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Abstract

This paper focuses on a predator-prey system with foraging arena scheme incorpo-
rating stochastic noises. This SDE model is generated from a deterministic framework
by the stochastic parameter perturbation. We then study how the correlations of the
environmental noises affect the long-time behaviours of the SDE model. Later on the
existence of a stationary distribution is pointed out under certain parametric restrictions.
Numerical simulations are carried out to substantiate the analytical results.
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1 Introduction

A population model clarifies the mathematical relationships among consumer strategies and ecological
generalities [1]. An essential element of the population models is called the functional response, which
describes the density-dependent uptake response of consumers [2, 3]. There are different types of
functional responses. For example, Holling type II response λ2(x) = u1x/(u2 + x), Holling type III
response λ2(x) = u1x

2/(u22 + x2) [4], the ratio-dependent response λ2(x, y) = u1x/(u2y + x) [2, 5–7]
and foraging arena response λ2(x, y) = u1x/(w + u3y) = sx/(β + y) [3, 8, 9], where u1 is a maximum
uptake rate by the predator and u2 is a prey half-saturation coefficient, β = w/u3 = consumer density
at half maximum per capita uptake rate and u1/w = s/β = maximum per capita uptake rate by
predator. The two-dimensional foraging arena predator-prey model is in a form

dx̄1(t) = x̄1(t)
(
a− bx̄1(t)−

sx̄2(t)

β + x̄2(t)

)
dt,

dx̄2(t) = x̄2(t)
( hx̄1(t)

β + x̄2(t)
− c− fx̄2(t)

)
dt,

(1.1)

where x̄1(t) and x̄2(t) represent the population densities of prey and predator in model (1.1) at time
t and a, b, s, β, h, c and f are all positive constants. More precisely, a is the intrinsic growth rate
of prey, c is the density-dependent mortality rate of consumer, h = φs, b and f are the quadratic
mortality rates of prey and predator respectively. We set x̄(t) = (x̄1(t), x̄2(t))

T as the solution of
model (1.1) with the initial value x̄0 = (x̄1(0), x̄2(0))T . In model (1.1), there are two non-negative
trivial equilibrium points Ē0 = (0, 0) and Ē1 = (ab , 0). Also an unique interior equilibrium point
Ē∗(x̄∗1, x̄

∗
2) with the nullclines

(a− bx̄∗1)(β + x̄∗2) = sx̄∗2,

(β + x̄∗2)(c+ fx̄∗2) = hx̄∗1

∗Corresponding author and e-mail: siyang.cai@strath.ac.uk
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exists and is globally asymptotically stable provided that a > bβc
h [10].

The deterministic models have been widely applied to explain and predict the population dynam-
ics (e.g.[11–13]), as well as for population management and conservation (e.g.[14–20]). However, such
models have their limitations in dealing with biological populations in the real world. As a result
an increasing number of researchers have been studying the stochastic population systems. Mao [21]
found a surprising fact that the presence of even a tiny amount of environmental noise can suppress
a potential population explosion in a classical n-dimensional Lotka-Volterra model. Mao [22] com-
pared three types of delay Lotka-Volterra models and revealed their unique properties individually.
Moreover, in [23] the conditions for the SDE Lotka-Volterra model having a stationary distribution
were explored and a useful method was introduced to compute the mean and variance of the sta-
tionary distribution. Further studies on the n-dimensional Lotka-Volterra models can be found in
e.g.[24, 25]. Holling type II model was also well studied by many authors, e.g.[26–29]. Especially, Ji
et al.[26] considered a stochastic predator-prey model with modified Leslie-Gower and Holling type
II schemes and produced conditions for the system to be either extinctive or persistent. [30] stud-
ied a three-dimensional stochastic ratio-dependent model with Markov switching and Holling type
III functional response. The stochastic permanence was proved mainly using the M-matrix analysis
introduced by [31] and applied in [24, 25]. In [32], the asymptotic behaviours of the predator-prey
system with Beddington-DeAngelis response were investigated and the conditions of having a station-
ary distribution were produced. However to the best of our knowledge, there has not been much work
about the foraging arena model incorporating the environmental variabilities. Throughout this pa-
per, unless otherwise specified, we let (Ω, {Ft}t>0,P) be a complete probability space with a filtration
{Ft} satisfying the usual conditions (i.e.it is right continuous and increasing while {F0} contains all
P-null sets). Let B(t) = (B1(t), · · · , B6(t))

T and B̆(t) = (B1(t), · · · , B4(t))
T be six-dimensional and

four-dimensional Brownian motions defined on this probability space respectively. The SDE models
are then formulated as follows: Due to the environmental changes such as temperature and rainfall,
we may stochastically perturb the parameters a, c, s and h in model (1.1) with

a→ a+ σ1Ḃ1(t), c→ c+ σ2Ḃ2(t),

s→ s+ r1Ḃ3(t) and h→ h+ r2Ḃ4(t),

where σ1, σ2, r1 and r2 denote the intensities of the corresponding white noise. As a result the per-
turbed system is given by

dx1(t) = x1(t)
(
a− bx1(t)−

sx2(t)

β + x2(t)

)
dt+ σ1x1(t)dB1(t)−

r1x1(t)x2(t)

β + x2(t)
dB3(t) (1.2a)

dx2(t) = x2(t)
( hx1(t)

β + x2(t)
− c− fx2(t)

)
dt− σ2x2(t)dB2(t) +

r2x1(t)x2(t)

β + x2(t)
dB4(t). (1.2b)

Furthermore, we would also like to incorporate perturbation into b and f :

b→ b+ δ1Ḃ5(t) and f → f + δ2Ḃ6(t),

where δ1 and δ2 represent the intensities of the corresponding white noise. We then obtain

dx1(t) = x1(t)
(
a−bx1(t)−

sx2(t)

β + x2(t)

)
dt+σ1x1(t)dB1(t)−

r1x1(t)x2(t)

