{τ∞ ≤ T} > ϵ.
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As a consequence, there is an integer n1 ≥ n0 such that

P{τn ≤ T} ≥ ϵ, ∀n ≥ n1.

Define a C2-function U : R3
+ × R2 → R+ by

U(T, I, V, β1, β2) = (T − 1− lnT ) + (I − 1− ln I) + (V − 1− lnV ) +
β2
1

2
+

β2
2

2
.

It is noticed that the above function is nonnegative because of u− 1− lnu ≥ 0 for any u > 0. Applying Itô’s
formula [28] to U leads to that

dU(T, I, V, β1, β2) = LU(T, I, V, β1, β2)dt+ σ1β1dB1(t) + σ2β2dB2(t),

where LU : R3
+ × R2 → R is defined by

LU =λ− µ1T + rT

(
1− T

Tmax

)
−max{β1, 0}TV −max{β2, 0}TI −

λ

T
+ µ1 − r +

r

Tmax
T +max{β1, 0}V

+max{β2, 0}I +max{β1, 0}TV +max{β2, 0}TI − µ2I − α1I −
max{β1, 0}TV

I
−max{β2, 0}T + µ2

+ α1 + kI − µ3V − α2V − kI

V
+ µ3 + α2 + ρ1β̄1β1 + ρ2β̄2β2 − ρ1β

2
1 − ρ2β

2
2 +

σ2
1

2
+

σ2
2

2

≤λ+ µ1 + µ2 + µ3 + α1 + α2 + rT +
r

Tmax
T +max{β1, 0}V +max{β2, 0}I + kI + ρ1β̄1β1 + ρ2β̄2β2

− ρ1β
2
1 − ρ2β

2
2 +

σ2
1

2
+

σ2
2

2

≤λ+ µ1 + µ2 + µ3 + α1 + α2 +
σ2
1

2
+

σ2
2

2
+

(
r +

r

Tmax

)
T + |β1|V + |β2|I + kI + ρ1β̄1β1 + ρ2β̄2β2 − ρ1β

2
1

− ρ2β
2
2 .

(2.1)
In addition, we have

d(T + I) =

[
λ− µ1T + rT − r

Tmax
T 2 − µ2I − α1I

]
dt

≤
[
λ+

r

Tmax
T 2
0 −

(
λ

T0
+

r

Tmax
T0

)
T − µ2I

]
dt

≤
[
λ+

r

Tmax
T 2
0 −min

{
λ

T0
+

r

Tmax
T0, µ2

}
(T + I)

]
dt

=[λ̄− µ̄(T + I)]dt,

which implies that

T (t) + I(t) ≤





T (0) + I(0), if T (0) + I(0) ≥ λ̄

µ̄
,

λ̄

µ̄
, if T (0) + I(0) <

λ̄

µ̄

≤ K1, (2.2)

where

K1 := max

{
T (0) + I(0),

λ̄

µ̄

}
.

According to the third equation of system (1.2), we obtain

dV =(kI − µ3V − α2V )dt

≤(kI − µ3V )dt,

and so

V (t) ≤





V (0), if V (0) ≥ kλ̄

µ̄µ3
,

kλ̄

µ̄µ3
, if V (0) <

kλ̄

µ̄µ3

≤ K2, (2.3)
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where

K2 := max

{
V (0),

kλ̄

µ̄µ3

}
.

Substituting (2.2) and (2.3) into (2.1) leads to that

LU ≤λ+ µ1 + µ2 + µ3 + α1 + α2 +
σ2
1

2
+

σ2
2

2
+

(
r +

r

Tmax

)
K1 +K2|β1|+K1|β2|+ kK1 + ρ1β̄1β1 + ρ2β̄2β2

− ρ1β
2
1 − ρ2β

2
2

≤λ+ µ1 + µ2 + µ3 + α1 + α2 +
σ2
1

2
+

σ2
2

2
+

(
r +

r

Tmax

)
K1 + kK1 + sup

β1∈R

{−ρ1β
2
1 +K2|β1|+ ρ1β̄1β1}

+ sup
β2∈R

{−ρ2β
2
2 +K1|β2|+ ρ2β̄2β2}

:=K3.

Here K3 is a positive constant which is independent of the variables T , I, V , β1 and β2. The rest of the
proof is similar to that of Zhou et al. [29] and so it is omitted here. This completes the proof.

Remark 2.1 By the proof of Theorem 2.1, we can get that if T (0)+ I(0) < λ̄/µ̄ and V (0) < kλ̄/(µ̄µ3), then
the set

Ξ =

{
(T, I, V, β1, β2)

T ∈ R
3
+ × R

2 : T + I <
λ̄

µ̄
, V <

kλ̄

µ̄µ3

}

is positively invariant for the system (1.2).

Therefore, from now on, we always suppose that the initial value (T (0), I(0), V (0), β1(0), β2(0))
T of the

system (1.2) belongs to the set Ξ. This shows that the unique global solution (T (t), I(t), V (t), β1(t), β2(t))
T

to the system (1.2) will also belong to the set Ξ with probability one.

3 Existence of a stationary distribution

In this section, we pay attention to developing sufficient criteria for the existence of a stationary distribution
which implies the strong persistence of healthy CD4+ T cells, infected CD4+ T cells and free viruses. We
first give some theories about the existence of a stationary distribution (see Du et al. [30]).

For a homogeneous Markov process defined in Rd which is described by the stochastic differential equation:

dX(t) = f(X(t))dt+ g(X(t))dB(t), (3.1)

with the initial value X(0) ∈ Rd, where B(t) is a d-dimensional Brownian motion defined on the complete
probability space (Ω,F , {Ft}t≥0,P). In addition, f : Rd → Rd and g : Rd → Rd×m are Borel measurable.
The following lemma is related to the existence of a stationary distribution of system (1.2).

Lemma 3.1 (See Theorem 2.2 in [30]). Suppose that there exists a bounded closed domain A ⊂ Rd with a
regular boundary Γ, for any initial value X(0) ∈ Rd, if

lim inf
t→∞

1

t

∫ t

0

P(s,X(s),A)ds > 0 a.s.,

where P(s,X(s), ·) denotes the transition probability of X(t). Then there exists a solution of system (3.1)
which has the Feller property, and system (3.1) admits at least one stationary distribution π(·) on Rd.

Theorem 3.1 Assume that

RS
0 =

kλ( 1√
π

∫∞
− β̄1

√
ρ1

σ1

( σ1√
ρ1
x+ β̄1)

1
3 e−x2

dx)3

(µ2 + α1)(µ3 + α2)(
λ
T0

+ kλ̄σ1

2µ̄µ3
√
πρ1

+ λ̄σ2

2µ̄
√
πρ2

)
+

λ( 1√
π

∫∞
− β̄2

√
ρ2

σ2

( σ2√
ρ2
x+ β̄2)

1
2 e−x2

dx)2

(µ2 + α1)(
λ
T0

+ kλ̄σ1

2µ̄µ3
√
πρ1

+ λ̄σ2

2µ̄
√
πρ2

)
> 1,

then system (1.2) has at least one stationary distribution π(·) on R3
+ × R2, where

λ̄ = λ+
r

Tmax
T 2
0 , µ̄ = min

{
λ

T0
+

r

Tmax
T0, µ2

}
.
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Proof. By Remark 2.1, it is easy to see that (T (t), I(t), V (t), β1(t), β2(t))
T ∈ Ξ a.s. Thus, all the descriptions

of Rd in Lemma 3.1 should be modified as Ξ for the system (1.2). We divide the proof process into three
steps: the first two steps are to find a nonnegative C2-function W(T, I, V, β1, β2) and a compact set D ⊂ Ξ
such that LW ≤ −1 for all (T, I, V, β1, β2)

T ∈ Ξ \D, the last step is to validate the existence of a stationary
distribution of system (1.2) by adopting Theorem 2.2 in Du et al. [30].

Step 1. (Construction of a nonnegative C2-function): Firstly, according to system (1.2), we have

L(− lnT ) =− λ

T
+ µ1 − r

(
1− T

Tmax

)
+max{β1, 0}V +max{β2, 0}I, (3.2)

L(− ln I) =− max{β1, 0}TV
I

−max{β2, 0}T + µ2 + α1, (3.3)

L(− lnV ) =− kI

V
+ µ3 + α2, (3.4)

and
L(V ) =kI − µ3V − α2V. (3.5)

In addition, it is noticed that

−(T − T0)
2 = −(T − T0)(T + T1) + (T − T0)(T1 + T0) ≤ 0,

where T0 and −T1 are the roots of the quadratic equation

f(T ) := λ+ (r − µ1)T − r

Tmax
T 2 = 0.

Accordingly

f(T ) = − r

Tmax
(T − T0)(T + T1) ≤ − r

Tmax
(T − T0)(T1 + T0),

and so

L

(
T

T1 + T0

)
≤ f(T )

T1 + T0
≤ − r

Tmax
(T − T0). (3.6)

Define a function W1 which takes the form

W1(T, V ) = − lnT +
β̄1

µ3 + α2
V +

T

T0 + T1
.

In view of (3.2), (3.5) and (3.6), it is easy to obtain that

LW1 ≤− λ

T
+ µ1 − r

(
1− T

Tmax

)
+max{β1, 0}V +max{β2, 0}I +

β̄1

µ3 + α2
(kI − µ3V − α2V )− r

Tmax
(T − T0)

≤− λ

T
+ µ1 − r +

r

Tmax
T0 + β̄1V + β̄2I + (ξ1(t) ∨ 0)V + (ξ2(t) ∨ 0)I +

kβ̄1

µ3 + α2
I − β̄1V

≤− λ

T
+ µ1 − r +

r

Tmax
T0 +

(
kβ̄1

µ3 + α2
+ β̄2

)
I +

kλ̄

µ̄µ3
(ξ1(t) ∨ 0) +

λ̄

µ̄
(ξ2(t) ∨ 0)

=− λ

T
+

λ

T0
+

(
kβ̄1

µ3 + α2
+ β̄2

)
I +

kλ̄

µ̄µ3
(ξ1(t) ∨ 0) +

λ̄

µ̄
(ξ2(t) ∨ 0),

(3.7)
where

ξ1(t) = β1(t)− β̄1, ξ2(t) = β2(t)− β̄2.

Next, define
W2(T, I, V ) = − ln I + c1W1(T, V )− c2 lnV + c3W1(T, V ),
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where c1, c2 and c3 are positive constants which will be determined later. Then by (3.3), (3.4) and (3.7), we
obtain

LW2 ≤− max{β1, 0}TV
I

−max{β2, 0}T + µ2 + α1 −
c1λ

T
+

c1λ

T0
+ c1

(
kβ̄1

µ3 + α2
+ β̄2

)
I +

c1kλ̄

µ̄µ3
(ξ1(t) ∨ 0)

+
c1λ̄

µ̄
(ξ2(t) ∨ 0)− c2kI

V
+ c2(µ3 + α2)−

c3λ

T
+

c3λ

T0
+ c3

(
kβ̄1

µ3 + α2
+ β̄2

)
I +

c3kλ̄

µ̄µ3
(ξ1(t) ∨ 0)

+
c3λ̄

µ̄
(ξ2(t) ∨ 0)

≤− 3
3

√
c1c2kλβ̃1 − 2

√
c3λβ̃2 + µ2 + α1 +

c1λ

T0
+

c1kλ̄

µ̄µ3
(ξ1(t) ∨ 0) +

c1λ̄

µ̄
(ξ2(t) ∨ 0) + c2(µ3 + α2) +

c3λ

T0

+
c3kλ̄

µ̄µ3
(ξ1(t) ∨ 0) +

c3λ̄

µ̄
(ξ2(t) ∨ 0) + (c1 + c3)

(
kβ̄1

µ3 + α2
+ β̄2

)
I,

(3.8)
where

β̃1(t) = max{β1(t), 0}, β̃2(t) = max{β2(t), 0}.
For the fourth and fifth equations of system (1.2), that is,

dβi(t) = ρi[β̄i − βi(t)]dt+ σidBi(t), i = 1, 2.