β + x2(t)
dB3(t)−δ1x21(t)dB5(t) (1.3a)

dx2(t) = x2(t)
( hx1(t)

β + x2(t)
−c−fx2(t)

)
dt−σ2x2(t)dB2(t)+

r2x1(t)x2(t)

β + x2(t)
dB4(t)−δ2x22(t)dB6(t). (1.3b)

In ecology, the spatial synchrony often occurs in the population dynamics, resulting from a synchronous
random environmental factors including temperature, rainfall and sunlight etc.[33–35]. Moran effect,
known as the synchronizing effect of environmental stochasticity, has been observed in multiple pop-
ulation models. By taking Moran effect into account, the prey and predator populations in our
systems (1.2) and (1.3) can be influenced by the same external factors [35]. This phenomena can be
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characterised by the correlations between the Brownian motions affecting different species (see e.g.
[35–38]). On the other hand, some environmental factors such as a disease, temperature and pollution
might simultaneously affect several system parameters of a species. Therefore the correlations between
the Brownian motions affecting a specific population group are also considered. As a result, we let
B(t) = $Z(t), where Z(t) = (Z1(t), · · · , Z6(t))

T is a six-dimensional independent standard Brownian
motion and $T$ = R = (ρij)6×6 is a constant correlation matrix with ρij ∈ [−1, 1] represents the
correlation coefficient between Bi(t) and Bj(t) for i, j = 1, 2, · · · , 6. And B̆(t) can be defined in the
same way. We also denote

ρ̄ij =

{
ρij , if ρij > 0

0, otherwise
and ρ̃ij =

{
0, if ρij > 0

−ρij , otherwise.

We set x(t) = (x1(t), x2(t))
T as the solution of model (1.2) or model (1.3) representing the population

densities of prey and predator at time t with the initial value x0 = (x1(0), x2(0))T . Let R2
+ be the

positive cone in R2, that is R2
+ = {x ∈ R2 : x1 > 0 and x2 > 0}. We also set inf ∅ =∞. If A is a vector

or matrix, its transpose is denoted by AT . If A is a matrix, its trace norm is |A| =
√

trace(ATA) whilst
its operator norm is ‖A‖ = sup{|Ax| : |x| = 1}. If A is a symmetric matrix, its smallest and largest
eigenvalue are denoted by λmin(A) and λmax(A). Consider the n-dimensional stochastic differential
equation

dz(t) = f̄(t)dt+ ḡ(t)dw(t) (1.4)

for t > 0, where z(t) = (z1(t), · · · , zn(t))T and w(t) = (w1(t), · · · , wn(t))T be an n-dimensional
Brownian motion defined on the complete probability space (Ω, {Ft}t>0,P) adapted to the filtration
{Ft}t>0. Let C2,1(Rn × R+;R) be the family of all real-valued functions V (z, t) defined on Rn × R+

such that they are continuously twice differentiable in z and once in t. Given V ∈ C2,1(Rn × R+;R),
define an operator LV : Rn × R+ → R by

LV (z, t) = Vt(z, t) + Vz(z, t)f̄(t) +
1

2
trace(ḡT (t)Vzz(z, t)ḡ(t)),

which is called the diffusion operator of the Itô process (1.4) associated with the C2,1-function V (see
e.g.[31, p. 41]). With the diffusion operator, the Itô formula (1.4) can be written as

dV (z(t), t) = LV (z(t), t)dt+ Vz(z(t), t)ḡ(t)dw(t) a.s.

This paper is divided into four main parts. In the first two parts, the unique properties of model
(1.2) and (1.3) are discussed respectively including the existence and uniqueness of the positive global
solution, asymptotic moment estimate and some long-time behaviours of the two species. In the third
part, the parametric restrictions for either model (1.2) or (1.3) to have a stationary distribution are
studied. In the final part, computer simulations based on the Euler-Maruyama scheme are performed
to illustrate our theory

2 Model (1.2)

2.1 Global positive solution

Theorem 2.1. For any given initial value x0 ∈ R2
+, there is a unique solution x(t) to equation (1.2)

on t > 0 and the solution will remain in R2
+ with probability 1, namely x(t) ∈ R2

+ for all t > 0 almost
surely.

By defining V (x) = x21 − 2 log x1 + x22 − 2 log x2, this theorem is then proved in the same routine
as in [21, 39].
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2.2 Asymptotic moment estimate

Theorem 2.2. For any θ > 0, there exists a positive constant K(θ) such that for any initial value
x0 ∈ R2

+, the solution of model (1.2) has the property that

lim sup
t→∞

E|x(t)|θ 6 K(θ).

Proof. Applying the Itô formula to et(xθ1(t) + xθ2(t)) for θ > 0,

et(xθ1(t) + xθ2(t))

= xθ1(0) + xθ2(0) +

∫ t

0
esf(x(s))ds+ θσ1

∫ t

0
esxθ1(s)dB1(s)− θσ2

∫ t

0
esxθ2(s)dB2(s)

− θr1
∫ t

0

esxθ1(s)x2(s)

β + x2(s)
dB3(s) + θr2

∫ t

0

esxθ2(s)x1(s)

β + x2(s)
dB4(s), (2.1)

where

f(x) = θxθ1

(
a− bx1 −

sx2
β + x2

)
+ θxθ2

( hx1
β + x2

− c− fx2
)

+
1

2
θ(θ − 1)xθ1

(
σ21 +

r21x
2
2

(β + x2)2

− 2σ1r1ρ13x2
β + x2

)
+

1

2
θ(θ − 1)xθ2

(
σ22 +

r22x
2
1

(β + x2)2
− 2r2σ2ρ24x1

β + x2

)
+ xθ1 + xθ2.

Using the elementary inequality

vκ1v
1−κ
2 6 κv1 + (1− κ)v2 for v1, v2 > 0 and 0 6 κ < 1,

for θ > 2 we obtain
x1x

θ
2

β + x2
6 x1x

θ−1
2 6

1

θ
xθ1 +

θ − 1

θ
xθ2

and

x21x
θ
2

(β + x2)2
6 x21x

θ−2
2 6

2

θ
xθ1 +

θ − 2

θ
xθ2.

Hence

f(x) 6
(
h+ 1 + aθ + (θ − 1)

(1

2
θ(σ21 + r21 + 2σ1r1ρ̃13) + r22 + r2σ2ρ̃24

))
xθ1 +

(
1− cθ

+ (θ − 1)
(
h+

1

2
θσ22 +

1

2
(θ − 2)r22 + (θ − 1)r2σ2ρ̃24

))
xθ2 − bθxθ+1

1 − fθxθ+1
2 .

is bounded, say by K∗(θ). Moreover, it follows from (2.1) that

E
[
et∧τk

(
xθ1(t ∧ τk) + xθ2(t ∧ τk)

)]
6 xθ1(0) + xθ2(0) +K∗(θ)

∫ t∧τk

0
esds.

Letting k →∞ and then t→∞ yields

lim sup
t→∞

E
[
xθ1(t) + xθ2(t)

]
6 lim

t→∞

1

et

(
xθ1(0) + xθ2(0) +K∗(θ)(et − 1)

)
= K∗(θ).

On the other hand, we have

|x|2 6 2(x21 ∨ x22), so |x|θ 6 2θ/2(xθ1 ∨ xθ2) 6 2θ/2(xθ1 + xθ2).

As a result,

lim sup
t→∞

E|x(t)|θ 6 2θ/2 lim sup
t→∞

E[xθ1(t) + xθ2(t)] 6 2θ/2K∗(θ) = K(θ). (2.2)

For 0 < θ < 2, Hölder’s inequality yields

E|x(t)|θ 6
(
E|x(t)|2

) θ
2 .

Hence from (2.2)

lim sup
t→∞

E|x(t)|θ 6 lim sup
t→∞

(E|x(t)|2)
θ
2 6 K(θ).

�
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2.3 Asymptotic pathwise estimation

In order to study the asymptotic properties of model (1.2), we first introduce a lemma.

Lemma 2.3. For any initial value x0 ∈ R2
+, the solution of model (1.2) has the property that

lim sup
t→∞

1

t

∫ t

0
x21(u)du 6

4a2

b2
a.s.

Proof. According to (1.2a),

x1(t) = x1(0) + a

∫ t

0
x1(u)du− b

∫ t

0
x21(u)du− s

∫ t

0

x1(u)x2(u)

β + x2(u)
du+m1(t) +m3(t) (2.3)

where

m1(t) = σ1

∫ t

0
x1(u)dB1(u) and m3(t) = −r1

∫ t

0

x1(u)x2(u)

β + x2(u)
dB3(u)

are two continuous local martingales with the quadratic variations

〈m1(t)〉 = σ21

∫ t

0
x21(u)du and 〈m3(t)〉 = r21

∫ t

0

x21(u)x22(u)

(β + x2(u))2
du 6 r21

∫ t

0
x21(u)du.

By the exponential martingle inequality, we have

P
(

sup
o6t6n

(
mi(t)− 0.5α〈mi(t)〉

)
>

2 log n

α

)
6

1

n2
for i = 1, 3 and n = 1, 2, · · · ,

where

α =
b

σ21 + r21
. (2.4)

An application of the Borel-Cantelli lemma suggests that for almost all ω ∈ Ω there is a random
integer n0 = n0(ω) > 1 such that

sup
o6t6n

(
mi(t)− 0.5α〈mi(t)〉

)
6

2 log n

α
whenever n > n0 for i = 1, 3.

Hence for t ∈ [0, n] and n > n0,

mi(t) 6
2 log n

α
+ 0.5α〈mi(t)〉 a.s.

And then (2.3) and (2.4) imply that for t ∈ [0, n] and n > n0,

x1(t) 6 x1(0) + a

∫ t

0
x1(u)du−

(
b− 0.5α(σ21 + r21)

)∫ t

0
x21(u)du+

4 log n

α

= x1(0) + a

∫ t

0
x1(u)du− b

2

∫ t

0
x21(u)du+

4 log n

α
a.s.

Therefore it follows that for t ∈ [0, n] and n > n0,

b

4

∫ t

0
x21(u)du 6 x1(0) + a

∫ t

0
x1(u)du− b

4

∫ t

0
x21(u)du+

4 log n

α

6 x1(0) +
a2t

b
+

4 log n

α
a.s.

Consequently, for almost all ω ∈ Ω, if n > n0 and n− 1 6 t 6 n,

1

t

∫ t

0
x21(u)du 6

4

(n− 1)b

(
x1(0) +

a2n

b
+

4 log n

α

)
.

Letting t→∞ and hence n→∞ we obtain

lim sup
t→∞

1

t

∫ t

0
x21(u)du 6

4a2

b2
a.s.

�
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Theorem 2.4. For any initial value x0 ∈ R2
+,

(a) if
2a < σ21 − 2r1σ1ρ̄13 (2.5)

then both x1(t) and x2(t) of model (1.2) tend to zero exponentially as t→∞ with probability 1;

(b) if

σ21 + 2r1σ1ρ̃13 < 2a < σ21 − 2r1σ1ρ̄13 +
2bβc

h+ r2σ2ρ24
+

bβσ22
h+ r2σ2ρ24

for ρ24 > −
h

r2σ2
(2.6)

or

2a > σ21 + 2r1σ1ρ̃13 for − 1 6 ρ24 6 −
h

r2σ2
, (2.7)

then x1(t) of model (1.2) obeys

2a− σ21
2b

6 lim inf
t→∞

1

t

∫ t

0
x1(u)du 6 lim sup

t→∞

1

t

∫ t

0
x1(u)du 6

2a− σ21 + 2r1σ1ρ̄13
2b

a.s.

and x2(t) tends to zero exponentially as t→∞ with probability 1.