According to the references [31, 32, 33], we can obtain that βi(t) (i = 1, 2) have the ergodic property and
they will weakly converge to the invariant density

πi(x) =

√
ρi√
πσi

e
− ρi(x−β̄i)

2

σ2
i , x ∈ R, i = 1, 2,

which together with the ergodic theorem [34], we obtain

∫ ∞

−∞
(x ∨ 0)

1
3πi(x)dx =

∫ ∞

0

x
1
3πi(x)dx

=

∫ ∞

0

x
1
3

√
ρi√
πσi

e
− ρi(x−β̄i)

2

σ2
i dx

=
1√
π

∫ ∞

− β̄i
√

ρi
σi

(
σi√
ρi
y + β̄i

) 1
3

e−y2

dy

(
let y =

√
ρi(x− β̄i)

σi

)

=
1√
π

∫ ∞

− β̄i
√

ρi
σi

(
σi√
ρi
x+ β̄i

) 1
3

e−x2

dx, i = 1, 2,

(3.9)

and ∫ ∞

−∞
(x ∨ 0)

1
2πi(x)dx =

∫ ∞

0

x
1
2πi(x)dx

=

∫ ∞

0

x
1
2

√
ρi√
πσi

e
− ρi(x−β̄i)

2

σ2
i dx

=
1√
π

∫ ∞

− β̄i
√

ρi
σi

(
σi√
ρi
x+ β̄i

) 1
2

e−x2

dx, i = 1, 2.

(3.10)

Analogously, for the stochastic differential equations

dξi(t) = −ρiξi(t)dt+ σidBi(t), i = 1, 2.

It is easy to get that ξi(t) (i = 1, 2) have the ergodic property and they will weakly converge to the invariant
density

π̃i(x) =

√
ρi√
πσi

e
− ρix

2

σ2
i , x ∈ R, i = 1, 2.
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By the ergodic theorem, we have

∫ ∞

−∞
(x ∨ 0)π̃i(x)dx =

∫ ∞

0

xπ̃i(x)dx

=

∫ ∞

0

x

√
ρi√
πσi

e
− ρix

2

σ2
i dx

=
σi

2
√
πρi

, i = 1, 2.

(3.11)

Substituting (3.9), (3.10) and (3.11) into (3.8) leads to that

LW2 ≤− 3
3

√
c1c2kλβ̂1 − 2

√
c3λβ̂2 +

(
3

3

√
c1c2kλβ̂1 − 3

3

√
c1c2kλβ̃1

)
+

(
2

√
c3λβ̂2 − 2

√
c3λβ̃2

)
+ µ2 + α1

+ c1

(
λ

T0
+

kλ̄σ1

2µ̄µ3
√
πρ1

+
λ̄σ2

2µ̄
√
πρ2

)
+ c2(µ3 + α2) + c3

(
λ

T0
+

kλ̄σ1

2µ̄µ3
√
πρ1

+
λ̄σ2

2µ̄
√
πρ2

)

+ (c1 + c3)

(
kβ̄1

µ3 + α2
+ β̄2

)
I +

kλ̄(c1 + c3)

µ̄µ3

(
ξ1(t) ∨ 0−

∫ ∞

0

xπ̃1(x)dx

)

+
λ̄(c1 + c3)

µ̄

(
ξ2(t) ∨ 0−

∫ ∞

0

xπ̃2(x)dx

)
,

where

β̂1 =

(∫ ∞

−∞
(x ∨ 0)

1
3π1(x)dx

)3

=

(
1√
π

∫ ∞

− β̄1
√

ρ1
σ1

(
σ1√
ρ1

x+ β̄1

) 1
3

e−x2

dx

)3

,

β̂2 =

(∫ ∞

−∞
(x ∨ 0)

1
2π2(x)dx

)2

=

(
1√
π

∫ ∞

− β̄2
√

ρ2
σ2

(
σ2√
ρ2

x+ β̄2

) 1
2

e−x2

dx

)2

.

Let

c1

(
λ

T0
+

kλ̄σ1

2µ̄µ3
√
πρ1

+
λ̄σ2

2µ̄
√
πρ2

)
= c2(µ3 + α2) =

kλβ̂1

(µ3 + α2)(
λ
T0

+ kλ̄σ1

2µ̄µ3
√
πρ1

+ λ̄σ2

2µ̄
√
πρ2

)
,

c3

(
λ

T0
+

kλ̄σ1

2µ̄µ3
√
πρ1

+
λ̄σ2

2µ̄
√
πρ2

)
=

λβ̂2

λ
T0

+ kλ̄σ1

2µ̄µ3
√
πρ1

+ λ̄σ2

2µ̄
√
πρ2

,

then we have

c1 =
kλβ̂1

(µ3 + α2)(
λ
T0

+ kλ̄σ1

2µ̄µ3
√
πρ1

+ λ̄σ2

2µ̄
√
πρ2

)2
, c2 =

kλβ̂1

(µ3 + α2)2(
λ
T0

+ kλ̄σ1

2µ̄µ3
√
πρ1

+ λ̄σ2

2µ̄
√
πρ2

)
, c3 =

λβ̂2

( λ
T0

+ kλ̄σ1

2µ̄µ3
√
πρ1

+ λ̄σ2

2µ̄
√
πρ2

)2
,

and hence

LW2 ≤− kλβ̂1

(µ3 + α2)(
λ
T0

+ kλ̄σ1

2µ̄µ3
√
πρ1

+ λ̄σ2

2µ̄
√
πρ2

)
− λβ̂2

λ
T0

+ kλ̄σ1

2µ̄µ3
√
πρ1

+ λ̄σ2

2µ̄
√
πρ2

+

(
3

3

√
c1c2kλβ̂1 − 3

3

√
c1c2kλβ̃1

)

+

(
2

√
c3λβ̂2 − 2

√
c3λβ̃2

)
+ µ2 + α1 + (c1 + c3)

(
kβ̄1

µ3 + α2
+ β̄2

)
I +

kλ̄(c1 + c3)

µ̄µ3

(
ξ1(t) ∨ 0−

∫ ∞

0

xπ̃1(x)dx

)

+
λ̄(c1 + c3)

µ̄

(
ξ2(t) ∨ 0−

∫ ∞

0

xπ̃2(x)dx

)

:=− (µ2 + α1)(RS
0 − 1) + (c1 + c3)

(
kβ̄1

µ3 + α2
+ β̄2

)
I + 3 3

√
c1c2kλ

(
3

√
β̂1 − 3

√
β̃1

)
+ 2

√
c3λ

(√
β̂2 −

√
β̃2

)

+
kλ̄(c1 + c3)

µ̄µ3

(
ξ1(t) ∨ 0−

∫ ∞

0

xπ̃1(x)dx

)
+

λ̄(c1 + c3)

µ̄

(
ξ2(t) ∨ 0−

∫ ∞

0

xπ̃2(x)dx

)
,

(3.12)
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where

RS
0 =

kλβ̂1

(µ2 + α1)(µ3 + α2)(
λ
T0

+ kλ̄σ1

2µ̄µ3
√
πρ1

+ λ̄σ2

2µ̄
√
πρ2

)
+

λβ̂2

(µ2 + α1)(
λ
T0

+ kλ̄σ1

2µ̄µ3
√
πρ1

+ λ̄σ2

2µ̄
√
πρ2

)

=
kλ( 1√

π

∫∞
− β̄1

√
ρ1

σ1

( σ1√
ρ1
x+ β̄1)

1
3 e−x2

dx)3

(µ2 + α1)(µ3 + α2)(
λ
T0

+ kλ̄σ1

2µ̄µ3
√
πρ1

+ λ̄σ2

2µ̄
√
πρ2

)
+

λ( 1√
π

∫∞
− β̄2

√
ρ2

σ2

( σ2√
ρ2
x+ β̄2)

1
2 e−x2

dx)2

(µ2 + α1)(
λ
T0

+ kλ̄σ1

2µ̄µ3
√
πρ1

+ λ̄σ2

2µ̄
√
πρ2

)
.

Next, define

W3(T, I, V ) = − ln

(
λ̄

µ̄
− T − I

)
− ln

(
kλ̄

µ̄µ3
− V

)
, W4(β1, β2) =

β2
1

2
+

β2
2

2
,

then applying Itô’s formula [28] to W3 and W4 leads to that

LW3 =
λ− µ1T + rT − r

Tmax
T 2 − µ2I − α1I

λ̄
µ̄
− T − I

+
kI − µ3V − α2V

kλ̄
µ̄µ3

− V

≤
λ+ r

Tmax
T 2
0 − ( λ

T0
+ r

Tmax
T0)T − µ2I − α1I

λ
µ
− T − I

+
kI − µ3V − α2V

kλ̄
µ̄µ3

− V

≤
λ+ r

Tmax
T 2
0 −min{ λ

T0
+ r

Tmax
T0, µ2}(T + I)− α1I

λ̄
µ̄
− T − I

+
kI − µ3V − α2V

kλ̄
µ̄µ3

− V

≤− α1I
λ̄
µ̄
− T − I

− α2V
kλ̄
µ̄µ3

− V
+ µ̄+ µ3,

(3.13)

and

LW4 =ρ1β1(β̄1 − β1) + ρ2β2(β̄2 − β2) +
σ2
1

2
+

σ2
2

2

=ρ1β̄1β1 + ρ2β̄2β2 − ρ1β
2
1 − ρ2β

2
2 +

σ2
1

2
+

σ2
2

2
.

(3.14)

Define a C2-function W̄(T, I, V, β1, β2) : Ξ → R as follows

W̄(T, I, V, β1, β2) =MW2(T, I, V )− lnT − lnV +W3(T, I, V ) +W4(β1, β2),

where M is a sufficiently large positive constant satisfying the condition

−M(µ2 + α1)(RS
0 − 1) +K4 ≤ −2, (3.15)

and

K4 := sup
(β1,β2)∈R2

{
− ρ1

2
β2
1 − ρ2

2
β2
2 +

kλ̄

µ̄µ3
|β1|+

λ̄

µ̄
|β2|+ ρ1β̄1β1 + ρ2β̄2β2

}
+ µ1 + 2µ3 + µ̄+ α2 +

rλ̄

Tmaxµ̄
+

σ2
1

2

+
σ2
2

2
< ∞.

In addition, it is noted that W̄(T, I, V, β1, β2) is not only continuous, but also tends to ∞ as (T, I, V, β1, β2)
T

approaches the boundary of Ξ. As a consequence, it should be lower bounded and achieves this lower bound
at a point (T 0, I0, V 0, β0

1 , β
0
2)

T in the interior of Ξ. Then a C2-function W : Ξ → R+ is defined by

W(T, I, V, β1, β2) =W̄(T, I, V, β1, β2)− W̄(T 0, I0, V 0, β0
1 , β

0
2)

=MW2(T, I, V )− lnT − lnV +W3(T, I, V ) +W4(β1, β2)− W̄(T 0, I0, V 0, β0
1 , β

0
2).
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According to (3.2), (3.4), (3.12), (3.13) and (3.14), we obtain

LW ≤−M(µ2 + α1)(RS
0 − 1) +M(c1 + c3)

(
kβ̄1

µ3 + α2
+ β̄2

)
I − λ

T
− kI

V
− α1I

λ̄
µ̄
− T − I

− α2V
kλ̄
µ̄µ3

− V
− ρ1β

2
1

− ρ2β
2
2 + ρ1β̄1β1 + ρ2β̄2β2 + 3M 3

√
c1c2kλ

(
3

√
β̂1 − 3

√
β̃1

)
+

Mkλ̄(c1 + c3)

µ̄µ3

(
ξ1(t) ∨ 0−

∫ ∞

0

xπ̃1(x)dx

)

+ 2M
√

c3λ

(√
β̂2 −

√
β̃2

)
+

Mλ̄(c1 + c3)

µ̄

(
ξ2(t) ∨ 0−

∫ ∞

0

xπ̃2(x)dx

)
+ µ1 +

r

Tmax
T + |β1|V + |β2|I

+ 2µ3 + µ̄+ α2 +
σ2
1

2
+

σ2
2

2

≤−M(µ2 + α1)(RS
0 − 1) +M(c1 + c3)

(
kβ̄1

µ3 + α2
+ β̄2

)
I − λ

T
− kI

V
− α1I

λ̄
µ̄
− T − I

− α2V
kλ̄
µ̄µ3

− V
− ρ1β

2
1

− ρ2β
2
2 +

kλ̄

µ̄µ3
|β1|+

λ̄

µ̄
|β2|+ ρ1β̄1β1 + ρ2β̄2β2 + 3M 3

√
c1c2kλ

(
3

√
β̂1 − 3

√
β̃1

)
+ 2M

√
c3λ

(√
β̂2 −

√
β̃2

)

+
Mkλ̄(c1 + c3)

µ̄µ3

(
ξ1(t) ∨ 0−

∫ ∞

0

xπ̃1(x)dx

)
+

Mλ̄(c1 + c3)

µ̄

(
ξ2(t) ∨ 0−

∫ ∞

0

xπ̃2(x)dx

)
+ µ1 + 2µ3

+ µ̄+ α2 +
rλ̄

Tmaxµ̄
+

σ2
1

2
+

σ2
2

2

:=G(T, I, V, β1, β2) + 3M 3
√

c1c2kλ

(
3

√
β̂1 − 3

√
β̃1

)
+

Mkλ̄(c1 + c3)

µ̄µ3

(
ξ1(t) ∨ 0−

∫ ∞

0

xπ̃1(x)dx

)

+ 2M
√
c3λ

(√
β̂2 −

√
β̃2

)
+

Mλ̄(c1 + c3)

µ̄

(
ξ2(t) ∨ 0−

∫ ∞

0

xπ̃2(x)dx

)
,

(3.16)
where

G(T, I, V, β1, β2) =−M(µ2 + α1)(RS
0 − 1) +M(c1 + c3)

(
kβ̄1

µ3 + α2
+ β̄2

)
I − λ

T
− kI

V
− α1I

λ̄
µ̄
− T − I

− α2V
kλ̄
µ̄µ3

− V

− ρ1β
2
1 − ρ2β

2
2 +

kλ̄

µ̄µ3
|β1|+

λ̄

µ̄
|β2|+ ρ1β̄1β1 + ρ2β̄2β2 + µ1 + 2µ3 + µ̄+ α2 +

rλ̄

Tmaxµ̄
+

σ2
1

2

+
σ2
2

2
.