Proof. (a) Applying Itô’s formula on log x1 yields

d log x1(t) =
(
a− bx1(t)−

1

2
σ21 −

sx2(t)

β + x2(t)
− r21x

2
2(t)

2(β + x2(t))2
+
r1σ1ρ13x2(t)

β + x2(t)

)
dt+ σ1dB1(t)

− r1x2(t)

β + x2(t)
dB3(t) (2.8)

6
(
a− 1

2
σ21 + r1σ1ρ̄13

)
dt+ σ1dB1(t)−

r1x2(t)

β + x2(t)
dB3(t).

Integrating from 0 to t and dividing by t infers

1

t
log x1(t) 6

1

t
log x1(0) + a− 1

2
σ21 + r1σ1ρ̄13 +

M1(t)

t
+
M3(t)

t
,

where

M1(t) = σ1B1(t) and M3(t) = −r1
∫ t

0

x2(u)

β + x2(u)
dB3(u)

are two continuous martingales with the quadratic variations

〈M1(t)〉 = σ21t and 〈M3(t)〉 = r21

∫ t

0

x22(u)

(β + x2(u))2
dt 6 r21t.

By the strong law of large numbers for martingales [31, 40],

lim
t→∞

M1(t)

t
= 0 and lim

t→∞

M3(t)

t
= 0 a.s.

and thus from condition (2.5)

lim sup
t→∞

1

t
log x1(t) 6 a−

1

2
σ21 + r1σ1ρ̄13 < 0 a.s.

as required. Therefore we obtain

lim
t→∞

1

t

∫ t

0
x1(u)du = 0 a.s. (2.9)
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Meanwhile

d log x2(t) =
(h+ r2σ2ρ24
β + x2(t)

x1(t)− c−
σ22
2
− fx2(t)−

r22x
2
1(t)

2(β + x2(t))2

)
dt− σ2dB2(t)

+
r2x1(t)

β + x2(t)
dB4(t). (2.10)

It follows that

log x2(t)

t
6

1

t

(
log x2(0) +

h+ r2σ2ρ̄24
β

∫ t

0
x1(u)du

)
−
(
c+

σ22
2

)
+
M2(t)

t
+
M4(t)

t
,

where

M2(t) = −σ2B2(t) and M4(t) = r2

∫ t

0

x1(u)

β + x2(u)
dB4(u)

are two martingales with the quadratic variations

〈M2(t)〉 = σ22t and 〈M4(t)〉 = r22

∫ t

0

x21(u)

(β + x2(u))2
du.

Hence from Lemma 2.3,

lim sup
t→∞

〈M4(t)〉
t

6 lim sup
t→∞

r22
β2t

∫ t

0
x21(u)du 6

4r22a
2

β2b2
a.s.

By the strong law of large numbers for martingales,

lim
t→∞

M2(t)

t
= 0 and lim

t→∞

M4(t)

t
= 0 a.s.

Letting t→∞ and recalling equation (2.9) indicates

lim sup
t→∞

log x2(t)

t
6 −

(
c+

σ22
2

)
< 0 a.s.

(b) Applying Itô’s formula on 1
x1(t)

gives

d
( 1

x1(t)

)
=
( 1

x1

( sx2
β + x2

− a+ σ21 +
r21x

2
2

(β + x2)2
− 2σ1r1ρ13x2

β + x2

)
+ b
)
dt− σ1

x1
dB1(t)

+
r1x2

x1(β + x2)
dB3(t),

where we write x(t) = x. Hence by the variation-of-constants formula (see e.g. [40, pp. 98-99]),

1

x1(t)
= exp

(∫ t

0

(1

2
σ21 − a+

sx2(u)

β + x2(u)
+

r21x
2
2(u)

2(β + x2(u))2
− 2r1σ1ρ13x2(u)

β + x2(u)

)
du−M1(t)

−M3(t)
)( 1

x1(0)
+ b

∫ t

0
exp

(∫ u

0

(
a− sx2(v)

β + x2(v)
− 1

2
σ21 −

r21x
2
2(v)

2(β + x2(v))2

+
2r1σ1ρ13x2(v)

β + x2(v)

)
dv +M1(u) +M3(u)

)
du

)
= exp

(
−M1(t)−M3(t)

)( 1

x1(0)
exp

(
−
(
a− 1

2
σ21
)
t+ s

∫ t

0

x2(u)

β + x2(u)
du

+
r21
2

∫ t

0

x22(u)

(β + x2(u))2
du− 2r1σ1ρ13

∫ t

0

x2(u)

β + x2(u)
du
)

+ b

∫ t

0
exp

(
−
(
a− 1

2
σ21
)
(t− u)

+ s

∫ t

u

x2(v)

β + x2(v)
dv +

r21
2

∫ t

u

x22(v)

(β + x2(v))2
dv − 2r1σ1ρ13

∫ t

u

x2(v)

β + x2(v)
dv +M1(u)

+M3(u)
)
du

)
. (2.11)
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On the one hand, (2.11) leads to

1

x1(t)
6 exp

(
−M1(t)−M3(t)

)( 1

x1(0)
exp

(
−
(
a− 1

2
σ21
)
t+ s

∫ t

0

x2(u)

β + x2(u)
du

+
r21
2

∫ t

0

x22(u)

(β + x2(u))2
du+ 2r1σ1ρ̃13

∫ t

0

x2(u)

β + x2(u)
du
)

+ b exp
(

max
06u6t

M1(u) + max
06u6t

M3(u)

+ s

∫ t

0

x2(u)

β + x2(u)
du+

r21
2

∫ t

0

x22(u)

(β + x2(u))2
du+ r1σ1ρ̃13

∫ t

0

x2(u)