Step 2. (Construction of a compact set): Define a closed bounded set Dϵ by

Dϵ =

{
(T, I, V, β1, β2)

T ∈ Ξ : T ≥ ϵ, I ≥ ϵ, V ≥ ϵ2, T + I ≤ λ̄

µ̄
− ϵ2, V ≤ kλ̄

µ̄µ3
− ϵ3, |β1| ≤

1

ϵ
, |β2| ≤

1

ϵ

}
,

where ϵ is a sufficiently small positive constant satisfying the following conditions

−λ

ϵ
+K5 ≤ −1, (3.17)

ϵ ≤ 1

M(c1 + c3)(
kβ̄1

µ3+α2
+ β̄2)

, (3.18)

−k

ϵ
+K5 ≤ −1, (3.19)

−α1

ϵ
+K5 ≤ −1, (3.20)

−α2

ϵ
+K5 ≤ −1, (3.21)

− ρ1
2ϵ2

+K5 ≤ −1, (3.22)
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− ρ2
2ϵ2

+K5 ≤ −1. (3.23)

Here K5 is a positive constant explicitly given in the expression (3.25). Next, we can divide the set Ξ \Dϵ

into the following seven subsets Dc
ϵ,i, i = 1, . . . , 7, where

Dc
ϵ,1 = {(T, I, V, β1, β2)

T ∈ Ξ : T < ϵ}, Dc
ϵ,2 = {(T, I, V, β1, β2)

T ∈ Ξ : I < ϵ},

Dc
ϵ,3 = {(T, I, V, β1, β2)

T ∈ Ξ : V < ϵ2, I ≥ ϵ}, Dc
ϵ,4 =

{
(T, I, V, β1, β2)

T ∈ Ξ : T + I >
λ̄

µ̄
− ϵ2, I ≥ ϵ

}
,

Dc
ϵ,5 =

{
(T, I, V, β1, β2)

T ∈ Ξ : V >
kλ̄

µ̄µ3
− ϵ3, V ≥ ϵ2

}
, Dc

ϵ,6 =

{
(T, I, V, β1, β2)

T ∈ Ξ : |β1| >
1

ϵ

}
,

Dc
ϵ,7 =

{
(T, I, V, β1, β2)

T ∈ Ξ : |β2| >
1

ϵ

}
.

Apparently, Ξ \Dϵ =
⋃7

i=1 D
c
ϵ,i. Next, we will show that G(T, I, V, β1, β2) ≤ −1 on the region Dc

ϵ . That is
to say, we need to show its satisfaction on the above seven sets.

Case 1. For any (T, I, V, β1, β2)
T ∈ Dc

ϵ,1, by (3.16), we obtain

G(T, I, V, β1, β2) ≤− λ

T
+M(c1 + c3)

(
kβ̄1

µ3 + α2
+ β̄2

)
I − ρ1

2
β2
1 − ρ2

2
β2
2 +

kλ̄

µ̄µ3
|β1|+

λ̄

µ̄
|β2|+ ρ1β̄1β1 + ρ2β̄2β2

+ µ1 + 2µ3 + µ̄+ α2 +
rλ̄

Tmaxµ̄
+

σ2
1

2
+

σ2
2

2

≤− λ

T
+

Mλ̄(c1 + c3)

µ̄

(
kβ̄1

µ3 + α2
+ β̄2

)
− ρ1

2
β2
1 − ρ2

2
β2
2 +

kλ̄

µ̄µ3
|β1|+

λ

µ
|β2|+ ρ1β̄1β1 + ρ2β̄2β2

+ µ1 + 2µ3 + µ̄+ α2 +
rλ̄

Tmaxµ̄
+

σ2
1

2
+

σ2
2

2

≤− λ

T
+K5

≤− λ

ϵ
+K5

≤− 1,
(3.24)

which follows from (3.17) and

K5 := sup
(β1,β2)∈R2

{
− ρ1

2
β2
1 − ρ2

2
β2
2 +

kλ̄

µ̄µ3
|β1|+

λ̄

µ̄
|β2|+ ρ1β̄1β1 + ρ2β̄2β2

}
+

Mλ̄(c1 + c3)

µ̄

(
kβ̄1

µ3 + α2
+ β̄2

)

+ µ1 + 2µ3 + µ̄+ α2 +
rλ̄

Tmaxµ̄
+

σ2
1

2
+

σ2
2

2
< ∞.

(3.25)
Case 2. For any (T, I, V, β1, β2)

T ∈ Dc
ϵ,2, according to (3.16), we have

G(T, I, V, β1, β2) ≤−M(µ2 + α1)(RS
0 − 1) +M(c1 + c3)

(
kβ̄1

µ3 + α2
+ β̄2

)
I − ρ1

2
β2
1 − ρ2

2
β2
2 +

kλ̄

µ̄µ3
|β1|+

λ̄

µ̄
|β2|

+ ρ1β̄1β1 + ρ2β̄2β2 + µ1 + 2µ3 + µ̄+ α2 +
rλ̄

Tmaxµ̄
+

σ2
1

2
+

σ2
2

2

≤−M(µ2 + α1)(RS
0 − 1) +M(c1 + c3)

(
kβ̄1

µ3 + α2
+ β̄2

)
I +K4

≤−M(µ2 + α1)(RS
0 − 1) +M(c1 + c3)

(
kβ̄1

µ3 + α2
+ β̄2

)
ϵ+K4

≤− 2 + 1

=− 1,
(3.26)

12



which follows from (3.15) and (3.18) and

K4 := sup
(β1,β2)∈R2

{
− ρ1

2
β2
1 − ρ2

2
β2
2 +

kλ̄

µ̄µ3
|β1|+

λ̄

µ̄
|β2|+ ρ1β̄1β1 + ρ2β̄2β2

}
+ µ1 + 2µ3 + µ̄+ α2 +

rλ̄

Tmaxµ̄
+

σ2
1

2

+
σ2
2

2
< ∞.

Case 3. For any (T, I, V, β1, β2)
T ∈ Dc

ϵ,3, in view of (3.16), we have

G(T, I, V, β1, β2) ≤− kI

V
+M(c1 + c3)

(
kβ̄1

µ3 + α2
+ β̄2

)
I − ρ1

2
β2
1 − ρ2

2
β2
2 +

kλ̄

µ̄µ3
|β1|+

λ̄

µ̄
|β2|+ ρ1β̄1β1 + ρ2β̄2β2

+ µ1 + 2µ3 + µ̄+ α2 +
rλ̄

Tmaxµ̄
+

σ2
1

2
+

σ2
2

2

≤− kI

V
+

Mλ̄(c1 + c3)

µ̄

(
kβ̄1

µ3 + α2
+ β̄2

)
− ρ1

2
β2
1 − ρ2

2
β2
2 +

kλ̄

µ̄µ3
|β1|+

λ̄

µ̄
|β2|+ ρ1β̄1β1 + ρ2β̄2β2

+ µ1 + 2µ3 + µ̄+ α2 +
rλ̄

Tmaxµ̄
+

σ2
1

2
+

σ2
2

2

≤− kϵ

ϵ2
+K5

=− k

ϵ
+K5

≤− 1,
(3.27)

which follows from (3.19).
Case 4. For any (T, I, V, β1, β2)

T ∈ Dc
ϵ,4, from (3.16) it follows that

G(T, I, V, β1, β2) ≤− α1I
λ̄
µ̄
− T − I

+M(c1 + c3)

(
kβ̄1

µ3 + α2
+ β̄2

)
I − ρ1

2
β2
1 − ρ2

2
β2
2 +

kλ̄

µ̄µ3
|β1|+

λ̄

µ̄
|β2|+ ρ1β̄1β1

+ ρ2β̄2β2 + µ1 + 2µ3 + µ̄+ α2 +
rλ̄

Tmaxµ̄
+

σ2
1

2
+

σ2
2

2

≤− α1I
λ̄
µ̄
− T − I

+
Mλ̄(c1 + c3)

µ̄

(
kβ̄1

µ3 + α2
+ β̄2

)
− ρ1

2
β2
1 − ρ2

2
β2
2 +

kλ̄

µ̄µ3
|β1|+

λ̄

µ̄
|β2|+ ρ1β̄1β1

+ ρ2β̄2β2 + µ1 + 2µ3 + µ̄+ α2 +
rλ̄

Tmaxµ̄
+

σ2
1

2
+

σ2
2

2

≤− α1ϵ

ϵ2
+K5

=− α1

ϵ
+K5

≤− 1,
(3.28)

which follows from (3.20).
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Case 5. For any (T, I, V, β1, β2)
T ∈ Dc

ϵ,5, according to (3.16), it is easy to see that

G(T, I, V, β1, β2) ≤− α2V
kλ̄
µ̄µ3

− V
+M(c1 + c3)

(
kβ̄1

µ3 + α2
+ β̄2

)
I − ρ1

2
β2
1 − ρ2

2
β2
2 +

kλ̄

µ̄µ3
|β1|+

λ̄

µ̄
|β2|+ ρ1β̄1β1

+ ρ2β̄2β2 + µ1 + 2µ3 + µ̄+ α2 +
rλ̄

Tmaxµ̄
+

σ2
1

2
+

σ2
2

2

≤− α2V
kλ̄
µ̄µ3

− V
+

Mλ̄(c1 + c3)

µ̄

(
kβ̄1

µ3 + α2
+ β̄2

)
− ρ1

2
β2
1 − ρ2

2
β2
2 +

kλ̄

µ̄µ3
|β1|+

λ̄

µ̄
|β2|+ ρ1β̄1β1

+ ρ2β̄2β2 + µ1 + 2µ3 + µ̄+ α2 +
rλ̄

Tmaxµ̄
+

σ2
1

2
+

σ2
2

2

≤− α2ϵ
2

ϵ3
+K5

=− α2

ϵ
+K5

≤− 1,
(3.29)

which follows from (3.21).
Case 6. For any (T, I, V, β1, β2)

T ∈ Dc
ϵ,6, by (3.16), it is clear that

G(T, I, V, β1, β2) ≤− ρ1
2
β2
1 +M(c1 + c3)

(
kβ̄1

µ3 + α2
+ β̄2

)
I − ρ1

2
β2
1 − ρ2

2
β2
2 +

kλ̄

µ̄µ3
|β1|+

λ̄

µ̄
|β2|+ ρ1β̄1β1

+ ρ2β̄2β2 + µ1 + 2µ3 + µ̄+ α2 +
rλ̄

Tmaxµ̄
+

σ2
1

2
+

σ2
2

2

≤− ρ1
2
β2
1 +

Mλ̄(c1 + c3)

µ̄

(
kβ̄1

µ3 + α2
+ β̄2

)
− ρ1

2
β2
1 − ρ2

2
β2
2 +

kλ̄

µ̄µ3
|β1|+

λ̄

µ̄
|β2|+ ρ1β̄1β1

+ ρ2β̄2β2 + µ1 + 2µ3 + µ̄+ α2 +
rλ̄

Tmaxµ̄
+

σ2
1

2
+

σ2
2

2

≤− ρ1
2ϵ2

+K5

≤− 1,
(3.30)

which follows from (3.22).
Case 7. For any (T, I, V, β1, β2)

T ∈ Dc
ϵ,7, in view of (3.16), it is easy to obtain that

G(T, I, V, β1, β2) ≤− ρ2
2
β2
2 +M(c1 + c3)

(
kβ̄1

µ3 + α2
+ β̄2

)
I − ρ1

2
β2
1 − ρ2

2
β2
2 +

kλ̄

µ̄µ3
|β1|+

λ̄

µ̄
|β2|+ ρ1β̄1β1

+ ρ2β̄2β2 + µ1 + 2µ3 + µ̄+ α2 +
rλ̄

Tmaxµ̄
+

σ2
1

2
+

σ2
2

2

≤− ρ2
2
β2
2 +

Mλ̄(c1 + c3)

µ̄

(
kβ̄1

µ3 + α2
+ β̄2

)
− ρ1

2
β2
1 − ρ2

2
β2
2 +

kλ̄

µ̄µ3
|β1|+

λ̄

µ̄
|β2|+ ρ1β̄1β1

+ ρ2β̄2β2 + µ1 + 2µ3 + µ̄+ α2 +
rλ̄

Tmaxµ̄
+

σ2
1

2
+

σ2
2

2

≤− ρ2
2ϵ2

+K5

≤− 1,
(3.31)

which follows from (3.23).
On the basis of (3.24), (3.26), (3.27), (3.28), (3.29), (3.30) and (3.31), we can easily conclude that there

is an adequately small ϵ such that

G(T, I, V, β1, β2) ≤ −1 for any (T, I, V, β1, β2) ∈ Ξ \Dϵ. (3.32)
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Let

K6 := sup
(T,I,V,β1,β2)∈R3

+×R2

{
−M(µ2 + α1)(RS

0 − 1) +M(c1 + c3)

(
kβ̄1

µ3 + α2
+ β̄2

)
I − λ

T
− kI

V
− α1I

λ̄
µ̄
− T − I

− α2V
kλ̄
µ̄µ3

− V
− ρ1β

2
1 − ρ2β

2
2 +

kλ̄

µ̄µ3
|β1|+

λ̄

µ̄
|β2|+ ρ1β̄1β1 + ρ2β̄2β2 + µ1 + 2µ3 + µ̄+ α2 +

rλ̄

Tmaxµ̄
+

σ2
1

2

+
σ2
2

2

}
.

Then
G(T, I, V, β1, β2) ≤ K6 < ∞ for any (T, I, V, β1, β2) ∈ R

3
+ × R

2. (3.33)

Step 3. (Existence): For any initial value (T (0), I(0), V (0), β1(0), β2(0)) ∈ Ξ, integrating both sides of
(3.16) from 0 to t and then taking the mathematical expectation, we get

0 ≤EW(T (t), I(t), V (t), β1(t), β2(t))

t

=
EW(T (0), I(0), V (0), β1(0), β2(0))

t
+

1

t

∫ t

0

E(LW(T (s), I(s), V (s), β1(s), β2(s)))ds

≤EW(T (0), I(0), V (0), β1(0), β2(0))

t
+

1

t

∫ t

0

E(G(T (s), I(s), V (s), β1(s), β2(s)))ds

+3M 3
√
c1c2kλE

[ ∫ ∞

−∞
(x ∨ 0)

1
3π1(x)dx− 1

t

∫ t

0

(β1(s) ∨ 0)
1
3 ds

]

+2M
√
c3λE

[ ∫ ∞

−∞
(x ∨ 0)

1
2π2(x)dx− 1

t

∫ t

0

(β2(s) ∨ 0)
1
2 ds

]
+

Mkλ̄(c1 + c3)

µ̄µ3
E

[
1

t

∫ t

0

(ξ1(s) ∨ 0)ds−
∫ ∞

0

xπ̃1(x)dx

]

+
Mλ̄(c1 + c3)

µ̄
E

[
1

t

∫ t

0

(ξ2(s) ∨ 0)ds−
∫ ∞

0

xπ̃2(x)dx

]
.

(3.34)
According to the ergodicity of βi(t) and ξi(t) (i = 1, 2) and the strong law of large numbers [35], we have

lim
t→∞

E

[ ∫ ∞

−∞
(x∨0)

1
3π1(x)dx−

1

t

∫ t

0

(β1(s)∨0)
1
3 ds

]
= E

[ ∫ ∞

0

x
1
3π1(x)dx

]
−
∫ ∞

0

x
1
3π1(x)dx = 0 a.s., (3.35)

lim
t→∞

E

[ ∫ ∞

−∞
(x∨0)

1
2π2(x)dx−

1

t

∫ t

0

(β2(s)∨0)
1
2 ds

]
= E

[ ∫ ∞

0

x
1
2π2(x)dx

]
−
∫ ∞

0

x
1
2π2(x)dx = 0 a.s., (3.36)

lim
t→∞

E

[
1

t

∫ t

0

(ξ1(s) ∨ 0)ds−
∫ ∞

0

xπ̃1(x)dx

]
= E

[ ∫ ∞

0

xπ̃1(x)dx

]
−

∫ ∞

0

xπ̃1(x)dx = 0 a.s., (3.37)

and

lim
t→∞

E

[
1

t

∫ t

0

(ξ2(s) ∨ 0)ds−
∫ ∞

0

xπ̃2(x)dx

]
= E

[ ∫ ∞

0

xπ̃2(x)dx

]
−
∫ ∞

0

xπ̃2(x)dx = 0 a.s. (3.38)

Taking the inferior limit on both sides of (3.34) and combining with (3.35), (3.36), (3.37) and (3.38), we
obtain

0 ≤ lim inf
t→∞

EW(T (0), I(0), V (0), β1(0), β2(0))

t
+ lim inf

t→∞
1

t

∫ t

0

E(G(T (s), I(s), V (s), β1(s), β2(s)))ds

= lim inf
t→∞

1

t

∫ t

0

E(G(T (s), I(s), V (s), β1(s), β2(s)))ds a.s.

(3.39)
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In addition, in view of (3.32) and (3.33), we get

lim inf
t→∞

1

t

∫ t

0

E(G(T (s), I(s), V (s), β1(s), β2(s)))ds

= lim inf
t→∞

1

t

∫ t

0

E(G(T (s), I(s), V (s), β1(s), β2(s)))1{(T (s),I(s),V (s),β1(s),β2(s))∈Dϵ}ds

+ lim inf
t→∞

1

t

∫ t

0

E(G(T (s), I(s), V (s), β1(s), β2(s)))1{(T (s),I(s),V (s),β1(s),β2(s))∈(Ξ\Dϵ)}ds

≤ K6 lim inf
t→∞

1

t

∫ t

0

1{(T (s),I(s),V (s),β1(s),β2(s))∈Dϵ}ds− lim inf
t→∞

1

t

∫ t

0

1{(T (s),I(s),V (s),β1(s),β2(s))∈(Ξ\Dϵ)}ds

≤ −1 + (K6 + 1) lim inf
t→∞

1

t

∫ t

0

1{(T (s),I(s),V (s),β1(s),β2(s))∈Dϵ}ds.

(3.40)
By (3.39) and (3.40), it is easy to conclude that

lim inf
t→∞

1

t

∫ t

0

1{(T (s),I(s),V (s),β1(s),β2(s))∈Dϵ}ds ≥
1

K6 + 1
> 0 a.s. (3.41)

By the definition of event probability and Fatou’s lemma [30], (3.41) is equivalent to the following form

lim inf
t→∞

1

t

∫ t

0

P(s, (T (s), I(s), V (s), β1(s), β2(s)), Dϵ)ds ≥
1

K6 + 1
> 0 a.s,

where P(t, (T, I, V, β1, β2),A) is the transition probability of (T (t), I(t), V (t), β1(t), β2(t)) belonging to the
set A. Thus, in view of Lemma 3.1, we obtain that system (1.2) has at least one stationary distribution π(·)
on R3

+ × R2, which has the Feller property. This completes the proof.

Remark 3.1 Actually, β̂i (i = 1, 2) can be regarded as anomalous integrals of parametric variables with
respect to the intensities of volatility σi (i = 1, 2) and if σi (i = 1, 2) tend to zero, we obtain

lim
σ1→0+

β̂1 = lim
σ1→0+

(
1√
π

∫ ∞

− β̄1
√

ρ1
σ1

(
σ1√
ρ1

x+ β̄1

) 1
3

e−x2

dx

)3

=

(
1√
π

∫ ∞

−∞
β̄

1
3
1 e

−x2

dx

)3

=β̄1,

lim
σ2→0+

β̂2 = lim
σ2→0+

(
1√
π

∫ ∞

− β̄2
√

ρ2
σ2

(
σ2√
ρ2

x+ β̄2

) 1
2

e−x2

dx

)2

=

(
1√
π

∫ ∞

−∞
β̄

1
2
2 e

−x2

dx

)2

=β̄2.

In this situation, we have

lim
σ1→0+,σ2→0+

RS
0

= lim
σ1→0+,σ2→0+

kλ( 1√
π

∫∞
− β̄1

√
ρ1

σ1

( σ1√
ρ1
x+ β̄1)

1
3 e−x2

dx)3

(µ2 + α1)(µ3 + α2)(
λ
T0

+ kλ̄σ1

2µ̄µ3
√
πρ1

+ λ̄σ2

2µ̄
√
πρ2

)
+

λ( 1√
π

∫∞
− β̄2

√
ρ2

σ2

( σ2√
ρ2
x+ β̄2)

1
2 e−x2

dx)2

(µ2 + α1)(
λ
T0

+ kλ̄σ1

2µ̄µ3
√
πρ1

+ λ̄σ2

2µ̄
√
πρ2

)

=
kβ̄1T0

(µ2 + α1)(µ3 + α2)
+

β̄2T0

µ2 + α1

= R0.

Moreover, by the expressions of R0 and RS
0 , we can conclude that RS

0 < R0. Consequently, we generalize
the results of the deterministic system (1.1).
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4 Probability density for system (1.2)

In this section, we will focus on getting the explicit expression of the probability density of the distribution
π(·). Mathematically, the existence of the probability density of system (1.2) is more in-depth and specific
than that of the stationary distribution. Firstly, equivalent transformations of system (1.2) are given.

4.1. Equivalent transformations of system (1.2)
Firstly, we define a quasi-chronic infection equilibrium E∗ = (T ∗, I∗, V ∗, β∗

1 , β
∗
2)

T involved in stochasticity
by the equations





λ− µ1T
∗ + rT ∗

(
1− T ∗

Tmax

)
−max{β∗

1 , 0}T ∗V ∗ −max{β∗
2 , 0}T ∗I∗ = 0,

max{β∗
1 , 0}T ∗V ∗ +max{β∗

2 , 0}T ∗I∗ − µ2I
∗ − α1I

∗ = 0,
kI∗ − µ3V

∗ − α2V
∗ = 0,

ρ1(β̄1 − β∗
1) = 0,

ρ2(β̄2 − β∗
2) = 0.

(4.1)

By solving Equation (4.1), we get that if RS
0 > 1, then

T ∗ = T+ > 0, I∗ = I+ > 0, V ∗ = V + > 0, β∗
1 = β̄1, β∗

2 = β̄2,

where T+, I+ and V + are the same as in Section one.
Let (x1, x2, x3, x4, x5)

T = (T −T ∗, I − I∗, V −V ∗, β1−β∗
1 , β2−β∗

2)
T . According to the Itô’s integral and

system (1.2), the corresponding linearized system of (1.2) around E∗ takes the form





dx1 = (−a11x1 − a12x2 − a13x3 − a14x4 − a15x5)dt,
dx2 = (a21x1 − a22x2 + a23x3 + a24x4 + a25x5)dt,
dx3 = (a32x2 − a33x3)dt,
dx4 = −ρ1x4dt+ σ1dB1(t),
dx5 = −ρ2x5dt+ σ2dB2(t),

(4.2)

where

a11 = µ1−r+
2r

Tmax
T ∗+β∗

1V
∗+β∗

2I
∗ =

λ

T ∗+
r

Tmax
T ∗ > 0, a12 = β∗

2T
∗ > 0, a13 = β∗

1T
∗ > 0, a14 = T ∗V ∗ > 0,

a15 = T ∗I∗ > 0, a21 = β∗
1V

∗+β∗
2I

∗ > 0, a22 = µ2+α1−β∗
2T

∗ =
β∗
1T

∗V ∗

I∗
> 0, a23 = β∗

1T
∗ > 0, a24 = T ∗V ∗ > 0,

a25 = T ∗I∗ > 0, a32 = k > 0, a33 = µ3 + α2 > 0.