β + x2(u)
du
)
·∫ t

0
exp(−q(t− u))du

)
6 exp

(
max
06u6t

M1(u)−M1(t) + max
06u6t

M3(u)−M3(t) + s

∫ t

0

x2(u)

β + x2(u)
du

+
r21
2

∫ t

0

x22(u)

(β + x2(u))2
du+ r1σ1ρ̃13

∫ t

0

x2(u)

β + x2(u)
du
)( 1

x1(0)
exp(−qt)

+ b

∫ t

0
exp(−q(t− u))du

)
= exp

(
max
06u6t

M1(u)−M1(t) + max
06u6t

M3(u)−M3(t) + s

∫ t

0

x2(u)

β + x2(u)
du

+
r21
2

∫ t

0

x22(u)

(β + x2(u))2
du+ r1σ1ρ̃13

∫ t

0

x2(u)

β + x2(u)
du
)
·K1(t),

where

q := a− 1

2
σ21 − r1σ1ρ̃13 and K1(t) =

1

x1(0)
exp(−qt) +

2b
(
1− exp(−qt)

)
2a− σ21

.

Under condition (2.6) or (2.7), we obtain that q > 0 and therefore sup06t<∞K1(t) < ∞. It then
follows that

log x1(t)

t
> − logK1(t)

t
− max06u6tM1(u)−M1(t) + max06u6tM3(u)−M3(t)

t

− s

t

∫ t

0

x2(u)

β + x2(u)
du− r21

2t

∫ t

0

x22(u)

(β + x2(u))2
du− r1σ1ρ̃13

t

∫ t

0

x2(u)

β + x2(u)
du. (2.12)

By (2.8) and (2.12),

1

t

∫ t

0
x1(u)du =

2a− σ21
2b

− log x1(t)

bt
+

log x1(0)

bt
− s

bt

∫ t

0

x2(u)

β + x2(u)
du

− r21
2bt

∫ t

0

x22(u)

(β + x2(u))2
du+

r1σ1ρ13
bt

∫ t

0

x2(u)

β + x2(u)
du+

M1(t)

bt
+
M3(t)

bt
(2.13)

6
2a− σ21

2b
+

logK1(t)

bt
+

max06u6tM1(u)−M1(t) + max06u6tM3(u)−M3(t)

bt

+
r1σ1ρ̄13

b
+

log x1(0)

bt
+
M1(t)

bt
+
M3(t)

bt
.

As t→∞ and from the strong law of large numbers for martingales,

lim sup
t→∞

1

t

∫ t

0
x1(u)du 6

2a− σ21 + 2r1σ1ρ̄13
2b

a.s. (2.14)

Assume that ρ24 > − h
r2σ2

. From equation (2.10),

d log x2(t) 6
(h+ r2σ2ρ24

β
x1(t)− c−

σ22
2

)
dt− σ2dB2(t) +

r2x1(t)

β + x2(t)
dB4(t).
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It is then followed from (2.14) and the strong law of large numbers for martingales that

lim sup
t→∞

1

t
log x2(t) 6

h+ r2σ2ρ24
β

lim sup
t→∞

1

t

∫ t

0
x1(u)du−

(
c+

σ22
2

)
6

(h+ r2σ2ρ24)(2a− σ21 + 2r1σ1ρ̄13)

2βb
−
(
c+

σ22
2

)
< 0

in view of (2.6). If ρ24 6 − h
r2σ2

, it immediately indicates that

lim sup
t→∞

1

t
log x2(t) 6 −

(
c+

σ22
2

)
< 0 a.s.

Hence for arbitrary small ζ > 0, there exists tζ(ω) such that

P(Ωζ) > 1− ζ where Ωζ =
{
ω :

(s+ r1σ1|ρ13|)x2(t, ω)

b(β + x2(t, ω))
+

r21x
2
2(t, ω)

2b(β + x2(t, ω))2
6 ζ for all t > tζ

}
.

On the other hand, (2.11) yields

1

x1(t)
> exp

(
−M1(t)−M3(t)

)( 1

x1(0)
exp

(
−
(
a− 1

2
σ21
)
t− 2r1σ1ρ̄13

∫ t

0

x2(u)

β + x2(u)
du
)

+ b exp
(

min
06u6t

M1(u) + min
06u6t

M3(u)− 2r1σ1ρ̄13

∫ t

0

x2(u)

β + x2(u)
du
)
·∫ t

0
exp

(
−
(
a− 1

2
σ21
)
(t− u)

)
du
)

> exp
(

min
06u6t

M1(u)−M1(t) + min
06u6t

M3(u)−M3(t)− 2r1σ1ρ̄13

∫ t

0

x2(u)

β + x2(u)
du
)
·K2(t),

where

K2(t) =
1

x1(0)
exp

(
−
(
a− 1

2
σ21
)
t
)

+
2b
(

1− exp
(
− (a− 1

2σ
2
1)t
))

2a− σ21
and sup06t<∞K2(t) <∞ if either condition (2.6) or (2.7) holds. Then

log x1(t)

t
6− logK2(t)

t
− min06u6tM1(u)−M1(t) + min06u6tM3(u)−M3(t)

t

+
2r1σ1ρ̄13

t

∫ t

0

x2(u)

β + x2(u)
du.

Hence we obtain from (2.13) that

1

t

∫ t

0
x1(u)du >

2a− σ21
2b

+
logK2(t)

bt
+

min06u6tM1(u)−M1(t) + min06u6tM3(u)−M3(t)

bt

+
log x1(0)

bt
− s

bt

∫ t

0

x2(u)

β + x2(u)
du− r21

2bt

∫ t

0

x22(u)

(β + x2(u))2
du

− r1σ1|ρ13|
bt

∫ t

0

x2(u)

β + x2(u)
du+

M1(t)

bt
+
M3(t)

bt
. (2.15)

For any ω ∈ Ωζ , (2.15) indicates

lim inf
t→∞

1

t

∫ t

0
x1(u)du >

2a− σ21
2b

− ζ a.s.