It is easy to see that a13 = a23, a14 = a24, a15 = a25 and a22a33 > a23a32.
Before introducing the corresponding probability density, we need to introduce a significant definition

and two lemmas.

Definition 4.1 [36]. The characteristic polynomial of the square matrix An is defined as φAn
(λ) = λn +

a1λ
n−1 + . . . + an−1λ + an, then An is called a Hurwitz matrix if and only if An has all negative real-part

eigenvalues, i.e.,

Hk =

∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 . . . a2k−1

1 a2 a4 . . . a2k−2

0 a1 a3 . . . a2k−3

0 1 a2 . . . a2k−4

. . . . . . . . . . . . . . .
0 0 0 . . . ak

∣∣∣∣∣∣∣∣∣∣∣∣

> 0, k = 1, . . . , n,

where the complementary definition is aj = 0, j > n. Additionally, the corresponding necessary conditions
for An to be a Hurwitz matrix are as follows

(i) aj > 0, j = 1, . . . , n; (ii) aiai+1 > ai−1ai+2, i = 1, . . . , n− 2, a0 = 1.
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Lemma 4.1 [37]. For the algebraic equation H2
0 +A0Σ0 +Σ0A

T
0 = 0, where H0 = diag(1, 0, 0, 0) and Σ0 is

a real symmetric matrix, and the standard matrix

A0 =




−τ1 −τ2 −τ3 −τ4
1 0 0 0
0 1 0 0
0 0 1 0


 .

If τ1 > 0, τ3 > 0, τ4 > 0 and τ1τ2τ3 − τ23 − τ21 τ4 > 0, then Σ0 is a positive definite matrix, where

Σ0 =




τ2τ3 − τ1τ4
2(τ1τ2τ3 − τ23 − τ21 τ4)

0 − τ3
2(τ1τ2τ3 − τ23 − τ21 τ4)

0

0
τ3

2(τ1τ2τ3 − τ23 − τ21 τ4)
0 − τ1

2(τ1τ2τ3 − τ23 − τ21 τ4)

− τ3
2(τ1τ2τ3 − τ23 − τ21 τ4)

0
τ1

2(τ1τ2τ3 − τ23 − τ21 τ4)
0

0 − τ1
2(τ1τ2τ3 − τ23 − τ21 τ4)

0 − τ1τ2 − τ3
2τ4(τ1τ2τ3 − τ23 − τ21 τ4)




.

Here A0 in this form is called the standard R1 matrix.

Lemma 4.2 [37]. For the algebraic equation H2
0 + Ã0Θ0 + Θ0Ã

T
0 = 0, where H0 = diag(1, 0, 0, 0), Θ0 is a

real symmetric matrix, and the standard matrix

Ã0 =




−l1 −l2 −l3 −l4
1 0 0 0
0 1 0 0
0 0 0 −a21


 .

If l1 > 0, l3 > 0 and l1l2 − l3 > 0, then the matrix Θ0 is semi-positive definite which takes the form

Θ0 =




l2
2(l1l2 − l3)

0 − 1

2(l1l2 − l3)
0

0
1

2(l1l2 − l3)
0 0

− 1

2(l1l2 − l3)
0

l1
2l3(l1l2 − l3)

0

0 0 0 0




.

Here Ã0 in this form is called the standard R2 matrix.

4.2. Probability density of stationary distribution π(·)
Theorem 4.1 Let (T (t), I(t), V (t), β1(t), β2(t))

T be a solution of system (1.2) with the initial value (T (0),
I(0), V (0), β1(0), β2(0))

T ∈ R3
+ × R2. If RS

0 > 1, then there exists a probability density of a multivariate
normal distribution Φ(T, I, V, β1, β2) around the quasi-chronic infection equilibrium (T ∗, I∗, V ∗, β∗

1 , β
∗
2)

T ,
which takes the form

Φ(T, I, V, β1, β2) = (2π)−
5
2 |Σ|− 1

2 e−
1
2 (T−T∗,I−I∗,V−V ∗,β1−β∗

1 ,β2−β∗
2 )Σ

−1(T−T∗,I−I∗,V−V ∗,β1−β∗
1 ,β2−β∗

2 )
T

,

where Σ is a positive definite matrix, and the specific form of Σ is given as follows.
(1) If p1 = 0, then

Σ = ξ̄21(J10J9J8J2J1)
−1Θ̄0[(J10J9J8J2J1)

−1]T + ξ̄22(J20J19J18J12J11)
−1∆̄0[(J20J19J18J12J11)

−1]T .

(2) If p2 ̸= 0, then

Σ = ξ21(J5J4J3J2J1)
−1Σ01[(J5J4J3J2J1)

−1]T + ξ22(J15J14J13J12J11)
−1Σ02[(J15J14J13J12J11)

−1]T .

(3) If p2 = 0, then

Σ = ξ̃21(J7J6J3J2J1)
−1Θ̃0[(J7J6J3J2J1)

−1]T + ξ̃22(J17J16J13J12J11)
−1∆̃0[(J17J16J13J12J11)

−1]T ,
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where

p1 = a12 + a21 + a22 − a11, p2 =
a32(a21 + a33 − a11)

p1
, ξ1 = −a14p1p2σ1, ξ2 = −a15p1p2σ2, ξ̃1 = −a14p1σ1,

ξ̃2 = −a15p1σ2, ξ̄1 = a14a32σ1, ξ̄2 = a15a32σ2, τ1 = a11+a22+a33, τ2 = a11a22+a11a33+a22a33+a12a21−a13a32,

τ3 = a11a22a33 + a12a21a33 + a13a21a32 − a11a13a32, l1 = a11 + a22, l2 = a11a22 + a12a21 − a13a32,

l̄1 = a21 + a22 + a33, l̄2 = a21a33 + a22a33 − a13a32, Σ∗
01 = 2(ρ31 + ρ21τ1 + ρ1τ2 + τ3)(τ1τ2 − τ3),

Σ∗
02 = 2(ρ32 + ρ22τ1 + ρ2τ2 + τ3)(τ1τ2 − τ3),

and

J1 =




0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1




, J2 =




1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1




, J3 =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0
a32
p1

1 0

0 0 0 0 1




,

J4 =




1 0 0 0 0
0 p1p2 −(a12 + a22 + a33)p2 a233 0
0 0 p2 −a33 0
0 0 0 1 0
0 0 0 0 1




, J5 =




−a14p1p2 −τ1 −τ2 −τ3 −a15p1p2
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




,

J6 =




1 0 0 0 0
0 p1 −(a12 + a22) 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




, J8 =




1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1




, J9 =




1 0 0 0 0
0 −a32 −a33 a32 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




,

J7 =




−a14p1 −(a11 + a22) −a11a22 + a13a32 − a12a21 −a13p1 −a15p1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




, J11 =




0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0




,

J10 =




a14a32 −(a21 + a22 + a33) a13a32 − a21a33 − a22a33 a21a32 a15a32
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




, J12 =




1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1




,

J13 = J3, J14 = J4, J15 =




−a15p1p2 −τ1 −τ2 −τ3 −a14p1p2
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




, J16 = J6,

J17 =




−a15p1 −(a11 + a22) −a11a22 + a13a32 − a12a21 −a13p1 −a14p1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




, J18 = J8, J19 = J9,

J20 =




a15a32 −(a21 + a22 + a33) a13a32 − a21a33 − a22a33 a21a32 a14a32
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




,
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Σ01 =




ρ21(τ1τ2 − τ3) + τ2(ρ1τ2 + τ3)

Σ∗
01

0 −ρ1τ2 + τ3
Σ∗

01

0 0

0
ρ1τ2 + τ3

Σ∗
01

0 −ρ1 + τ1
Σ∗

01

0

−ρ1τ2 + τ3
Σ∗

01

0
ρ1 + τ1
Σ∗

01

0 0

0 −ρ1 + τ1
Σ∗

01

0
ρ1τ1(ρ1 + τ1) + τ1τ2 − τ3

ρ1τ3Σ∗
01

0

0 0 0 0 0




,

Σ02 =




ρ22(τ1τ2 − τ3) + τ2(ρ2τ2 + τ3)

Σ∗
02

0 −ρ2τ2 + τ3
Σ∗

02

0 0

0
ρ2τ2 + τ3

Σ∗
02

0 −ρ2 + τ1
Σ∗

02

0

−ρ2τ2 + τ3
Σ∗

02

0
ρ2 + τ1
Σ∗

02

0 0

0 −ρ2 + τ1
Σ∗

02

0
ρ2τ1(ρ2 + τ1) + τ1τ2 − τ3

ρ2τ3Σ∗
02

0

0 0 0 0 0




,

Θ̃0 =




ρ1l1 + l2
2l1(ρ1l1 + l2 + ρ21)

0 − 1

2l1(ρ1l1 + l2 + ρ21)
0 0

0
1

2l1(ρ1l1 + l2 + ρ21)
0 0 0

− 1

2l1(ρ1l1 + l2 + ρ21)
0

ρ1 + l1
2ρ1l1l2(ρ1l1 + l2 + ρ21)

0 0

0 0 0 0 0
0 0 0 0 0




,

Θ̄0 =




ρ1 l̄1 + l̄2
2l̄1(ρ1 l̄1 + l̄2 + ρ21)

0 − 1

2l̄1(ρ1 l̄1 + l̄2 + ρ21)
0 0

0
1

2l̄1(ρ1 l̄1 + l̄2 + ρ21)
0 0 0

− 1

2l̄1(ρ1 l̄1 + l̄2 + ρ21)
0

ρ1 + l̄1
2ρ1 l̄1 l̄2(ρ1 l̄1 + l̄2 + ρ21)

0 0

0 0 0 0 0
0 0 0 0 0




,

∆̃0 =




ρ2l1 + l2
2l1(ρ2l1 + l2 + ρ22)

0 − 1

2l1(ρ2l1 + l2 + ρ22)
0 0

0
1

2l1(ρ2l1 + l2 + ρ22)
0 0 0

− 1

2l1(ρ2l1 + l2 + ρ22)
0

ρ2 + l1
2ρ2l1l2(ρ2l1 + l2 + ρ22)

0 0

0 0 0 0 0
0 0 0 0 0




,

∆̄0 =




ρ2 l̄1 + l̄2
2l̄1(ρ2 l̄1 + l̄2 + ρ22)

0 − 1

2l̄1(ρ2 l̄1 + l̄2 + ρ22)
0 0

0
1

2l̄1(ρ2 l̄1 + l̄2 + ρ22)
0 0 0

− 1

2l̄1(ρ2 l̄1 + l̄2 + ρ22)
0

ρ2 + l̄1
2ρ2 l̄1 l̄2(ρ2 l̄1 + l̄2 + ρ22)

0 0

0 0 0 0 0
0 0 0 0 0




.
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Proof. For the sake of simplicity, let X = (x1, x2, x3, x4, x5)
T , B(t) = (0, 0, 0, B1(t), B2(t))

T ,

A =




−a11 −a12 −a13 −a14 −a15
a21 −a22 a23 a24 a25
0 a32 −a33 0 0
0 0 0 −ρ1 0
0 0 0 0 −ρ2




, H =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 σ1 0
0 0 0 0 σ2




.

With these notations, system (4.2) can be rewritten into the following equivalent form

dX(t) = AX(t)dt+HdB(t). (4.3)

In the light of the continuous Markov processes theory [38], system (4.3) has a unique probability density
Φ(x1, x2, x3, x4, x5, t), which is determined by the following five-dimensional Fokker-Planck equation

∂

∂t
Φ(X(t), t) +

∂

∂X(t)
[AX(t)Φ(X(t), t)]− σ2

1

2

∂2

∂x2
4

Φ(X(t), t)− σ2
2

2

∂2

∂x2
5

Φ(X(t), t) = 0. (4.4)

Next, we will give the accurate expression of the probability density by solving Equation (4.4). It is
noticed that ∂Φ(X(t), t)/∂t = 0 under a stationary case, then (4.4) becomes

∂

∂x1
[(−a11x1 − a12x2 − a13x3 − a14x4 − a15x5)Φ] +

∂

∂x2
[(a21x1 − a22x2 + a23x3 + a24x4 + a25x5)Φ]

+
∂

∂x3
[(a32x2 − a33x3)Φ] +

∂

∂x4
(−ρ1x4Φ) +

∂

∂x5
(−ρ2x5Φ)−

σ2
1

2

∂2

∂x2
4

Φ− σ2
2

2

∂2

∂x2
5

Φ = 0.

(4.5)

Because the diffusion matrix H is a constant matrix, then the probability density Φ(X) can be described
by a normal distribution according to the work of Roozen [39], that is,

Φ(X) = m exp

{
− 1

2
XTQX

}
,

where Q is a real symmetric matrix and m is a positive constant satisfying the normalization condition∫
R5 Φ(X)dX = 1.

Substituting these results into (4.5), we obtain the constant m = (2π)−
5
2 |Σ|− 1

2 and Q satisfies the
following algebraic equation

QH2Q+QA+ATQ = 0. (4.6)

If the matrix Q is positive definite and so it is invertible, we define Q−1 = Σ, then the algebraic equation
(4.6) can be transformed into the following equivalent form

H2 +AΣ+ ΣAT = 0. (4.7)

In consideration of the finite independent superposition principle [38], (4.7) is equivalent to the sum of
the following two algebraic sub-equations,

H2
i +AΣi +ΣiA

T = 0, i = 1, 2,

where H2
1 = diag(0, 0, 0, σ2

1 , 0), H
2
2 = diag(0, 0, 0, 0, σ2

2), and the symmetric matrices Σi (i = 1, 2) are their
solutions, respectively. It is easy to see that Σ = Σ1 +Σ2 and H2 = H2

1 +H2
2 .

Denote by

A(3) :=




−a11 −a12 −a13
a21 −a22 a23
0 a32 −a33


 .

To validate that the matrix A(3) is a Hurwitz matrix, in view of Definition 4.1, we need to validate that all
the eigenvalues of A(3) have negative real-parts. To this end, define the characteristic equation of A(3) by

φA(3)(λ) = λ3 + τ1λ
2 + τ2λ+ τ3 = 0, (4.8)
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where

τ1 = a11+a22+a33, τ2 = a11a22+a11a33+a22a33+a12a21−a13a32, τ3 = a11a22a33+a12a21a33+a13a21a32−a11a13a32.

On the basis of the expressions of T ∗, I∗, V ∗, we have

τ1 > 0, τ3 > a11(a22a33 − a23a32) > 0, τ1τ2 − τ3 > a11(a11a22 + a11a33 + a12a21 + a22a33 + a222 + a233) > 0,

which shows that all the roots of the characteristic equation (4.8) have negative real-parts and hence the
matrix A(3) is a Hurwitz matrix.

Now we are in the position to give the specific form of Σ and validate its positive definiteness. We realize
it in two steps.

Step 1. Consider the algebraic equation

H2
1 +AΣ1 +Σ1A

T = 0. (4.9)

Define A1 = J1AJ−1
1 , where the ordering matrix J1 takes the form

J1 =




0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1




.

Direct calculation leads to that

A1 =




−ρ1 0 0 0 0
−a14 −a11 −a12 −a13 −a15
a24 a21 −a22 a23 a25
0 0 a32 −a33 0
0 0 0 0 −ρ2




.

Define A2 = J2A1J
−1
2 , where the elimination matrix J2 is given by

J2 =




1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1




.

Then we have

A2 =




−ρ1 0 0 0 0
−a14 a12 − a11 −a12 −a13 −a15
0 p1 −(a12 + a22) 0 0
0 −a32 a32 −a33 0
0 0 0 0 −ρ2



,

where
p1 = a12 + a21 + a22 − a11.

In the light of the value of p1, we will consider the following two cases:
(1) p1 ̸= 0; (2) p1 = 0.
Case 1. If p1 ̸= 0, let A3 = J3A2J

−1
3 , where the elimination matrix J3 takes the form

J3 =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0
a32
p1

1 0

0 0 0 0 1




.
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Then it is easy to obtain that

A3 =




−ρ1 0 0 0 0

−a14 a12 − a11
a13a32 − a12p1

p1
−a13 −a15

0 p1 −(a12 + a22) 0 0
0 0 p2 −a33 0
0 0 0 0 −ρ2



,

where

p2 =
a32(a21 + a33 − a11)

p1
.

Based on the value of p2, we study the following two conditions
(i) p2 ̸= 0; (ii) p2 = 0.
Case 1.1. If p2 ̸= 0, let A4 = J4A3J

−1
4 , where the standardized transformation matrix J4 is given by

J4 =




1 0 0 0 0
0 p1p2 −(a12 + a22 + a33)p2 a233 0
0 0 p2 −a33 0
0 0 0 1 0
0 0 0 0 1




,

then

A4 =




−ρ1 0 0 0 0
−a14p1p2 −(a11 + a22 + a33) a4(23) a4(24) −a15p1p2

0 1 0 0 0
0 0 1 0 0
0 0 0 0 −ρ2



,

where
a4(23) = −τ2 = −(a11a22 + a11a33 + a22a33 + a12a21 − a13a32),

a4(24) = −τ3 = −(a11a22a33 + a12a21a33 + a13a21a32 − a11a13a32).

In addition, let A5 = J5A4J
−1
5 , where the standardized transformation matrix J5 is given by

J5 =




−a14p1p2 −τ1 −τ2 −τ3 −a15p1p2
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




.

By simple computation, we have

A5 =




−(τ1 + ρ1) −(τ1ρ1 + τ2) −(τ2ρ1 + τ3) −τ3ρ1 a15p1p2(ρ2 − ρ1)
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 −ρ2



.

In addition, Equation (4.9) can be transformed into the following form

(J5J4J3J2J1)H
2
1 (J5J4J3J2J1)

T +A5(J5J4J3J2J1)Σ1(J5J4J3J2J1)
T +(J5J4J3J2J1)Σ1(J5J4J3J2J1)

TAT
5 = 0,

that is,
H2

0 +A5Σ01 +Σ01A
T
5 = 0, (4.10)
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where Σ01 = ξ−2
1 (J5J4J3J2J1)Σ1(J5J4J3J2J1)

T and ξ1 = −a14p1p2σ1. By solving Equation (4.10), we
obtain

Σ01 =




ρ21(τ1τ2 − τ3) + τ2(ρ1τ2 + τ3)

Σ∗
01

0 −ρ1τ2 + τ3
Σ∗

01

0 0

0
ρ1τ2 + τ3

Σ∗
01

0 −ρ1 + τ1
Σ∗

01

0

−ρ1τ2 + τ3
Σ∗

01

0
ρ1 + τ1
Σ∗

01

0 0

0 −ρ1 + τ1
Σ∗

01

0
ρ1τ1(ρ1 + τ1) + τ1τ2 − τ3

ρ1τ3Σ∗
01

0

0 0 0 0 0




,

where Σ∗
01 = 2(ρ31 + ρ21τ1 + ρ1τ2 + τ3)(τ1τ2 − τ3).

It is noticed that the matrix Σ01 is positive semi-definite and its submatrix

Σ
(4)
01 =




ρ21(τ1τ2 − τ3) + τ2(ρ1τ2 + τ3)

Σ∗
01

0 −ρ1τ2 + τ3
Σ∗

01

0

0
ρ1τ2 + τ3

Σ∗
01

0 −ρ1 + τ1
Σ∗

01

−ρ1τ2 + τ3
Σ∗

01

0
ρ1 + τ1
Σ∗

01

0

0 −ρ1 + τ1
Σ∗

01

0
ρ1τ1(ρ1 + τ1) + τ1τ2 − τ3

ρ1τ3Σ∗
01




is positive definite. Therefore, the matrix Σ1 = ξ21(J5J4J3J2J1)
−1Σ01[(J5J4J3J2J1)

−1]T is also positive
semi-definite and there exists a positive constant η1 such that

Σ1 ⪰ η1




1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0




.

Case 1.2. If p2 = 0, let A6 = J6A3J
−1
6 , where the standardized transformation matrix J6 is given by

J6 =




1 0 0 0 0
0 p1 −(a12 + a22) 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




,

then

A6 =




−ρ1 0 0 0 0
−a14p1 −(a11 + a22) −a11a22 + a13a32 − a12a21 −a13p1 −a15p1

0 1 0 0 0
0 0 0 −a33 0
0 0 0 0 −ρ2



.

Next, define A7 = J7A6J
−1
7 , where the standardized transformation matrix J7 takes the form

J7 =




−a14p1 −(a11 + a22) −a11a22 + a13a32 − a12a21 −a13p1 −a15p1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




.

Direct calculation gives that

A7 =




−(ρ1 + l1) −(ρ1l1 + l2) −ρ1l2 a13p1(a33 − ρ1) a15p1(ρ2 − ρ1)
1 0 0 0 0
0 1 0 0 0
0 0 0 −a33 0
0 0 0 0 −ρ2



,
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where
l1 = a11 + a22, l2 = a11a22 + a12a21 − a13a32.

Similarly, Equation (4.9) can be rewritten into the following equivalent form

(J7J6J3J2J1)H
2
1 (J7J6J3J2J1)

T +A7(J7J6J3J2J1)Σ1(J7J6J3J2J1)
T +(J7J6J3J2J1)Σ1(J7J6J3J2J1)

TAT
7 = 0,

i.e.,
H2

0 +A7Θ̃0 + Θ̃0A
T
7 = 0, (4.11)

where Θ̃0 = ξ̃−2
1 (J7J6J3J2J1)Σ1(J7J6J3J2J1)

T and ξ̃1 = −a14p1σ1. By solving Equation (4.11), we have

Θ̃0 =




ρ1l1 + l2
2l1(ρ1l1 + l2 + ρ21)

0 − 1

2l1(ρ1l1 + l2 + ρ21)
0 0

0
1

2l1(ρ1l1 + l2 + ρ21)
0 0 0

− 1

2l1(ρ1l1 + l2 + ρ21)
0

ρ1 + l1
2ρ1l1l2(ρ1l1 + l2 + ρ21)

0 0

0 0 0 0 0
0 0 0 0 0




.

Apparently, the matrix Θ̃0 is positive semi-definite and its submatrix

Θ̃
(4)
0 =




ρ1l1 + l2
2l1(ρ1l1 + l2 + ρ21)

0 − 1

2l1(ρ1l1 + l2 + ρ21)
0

0
1

2l1(ρ1l1 + l2 + ρ21)
0 0

− 1

2l1(ρ1l1 + l2 + ρ21)
0

ρ1 + l1
2ρ1l1l2(ρ1l1 + l2 + ρ21)

0

0 0 0 0




is positive semi-definite. Hence, the matrix Σ1 = ξ̃21(J7J6J3J2J1)
−1Θ̃0[(J7J6J3J2J1)

−1]T is also positive
semi-definite and there exists a positive constant η̃1 such that

Σ1 ⪰ η̃1




1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0




.

Case 2. If p1 = 0, i.e., a12 + a21 + a22 − a11 = 0, let A8 = J8A2J
−1
8 , where the ordering matrix J8 is

given by

J8 =




1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1




,

then we have

A8 =




−ρ1 0 0 0 0
−a14 a12 − a11 −a13 −a12 −a15
0 −a32 −a33 a32 0
0 0 0 −(a12 + a22) 0
0 0 0 0 −ρ2



.

Next, define A9 = J9A8J
−1
9 , where the standardized transformation matrix J9 takes the form

J9 =




1 0 0 0 0
0 −a32 −a33 a32 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




.
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It is easy to calculate that

A9 =




−ρ1 0 0 0 0
a14a32 −(a21 + a22 + a33) a13a32 − a21a33 − a22a33 a21a32 a15a32

0 1 0 0 0
0 0 0 −(a12 + a22) 0
0 0 0 0 −ρ2



.

Let A10 = J10A9J
−1
10 , where the standardized transformation matrix J10 is given by

J10 =




a14a32 −(a21 + a22 + a33) a13a32 − a21a33 − a22a33 a21a32 a15a32
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




.

It is easy to obtain that

A10 =




−(ρ1 + l̄1) −(ρ1 l̄1 + l̄2) −ρ1 l̄2 a21a32(ρ1 − a12 − a22) a15a32(ρ1 − ρ2)
1 0 0 0 0
0 1 0 0 0
0 0 0 −(a12 + a22) 0
0 0 0 0 −ρ2




,

where
l̄1 = a21 + a22 + a33, l̄2 = a21a33 + a22a33 − a13a32.