Letting ζ → 0 and together with (2.14) implies the required assertion. �

Remark 2.5. Let all the Brownian motions in model (1.2) be uncorrelated. Then Theorem 2.2 is still
obtained. Moreover, Theorem 2.4(a) or (b) holds if assertion (2.5) or (2.6) is satisfied with ρij = 0
for all i, j = 1, · · · , 4 and i 6= j.
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Remark 2.6. Assume that ρ13 6 0. Then under condition (2.6) or (2.7), x1(t) of model (1.2) obeys

lim
t→∞

1

t

∫ t

0
x1(u)du =

2a− σ21
2b

a.s.

and x2(t) tends to zero exponentially as t→∞ with probability 1.

Theorem 2.4(a) shows that large white noise intensity σ21 may let the populations die out. In
Theorem 2.4(b), the situation where a becomes larger is discussed. There are generally two cases,
depending on the value of ρ24. In the first case, B2(t) and B4(t) are strongly negatively correlated
(−1 6 ρ24 6 − h

r2σ2
). Then under condition (2.7), the prey species keep persistent while the consumers

become extinct ultimately. On the other hand, we let ρ24 > − h
r2σ2

. Then system (1.2) has the same
behaviours as in the first case provided that (2.6) is fulfilled. It is then interesting to examine how
the population system behaves when a gets larger in the case ρ24 > − h

r2σ2
. This is further developed

in section 4.

3 Model (1.3)

In this section, we investigate the long-time behaviours of model (1.3). Notice that if δ1 and δ2 are
zero, model (1.3) is then degenerated to model (1.2) which has been analysed as above. Hence this
section only focuses on the unique properties of model (1.3) with two positive constants δ1 and δ2.

3.1 Global positive solution

Theorem 3.1. For any given initial value x0 ∈ R2
+, there is a unique solution x(t) to equation (1.3)

on t > 0 and the solution will remain in R2
+ with probability 1, namely x(t) ∈ R2

+ for all t > 0 a.s.

By defining V (x) = x0.51 − 0.5 log x1 + x0.52 − 0.5 log x2, this theorem is then proved in the same
routine as in [21, 39].

3.2 Asymptotic moment estimate

Theorem 3.2. Let η1 and η2 be positive numbers satisfying

η1, η2 <
1

2
for ρ45 > 0 and ρ56 6 0;

η1 + 2η2 <
1

2
for ρ45 < 0 and ρ56 > 0;

η1 + η2 <
1

2
otherwise.

Then for any initial value x0 ∈ R2
+, the solution of model (1.3) has the property that

lim sup
t→∞

E[xη11 (t)xη22 (t)] 6 ec1/c2 ,

where c1 and c2 are two constants determined in (3.5) and (3.6) below in the case ρ45 < 0 and ρ56 > 0.

In order to prove this theorem, let us first consider the following lemma.

Lemma 3.3. Let η1 and η2 be positive numbers satisfying

η1, η2 < 1 for ρ45 > 0 and ρ56 6 0; (3.1a)

η1 + 2η2 < 1 for ρ45 < 0 and ρ56 > 0; (3.1b)

η1 + η2 < 1 otherwise, (3.1c)

Then for any initial value x0 ∈ R2
+, the solution of model (1.3) has the property that

E[xη11 (t)xη22 (t)] <∞ for all t > 0.
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Proof. Define a C2−function V : R2
+ → R+ by V (x) = xη11 x

η2
2 . And we obtain

LV (x) 6 V (x)
[
A1 +A2x1 +A3x2 +

1

2
δ21η1(η1 − 1)x21 +

1

2
δ22η2(η2 − 1)x22 +

η2(η2 − 1)r22
2(β + x2)2

x21

− δ1r2η1η2ρ45
β + x2

x21 + δ1δ2η1η2ρ56x1x2

]
,

where

A1 = aη1 − cη2 − σ1σ2η1η2ρ12 + σ1r1η1(1− η1)ρ̄13 + r1σ2η1η2ρ̄23, (3.2)

A2 = −bη1 +
hη2
β

+
σ1r2η1η2ρ̄14

β
+ δ1σ1η1(1− η1)ρ15 +

σ2r2η2(1− η2)ρ̄24
β

+ σ2δ1η1η2ρ25

+
r1r2η1η2ρ̃34

β
+ δ1r1η1(1− η1)ρ̃35 + δ2r2η2(1− η2)ρ̄46 (3.3)

and

A3 = −fη2 − σ1δ2η2η1ρ16 − δ2σ2η2(1− η2)ρ26 + r1δ2η1η2ρ̄36. (3.4)

Assuming that ρ45 < 0 and ρ56 > 0, we obtain

1

4
δ21η1(η1 − 1)x21 +

η2(η2 − 1)r22
2(β + x2)2

x21 −
δ1r2η1η2ρ45
β + x2

x21

6
1

4
δ21η

2
1x

2
1 −

1

4
δ21η1x

2
1 +

η22r
2
2x

2
1

2(β + x2)2
− η2r

2
2x

2
1

2(β + x2)2
+

1

2
η1η2

( r22x
2
1

(β + x2)2
+ δ21x

2
1

)
=

1

4
η1
(
η1 + 2η2 − 1

)
δ21x

2
1 +

1

2
η2(η1 + η2 − 1)

r22x
2
1

(β + x2)2

and

1

4
δ21η1(η1 − 1)x21 +

1

2
δ22η2(η2 − 1)x22 + δ1δ2η1η2ρ56x1x2

6
1

4
δ21η

2
1x

2
1 −

1

4
δ21η1x

2
1 +

1

2
δ22η

2
2x

2
2 −

1

2
δ22η2x

2
2 +

1

2
η1η2(δ

2
1x

2
1 + δ22x

2
2)

=
1

4
η1(η1 + 2η2 − 1)δ21x

2
1 +

1

2
η2(η1 + η2 − 1)δ22x

2
2.

Hence

LV (x) 6 V (x)
(
A1 +A2x1 +A3x2 −

1

2
η1
(
1− (η1 + 2η2)

)
δ21x

2
1 −

1

2
η2
(
1− (η1 + η2)

)
δ22x

2
2

)
.

As the polynomial

A1 +A2x1 +A3x2 −
1

4
η1
(
1− (η1 + 2η2)

)
δ21x

2
1 −

1

4
η2
(
1− (η1 + η2)

)
δ22x

2
2

is bounded by

c1 =
η1
(
1− (η1 + 2η2)

)
δ21A1 +A2

2

η1(1− (η1 + 2η2))δ21
+

A2
3

η2
(
1− (η1 + η2)

)
δ22
, (3.5)

we obtain

LV (x) 6 V (x)
(
c1 − c2|x|2

)
,

where

c2 =
1

4

(
η1(1− (η1 + 2η2))δ

2
1 ∧ η2

(
1− (η1 + η2)

)
δ22
)
. (3.6)
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This leads to

EV (x(t ∧ τk)) = V (x0) + E
∫ t∧τk

0
LV (x(s))ds 6 V (x0) + c1

∫ t

0
EV (x(s ∧ τk))ds.

It then follows from the Gronwall inequality that

EV (x(t ∧ τk)) 6 V (x0)e
c1t.

Letting k →∞ implies
EV (x(t)) 6 V (x0)e

c1t <∞ for all t > 0.

Similarly, one can deduce the same results under condition (3.1a) or (3.1c) with the corresponding
values of c1 and c2. Here it is omitted. �

Proof of Theorem 3.2. This proof is standard by using the results of Lemma 3.3. One can refer to
[21, pp. 104-105] for details. �

We can obtain from the Chebyshev’s inequality and Theorem 3.2 that

P(x1 > D1 and x2 > D2)

=E
[
I{x1>D1}I{x2>D2}

]
6 E

[ xη11
Dη1

1

I{x1>D1}
xη22
Dη2

2

I{x2>D2}

]
6

E
[
xη11 x

η2
2

]
Dη1

1 D
η2
2

6
ec1/c2

Dη1
1 D

η2
2

,

where I is the indicator function. From the biological point of view, this implies that it is unlikely
that the amount of two populations will become very large simultaneously.

3.3 Asymptotic pathwise estimation

Theorem 3.4. For any initial value x0 ∈ R2
+, the solution of model (1.3) has the property that

lim sup
t→∞

log |x(t)|
log t

6 6 a.s. (3.7)

Proof. Defining V: R2
+ → R+ by V (x) = x1 + x2, for any constant γ > 0 we obtain

eγt log V (x(t)) = log V (x(0)) +

∫ t

0
eγug(x(u))du+

6∑
i=1

M̆i(t), (3.8)

where

g(x) = γ log V (x) +
1

V (x)

(
ax1 − cx2 − bx21 − fx22 −

sx1x2
β + x2

+
hx1x2
β + x2

)
− 1

2V 2(x)

(
σ21x

2
1 + σ22x

2
2

+
r21x

2
1x

2
2

(β + x2)2
+

r22x
2
1x

2
2

(β + x2)2
+ δ21x

4
1 + δ22x

4
2 − 2σ1σ2ρ12x1x2 +

2σ1r2ρ14x
2
1x2

β + x2
− 2σ1δ2ρ16x1x

2
2

+
2r1σ2ρ23x1x

2
2

β + x2
− 2r1r2ρ34x

2
1x

2
2

(β + x2)2
+

2r1δ2ρ36x1x
3
2

β + x2
+ 2δ1σ2ρ25x

2
1x2 −

2δ1r2ρ45x
3
1x2

β + x2

+ 2δ1δ2ρ56x
2
1x

2
2

)
and

M̆1(t) = σ1

∫ t

0

eγux1(u)

V (x(u))
dB1(u), M̆2(t) = −σ2

∫ t

0

eγux2(u)

V (x(u))
dB2(u),

M̆3(t) = −r1
∫ t

0

eγux1(u)x2(u)

(β + x2(u))V (x(u))
dB3(u),

M̆4(t) = r2

∫ t

0

eγux1(u)x2(u)

(β + x2(u))V (x(u))
dB4(u),

M̆5(t) = −δ1
∫ t

0

eγux21(u)

V (x(u))
dB5(u), M̆6(t) = −δ2

∫ t

0

eγux22(u)

V (x(u))
dB6(u)
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are local martingales with quadratic variations

〈M̆1(t)〉 = σ21

∫ t

0

e2γux21(u)

V 2(x(u))
du, 〈M̆2(t)〉 = σ22

∫ t

0

e2γux21(u)

V 2(x(u))
du,

〈M̆3(t)〉 = r21

∫ t

0

e2γux21(u)x22(u)

(β + x2(u))2V 2(x(u))
du, 〈M̆4(t)〉 = r22

∫ t

0

e2γux21(u)x22(u)

(β + x2(u))2V 2(x(u))
du,

〈M̆5(t)〉 = δ21

∫ t

0

e2γux41(u)

V 2(x(u))
du, 〈M̆6(t)〉 = δ22

∫ t

0

e2γux42(u)

V 2(x(u))
du.

Given any α1 ∈ (0, 1) and p > 1. By the exponential martingale inequality, we have

P
(

sup
06t6ψ

(
M̆i(t)−

α1

2
e−γψ〈M̆i(t)〉

)
>
peγψ

α1
logψ

)
6

1

ψp
, ψ = 1, 2, · · · .

Then by the Borel-Cantelli lemma, for almost all ω ∈ Ω, there exists ψi = ψi(ω) > 1 such that

M̆i(t) 6
α1

2
e−γψ〈M̆i(t)〉+

peγψ

α1
logψ for all 0 6 t 6 ψ and ψ > ψi.