Moreover, Equation (4.9) can be equivalently transformed into the following form

(J10J9J8J2J1)H
2
1 (J10J9J8J2J1)

T+A10(J10J9J8J2J1)Σ1(J10J9J8J2J1)
T+(J10J9J8J2J1)Σ1(J10J9J8J2J1)

TAT
10 = 0.

The above equation can be rewritten as the following equivalent form

H2
0 +A10Θ̄0 + Θ̄0A

T
10 = 0, (4.12)

where H0 = diag(1, 0, 0, 0, 0), Θ̄0 = ξ̄−2
1 (J10J9J8J2J1)Σ1(J10J9J8J2J1)

T and ξ̄1 = a14a32σ1. By solving
Equation (4.12), we obtain

Θ̄0 =




ρ1 l̄1 + l̄2
2l̄1(ρ1 l̄1 + l̄2 + ρ21)

0 − 1

2l̄1(ρ1 l̄1 + l̄2 + ρ21)
0 0

0
1

2l̄1(ρ1 l̄1 + l̄2 + ρ21)
0 0 0

− 1

2l̄1(ρ1 l̄1 + l̄2 + ρ21)
0

ρ1 + l̄1
2ρ1 l̄1 l̄2(ρ1 l̄1 + l̄2 + ρ21)

0 0

0 0 0 0 0
0 0 0 0 0




.

Note that the matrix Θ̄0 is positive semi-definite and its submatrix

Θ̄
(4)
0 =




ρ1 l̄1 + l̄2
2l̄1(ρ1 l̄1 + l̄2 + ρ21)

0 − 1

2l̄1(ρ1 l̄1 + l̄2 + ρ21)
0

0
1

2l̄1(ρ1 l̄1 + l̄2 + ρ21)
0 0

− 1

2l̄1(ρ1 l̄1 + l̄2 + ρ21)
0

ρ1 + l̄1
2ρ1 l̄1 l̄2(ρ1 l̄1 + l̄2 + ρ21)

0

0 0 0 0




is positive semi-definite. Thus, the matrix Σ1 = ξ̄21(J10J9J8J2J1)
−1Θ̄0[(J10J9J8J2J1)

−1]T is also positive
semi-definite and there exists a positive constant η̄1 such that

Σ1 ⪰ η̄1




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0




.
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Step 2. Consider the algebraic equation

H2
2 +AΣ2 +Σ2A

T = 0. (4.13)

Let A11 = J11AJ−1
11 , where the ordering matrix J11 takes the form

J11 =




0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0




,

then we obtain

A11 =




−ρ2 0 0 0 0
−a15 −a11 −a12 −a13 −a14
a25 a21 −a22 a23 a24
0 0 a32 −a33 0
0 0 0 0 −ρ1




.

Next, let A12 = J12A11J
−1
12 , where the elimination matrix J12 is given by

J12 =




1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1




.

Then

A12 =




−ρ2 0 0 0 0
−a15 a12 − a11 −a12 −a13 −a14
0 p1 −(a12 + a22) 0 0
0 −a32 a32 −a33 0
0 0 0 0 −ρ1




,

where
p1 = a12 + a21 + a22 − a11.

In view of the value of p1, we will study the following two cases:
(1) p1 ̸= 0; (2) p1 = 0.
Case 1. If p1 ̸= 0, following the derivation process in Step 1, we define A13 = J13A12J

−1
13 , where the

elimination matrix J13 takes the form

J13 = J3 =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0
a32
p1

1 0

0 0 0 0 1




.

Then we compute that

A13 =




−ρ2 0 0 0 0

−a15 a12 − a11
a13a32 − a12p1

p1
−a13 −a14

0 p1 −(a12 + a22) 0 0
0 0 p2 −a33 0
0 0 0 0 −ρ1



,

where

p2 =
a32(a21 + a33 − a11)

p1
.
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On the basis of the value of p2, we consider the following two conditions
(i) p2 ̸= 0; (ii) p2 = 0.
Case 1.1. If p2 ̸= 0, let A14 = J14A13J

−1
14 , where the standardized transformation matrix J14 is given

by

J14 = J4 =




1 0 0 0 0
0 p1p2 −(a12 + a22 + a33)p2 a233 0
0 0 p2 −a33 0
0 0 0 1 0
0 0 0 0 1




.

We obtain that

A14 =




−ρ2 0 0 0 0
−a15p1p2 −(a11 + a22 + a33) a14(23) a14(24) −a14p1p2

0 1 0 0 0
0 0 1 0 0
0 0 0 0 −ρ1




,

where
a14(23) = −τ2 = −(a11a22 + a11a33 + a22a33 + a12a21 − a13a32),

a14(24) = −τ3 = −(a11a22a33 + a12a21a33 + a13a21a32 − a11a13a32).

Next, define A15 = J15A14J
−1
15 , where the standardized transformation matrix J15 takes the form

J15 =




−a15p1p2 −τ1 −τ2 −τ3 −a14p1p2
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




.

Then it is easy to see that

A15 =




−(ρ2 + τ1) −(ρ2τ1 + τ2) −(ρ2τ2 + τ3) −ρ2τ3 a14p1p2(ρ1 − ρ2)
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 −ρ1




.

Thus, Equation (4.13) can be transformed into the following form

(J15J14J13J12J11)H
2
2 (J15J14J13J12J11)

T +A15(J15J14J13J12J11)Σ2(J15J14J13J12J11)
T

+ (J15J14J13J12J11)Σ2(J15J14J13J12J11)
TAT

15 = 0,

that is,
H2

0 +A15Σ02 +Σ02A
T
15 = 0, (4.14)

where Σ02 = ξ−2
2 (J15J14J13J12J11)Σ2(J15J14J13J12J11)

T and ξ2 = −a15p1p2σ2. By solving Equation (4.14),
we have

Σ02 =




ρ22(τ1τ2 − τ3) + τ2(ρ2τ2 + τ3)

Σ∗
02

0 −ρ2τ2 + τ3
Σ∗

02

0 0

0
ρ2τ2 + τ3

Σ∗
02

0 −ρ2 + τ1
Σ∗

02

0

−ρ2τ2 + τ3
Σ∗

02

0
ρ2 + τ1
Σ∗

02

0 0

0 −ρ2 + τ1
Σ∗

02

0
ρ2τ1(ρ2 + τ1) + τ1τ2 − τ3

ρ2τ3Σ∗
02

0

0 0 0 0 0




,

where Σ∗
02 = 2(ρ32 + ρ22τ1 + ρ2τ2 + τ3)(τ1τ2 − τ3).
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It is easy to conclude that the matrix Σ02 is positive semi-definite and its submatrix

Σ
(4)
02 =




ρ22(τ1τ2 − τ3) + τ2(ρ2τ2 + τ3)

Σ∗
02

0 −ρ2τ2 + τ3
Σ∗

02

0

0
ρ2τ2 + τ3

Σ∗
02

0 −ρ2 + τ1
Σ∗

02

−ρ2τ2 + τ3
Σ∗

02

0
ρ2 + τ1
Σ∗

02

0

0 −ρ2 + τ1
Σ∗

02

0
ρ2τ1(ρ2 + τ1) + τ1τ2 − τ3

ρ2τ3Σ∗
02




is positive definite. Accordingly, the matrix Σ2 = ξ22(J15J14J13J12J11)
−1Σ02[(J15J14J13J12J11)

−1]T is also
positive semi-definite and there exists a positive constant η2 such that

Σ2 ⪰ η2




0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1




.

Case 1.2. If p2 = 0, let A16 = J16A13J
−1
16 , where the standardized transformation matrix J16 is given

by

J16 = J6 =




1 0 0 0 0
0 p1 −(a12 + a22) 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




,

then

A16 =




−ρ2 0 0 0 0
−a15p1 −(a11 + a22) −a11a22 + a13a32 − a12a21 −a13p1 −a14p1

0 1 0 0 0
0 0 0 −a33 0
0 0 0 0 −ρ1



.

Next, define A17 = J17A16J
−1
17 , where the standardized transformation matrix J17 takes the form

J17 =




−a15p1 −(a11 + a22) −a11a22 + a13a32 − a12a21 −a13p1 −a14p1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




.

Direct calculation gives that

A17 =




−(ρ2 + l1) −(ρ2l1 + l2) −ρ2l2 a13p1(a33 − ρ2) a14p1(ρ1 − ρ2)
1 0 0 0 0
0 1 0 0 0
0 0 0 −a33 0
0 0 0 0 −ρ1



,

where
l1 = a11 + a22, l2 = a11a22 + a12a21 − a13a32.

Similarly, Equation (4.13) can be rewritten into the following equivalent form

(J17J16J13J12J11)H
2
2 (J17J16J13J12J11)

T +A17(J17J16J13J12J11)Σ2(J17J16J13J12J11)
T

+ (J17J16J13J12J11)Σ2(J17J16J13J12J11)
TAT

17 = 0,

i.e.,
H2

0 +A17∆̃0 + ∆̃0A
T
17 = 0, (4.15)
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where ∆̃0 = ξ̃−2
2 (J17J16J13J12J11)Σ2(J17J16J13J12J11)

T and ξ̃2 = −a15p1σ2. By solving Equation (4.15),
we obtain

∆̃0 =




ρ2l1 + l2
2l1(ρ2l1 + l2 + ρ22)

0 − 1

2l1(ρ2l1 + l2 + ρ22)
0 0

0
1

2l1(ρ2l1 + l2 + ρ22)
0 0 0

− 1

2l1(ρ2l1 + l2 + ρ22)
0

ρ2 + l1
2ρ2l1l2(ρ2l1 + l2 + ρ22)

0 0

0 0 0 0 0
0 0 0 0 0




.

It is obvious that the matrix ∆̃0 is positive semi-definite and its submatrix

∆̃
(4)
0 =




ρ2l1 + l2
2l1(ρ2l1 + l2 + ρ22)

0 − 1

2l1(ρ2l1 + l2 + ρ22)
0

0
1

2l1(ρ2l1 + l2 + ρ22)
0 0

− 1

2l1(ρ2l1 + l2 + ρ22)
0

ρ2 + l1
2ρ2l1l2(ρ2l1 + l2 + ρ22)

0

0 0 0 0




is positive semi-definite. So the matrix Σ2 = ξ̃22(J17J16J13J12J11)
−1∆̃0[(J17J16J13J12J11)

−1]T is also positive
semi-definite and there exists a positive constant η̃2 such that

Σ2 ⪰ η̃2




0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1




.

Case 2. If p1 = 0, i.e., a12 + a21 + a22 − a11 = 0, let A18 = J18A12J
−1
18 , where the standardized

transformation matrix J18 takes the form

J18 = J8 =




1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1




.

By simple computation, we obtain

A18 =




−ρ2 0 0 0 0
−a15 a12 − a11 −a13 −a12 −a14
0 −a32 −a33 a32 0
0 0 0 −(a12 + a22) 0
0 0 0 0 −ρ1



.

In addition, let A19 = J19A18J
−1
19 , where the standardized transformation matrix J19 takes the form

J19 = J9 =




1 0 0 0 0
0 −a32 −a33 a32 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




.

Direct calculation leads to that

A19 =




−ρ2 0 0 0 0
a15a32 −(a21 + a22 + a33) a13a32 − a21a33 − a22a33 a21a32 a14a32

0 1 0 0 0
0 0 0 −(a12 + a22) 0
0 0 0 0 −ρ1




.
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Define A20 = J20A19J
−1
20 , where the standardized transformation matrix J20 is given by

J20 =




a15a32 −(a21 + a22 + a33) a13a32 − a21a33 − a22a33 a21a32 a14a32
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




.

Then

A20 =




−(ρ2 + l̄1) −(ρ2 l̄1 + l̄2) −ρ2 l̄2 a21a32(ρ2 − a12 − a22) a14a32(ρ2 − ρ1)
1 0 0 0 0
0 1 0 0 0
0 0 0 −(a12 + a22) 0
0 0 0 0 −ρ1




,

where
l̄1 = a21 + a22 + a33, l̄2 = a21a33 + a22a33 − a13a32.

Similarly, Equation (4.13) can be transformed into the following equivalent form

(J20J19J18J12J11)H
2
2 (J20J19J18J12J11)

T +A20(J20J19J18J12J11)Σ2(J20J19J18J12J11)
T

+ (J20J19J18J12J11)Σ2(J20J19J18J12J11)
TAT

20 = 0,

that is,
H2

0 +A20∆̄0 + ∆̄0A
T
20 = 0, (4.16)

where ∆̄0 = ξ̄−2
2 (J20J19J18J12J11)Σ2(J20J19J18J12J11)

T and ξ̄2 = a15a32σ2. By solving Equation (4.16),
we have

∆̄0 =




ρ2 l̄1 + l̄2
2l̄1(ρ2 l̄1 + l̄2 + ρ22)

0 − 1

2l̄1(ρ2 l̄1 + l̄2 + ρ22)
0 0

0
1

2l̄1(ρ2 l̄1 + l̄2 + ρ22)
0 0 0

− 1

2l̄1(ρ2 l̄1 + l̄2 + ρ22)
0

ρ2 + l̄1
2ρ2 l̄1 l̄2(ρ2 l̄1 + l̄2 + ρ22)

0 0

0 0 0 0 0
0 0 0 0 0




.

Clearly, the matrix ∆̄0 is positive semi-definite and its submatrix

∆̄
(4)
0 =




ρ2 l̄1 + l̄2
2l̄1(ρ2 l̄1 + l̄2 + ρ22)

0 − 1

2l̄1(ρ2 l̄1 + l̄2 + ρ22)
0

0
1

2l̄1(ρ2 l̄1 + l̄2 + ρ22)
0 0

− 1

2l̄1(ρ2 l̄1 + l̄2 + ρ22)
0

ρ2 + l̄1
2ρ2 l̄1 l̄2(ρ2 l̄1 + l̄2 + ρ22)

0

0 0 0 0




is positive semi-definite. So the matrix Σ2 = ξ̄22(J20J19J18J12J11)
−1∆̄0[(J20J19J18J12J11)

−1]T is also positive
semi-definite and there exists a positive constant η̄2 such that

Σ2 ⪰ η̄2




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1




.
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Now we validate the matrix Σ = Σ1 +Σ2 in Eq. (4.7) is positive definite. If p2 ̸= 0, then the covariance
matrix

Σ =Σ1 +Σ2

⪰η1




1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0




+ η2




0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1




⪰(η1 ∧ η2)




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




is positive definite. Similarly, we can validate that under the other two cases, the covariance matrix Σ is
also positive definite. Accordingly, we obtain that the stationary distribution π(·) around the quasi-chronic
infection equilibrium (T ∗, I∗, V ∗, β∗

1 , β
∗
2)

T follows a unique probability density Φ(T, I, V, β1, β2), which takes
the form

Φ(T, I, V, β1, β2) = (2π)−
5
2 |Σ|− 1

2 e−
1
2 (T−T∗,I−I∗,V−V ∗,β1−β∗

1 ,β2−β∗
2 )Σ

−1(T−T∗,I−I∗,V−V ∗,β1−β∗
1 ,β2−β∗

2 )
T

,

where the specific form of Σ can be determined by the above discussion. This completes the proof.

5 Numerical simulations

In this section, we supply some numerical simulations to validate our theoretical results. For the stochastic
system (1.2), we adopt the Milstein higher-order method mentioned in [40] and the discretization form of
the stochastic system is as follows:





T j+1 = T j +

[
λ− µ1T

j + rT j

(
1− T j

Tmax

)
−max{βj

1, 0}T jV j −max{βj
2, 0}T jIj

]
∆t,

Ij+1 = Ij + [max{βj
1, 0}T jV j +max{βj

2, 0}T jIj − (µ2 + α1)I
j ]∆t,

V j+1 = V j + [kIj − (µ3 + α2)V
j ]∆t,

βj+1
1 = βj

1 + ρ1(β̄1 − βj
1)∆t+ σ1

√
∆tε1,j ,

βj+1
2 = βj

2 + ρ2(β̄2 − βj
2)∆t+ σ2

√
∆tε2,j ,

(5.1)

where (T j , Ij , V j , βj
1, β

j
2)

T represents the corresponding value of the jth iteration of the equation (5.1). ∆t
is the time increment which is positive, σ2

i denote the intensities of white noises, εi,j (i = 1, 2; j = 1, . . . , n)
are mutually independent normal random variables following the distribution N(0, 1). We choose actual
parameter values from the published references, and all the values of biological parameters are given in
Table 2.

Next, in view of numerical simulations, we mainly focus on validating two aspects:
(i) there exists a stationary distribution of system (1.2) if the condition RS

0 > 1 holds;
(ii) the existence of the probability density.

Example 5.1. In order to get the existence of a stationary distribution numerically, we choose ρ1 = 0.5,
ρ2 = 0.5, σ1 = 10−6, σ2 = 5 × 10−5 and the other parameter values are presented in Table 2. By direct
calculation, we obtain

RS
0 =

kλ( 1√
π

∫∞
− β̄1

√
ρ1

σ1

( σ1√
ρ1
x+ β̄1)

1
3 e−x2

dx)3

(µ2 + α1)(µ3 + α2)(
λ
T0

+ kλ̄σ1

2µ̄µ3
√
πρ1

+ λ̄σ2

2µ̄
√
πρ2

)
+

λ( 1√
π

∫∞
− β̄2

√
ρ2

σ2

( σ2√
ρ2
x+ β̄2)

1
2 e−x2

dx)2

(µ2 + α1)(
λ
T0

+ kλ̄σ1

2µ̄µ3
√
πρ1

+ λ̄σ2

2µ̄
√
πρ2

)
≈ 2.524 > 1.

In other words, the conditions of Theorem 3.1 are satisfied. By Theorem 3.1, we obtain that system (1.2)
has a stationary distribution π(·) which shows that all CD4+ T cells and free viruses are persistent a.s. See
Fig. 1.
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Table 2: List of parameters

Parameters Unit Value Source

λ µl−1day−1 10 [41, 42]

µ1 day−1 0.1 [42, 43]

r day−1 0.1 [5, 41]

Tmax µl−1 1500 [41]

β1 µlday−1 1.3× 10−5 [8, 43]

β2 µlday−1 2× 10−3 [44]

µ2 day−1 0.5 [41, 43]
k virions/cell 3000 [9, 10]

µ3 day−1 23 [11, 41, 42]

α1 day−1 0.01 Estimated

α2 day−1 0.02 Estimated
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Fig. 1. The left column shows the time series diagrams of the healthy CD4+ T cells, the infected CD4+

T cells and the free viruses in the stochastic model (1.2) and their corresponding deterministic model (1.1)
with ρ1 = 0.5, ρ2 = 0.5, σ1 = 10−6 and σ2 = 5 × 10−5. The right column shows the marginal density
functions and frequency histograms for T , I and V , respectively.
Example 5.2. To validate the existence of the probability density around the quasi-chronic infection
equilibrium, we choose ρ1 = 0.5, ρ2 = 0.5, σ1 = 10−6, σ2 = 5 × 10−5 and the other parameter values
are presented in Table 2. Then we have E∗ = (T ∗, I∗, V ∗, β̄1, β̄2)

T = (138.0550, 17.1164, 2230.6402, 1.3 ×
10−5, 2× 10−3)T and

RS
0 =

kλ( 1√
π

∫∞
− β̄1

√
ρ1

σ1

( σ1√
ρ1
x+ β̄1)

1
3 e−x2

dx)3

(µ2 + α1)(µ3 + α2)(
λ
T0

+ kλ̄σ1

2µ̄µ3
√
πρ1

+ λ̄σ2

2µ̄
√
πρ2

)
+

λ( 1√
π

∫∞
− β̄2

√
ρ2

σ2

( σ2√
ρ2
x+ β̄2)

1
2 e−x2

dx)2

(µ2 + α1)(
λ
T0

+ kλ̄σ1

2µ̄µ3
√
πρ1

+ λ̄σ2

2µ̄
√
πρ2

)
≈ 2.524 > 1.

That is to say, the conditions of Theorem 4.1 hold. So system (1.2) has a Gaussian probability density near
the quasi-chronic infection equilibrium E∗. In addition, we obtain p2 = 140369.8291 > 0. Hence, by the
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second case of Theorem 4.1, it is easy to get the specific expression of the covariance matrix Σ,

Σ =ξ21(J5J4J3J2J1)
−1Σ01[(J5J4J3J2J1)

−1]T + ξ22(J15J14J13J12J11)
−1Σ02[(J15J14J13J12J11)

−1]T

=




21.3617 −2.7380 −362.4600 −9.5512× 10−7 −0.00001832
−2.73802 2.0658 269.1870 4.9024× 10−7 0.000009404
−362.4600 269.1870 35080.9 0.00006253 0.001200

−9.5512× 10−7 4.9024× 10−7 0.00006253 1.0× 10−12 0
−0.00001832 0.000009404 0.001200 0 2.5× 10−9




,

and the corresponding probability density Φ(T, I, V, β1, β2) is given by

Φ(T, I, V, β1, β2)

= (2π)−
5
2 |Σ|− 1

2 exp

{
− 1

2
(T − 138.0550, I − 17.1164, V − 2230.6402, β1 − 1.3× 10−5, β2 − 2× 10−3)TΣ−1

× (T − 138.0550, I − 17.1164, V − 2230.6402, β1 − 1.3× 10−5, β2 − 2× 10−3)

}

= 136249280.8326 exp

{
− 1

2
(T − 138.0550, I − 17.1164, V − 2230.6402, β1 − 1.3× 10−5, β2 − 2× 10−3)TΣ−1

× (T − 138.0550, I − 17.1164, V − 2230.6402, β1 − 1.3× 10−5, β2 − 2× 10−3)

}
.

Thus, Φ(T, I, V, β1, β2) has the following five marginal probability densities

∂Φ

∂T
= 0.08632e−0.02341(T−138.0550)2 ,

∂Φ

∂I
= 0.2776e−0.2420(I−17.1164)2 ,

∂Φ

∂V
= 0.002130e−0.00001425(V−2230.6402)2 ,

∂Φ

∂β1
= 398942.2804e−500000000000(β1−1.3×10−5)2 ,

∂Φ

∂β2
= 7978.8456e−200000000(β2−0.002)2 .

Fig. 2 illustrates this.
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Fig. 2. Numerical simulations for: (i) the frequency histogram fitting density curves of T , I, V , β1 and β2

of system (1.2) with 50000, 50000 iteration points, respectively. (ii) The marginal probability densities of T ,
I, V , β1 and β2 of system (1.2). All of the parameter values are the same as in Fig. 1.

6 Conclusion

In this paper, based on both biological significance and mathematically reasonable hypotheses, we develop
and analyze a stochastic HIV model with cell-to-cell transmission and Ornstein-Uhlenbeck process to describe
the replication process and the pathogenesis of HIV infection in the population. Firstly, we validate that
system (1.2) has a unique global solution with any given initial value. Then we adopt a novel method to
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construct some suitable stochastic Lyapunov functions to establish sufficient criteria for the existence of a
stationary distribution, which is a kind of probability distribution with some variables from the viewpoint
of stochastic process. Especially, under the same conditions as the existence of a stationary distribution,
we derive the accurate form of the probability density, which is a function that describes the probability
of the output value of the random variable near the quasi-chronic infection equilibrium of system (1.2).
Mathematically, the existence of a stationary distribution implies the weak stability in stochastic sense
while the existence of the probability density of system (1.2) is more in-depth and specific than that of
the stationary distribution. Biologically, the existence of a stationary distribution and probability density
indicates the persistence and coexistence of all CD4+ T cells and free viruses.

Numerically, on the basis of the actual parameter values in the existing literature, we get two important
conclusions: (i) small environmental noise makes each population fluctuate extremely little which can still
retain some stochastic weak stability to some extent; (ii) we obtain the specific form of the probability
density around the quasi-chronic infection equilibrium E∗ of system (1.2).

On the other hand, there are remain lots of significant topics deserve further consideration. For example,
in this paper, we assume that the parameters β1 and β2 satisfy the Ornstein-Uhlenbeck process. It is
interesting to assume that the other parameters involved in system (1.1) satisfy the Ornstein-Uhlenbeck
process which may make the model fit the actual situation better. In addition, it is also significant to analyze
the influences of other types of random perturbations (such as nonlinear perturbations, colored noise, Poisson
jumps et al.) on HIV models. To our knowledge, there is little literature to study viral infection models with
Lévy jumps or Poisson jumps since there are many barriers to deal with the corresponding Fokker-Planck
equation in the discontinuous situation. This is because we lack appropriate mathematical methods and
skills. These issues are expected to be resolved in the near future since the relevant work is now underway.
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