Thus substituting this into (3.8) indicates that for almost every ω ∈ Ω,

eγt log V (x(t))

6 log V (x(0)) +

∫ t

0
eγu
(
γ log V (x(u)) + a+ h+ g1(x(u))− 1− α1e

γ(u−ψ)

2V 2(x(u))

(
δ21x

4
1(u) + δ22x

4
2(u)

))
du

+
6peγψ

α1
logψ (3.9)

for all 0 6 t 6 ψ and ψ > ψ0 := max(ψ1, ψ2, · · · , ψ6), where g1(x) is a first-order polynomial about x.
By the elementary inequality

V 2(x)

2
6 |x|2 6 2V 2(x), (3.10)

we obtain
1

V 2(x)
(δ21x

4
1 + δ22x

4
2) >

1

4
(δ21 ∧ δ22)|x|2.

Therefore (3.9) is rewritten as

eγt log V (x(t))

6 log V (x(0)) +

∫ t

0
eγu
(
γ log V (x(u)) + a+ h+ g1(x(u))− 1

8
(1− α1)(δ

2
1 ∧ δ22)|x(u)|2

)
du

+
6peγψ

α1
logψ.

Obviously, there exists a positive constant K3 such that for almost every ω ∈ Ω,

eγt log V (x(t))

6 log V (x(0)) +K3

∫ t

0
eγudu+

6peγψ

α1
logψ 6 log V (x(0)) +

K3

γ
eγt − K3

γ
+

6peγψ

α1
logψ

for all 0 6 t 6 ψ and ψ > ψ0 := max(ψ1, ψ2, · · · , ψ6). Consequently, for ψ − 1 6 t 6 ψ and ψ > ψ0, it
follows that

log V (x(t))

log t
6

1

log(ψ − 1)

(
e−γ(ψ−1) log(x1(0)x2(0)) +

K3

γ
+

6peγ

α1
logψ

)
.
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This implies

lim sup
t→∞

log V (x(t))

log t
6

6peγ

α1
a.s.

Letting α1 → 1, p→ 1 and γ → 0 implies

lim sup
t→∞

log V (x(t))

log t
6 6 a.s.

Recalling inequality (3.10) gives the required assertion (3.7). �

Remark 3.5. Let all the Brownian motions in model (1.3) be uncorrelated. Then Theorem 3.4 still
holds. Besides, Theorem 3.2 is fulfilled provided that η1 and η2 satisfy

η1, η2 <
1

2
,

with c1 and c2 defined by

c1 =
(hη2/β − bη1)2 + η1δ

2
1(1− η1)(aη1 − cη2)

η1(1− η1)δ21

and

c2 =
1

4

(
η1(1− η1)δ21 ∧ η2(1− η2)δ22

)
.

4 Stationary distribution

In this section, the stationary distributions of the solutions of model (1.2) and (1.3) are established.
Let Px0,t denote the probability measure induced by x(t) with initial value x(0) = x0, that is

Px0,t(D) = P(x(t) ∈ D), D ∈ B(R2
+),

where B(R2
+) is the σ-algebra of all the Borel sets D ⊆ R2

+. If there is a probability measure µ(·) on
the measurable space (R2

+,B(R2
+)) such that

Px0,t(·)→ µ(·) in distribution for any x0 ∈ R2
+,

we then say that the SDE model (1.2) (or (1.3)) has a stationary distribution µ(·) [23, 31, 41]. To
show the existence of a stationary distribution, let us first cite a known result from Khasminskii [41,
pp. 107-109, Theorem 4.1] as a lemma.

Lemma 4.1. The SDE model (1.3) has a unique stationary distribution if
(i) the matrix

U(x) = A(x)RA(x)T

is positive definite for x ∈ R2
+, where

A(x) =

[
σ1x1 0 −r1x1x2

β+x2
0 −δ1x21 0

0 −σ2x2 0 r2x1x2
β+x2

0 −δ2x22

]
;

(ii) there is a bounded openset G of R2
+ and

sup
x0∈Q−G

E(τG) <∞

for every compact subset Q of R2
+ such that G ⊂ Q where τG = inf{t > 0 : x(t) ∈ G}.
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Theorem 4.2. If

ρi1i2 6= ±1; ρ1i3 , ρ4i3 < 1/2; ρ26, ρ35 > −1/2;

ρ1i3 6 ρ1i2ρi2i3 ; ρ35 > ρ3i2ρ5i2 ; ρ4i4 6 ρi14ρi1i4 ; ρ26 > ρ2i1ρ6i1 ;

2ρ1i3ρ26 6 ρ12ρ6i3 + ρ16ρ2i3 ; 2ρ35ρ4i4 6 ρ3i4ρ45 + ρ34ρ5i4 ; (4.1)

2ρ1i3ρ4i4 > ρ14ρi3i4 + ρ1i4ρ4i3 ; 2ρ35ρ26 > ρ23ρ56 + ρ36ρ25

for i1 = 1, 3 or 5, i2 = 2, 4 or 6, i3 = 3 or 5 and i4 = 2 or 6,

h0 := σ2r2ρ̃24 + δ2r2βρ̃46 < h, (4.2)

2a
(

1− 1 + β

2(h− h0)
σ22 −

(1 + β)c

h− h0

)
> σ21 + 2r1σ1ρ̃13 +

2(b+ b0)βc

h− h0
+

(b+ b0)β

h− h0
σ22 (4.3)

and

b >
1

2
δ21 +

E1

2hβ2
r22 +

a+ E2

β
, (4.4)

where

b0 = σ1δ1ρ̃15 + r1δ1ρ̄35, E1 =
ah+

(
a+ b+ b0

)
βh

h− h0
and E2 = b0 +

h0E1

βh
,

then for any initial value x0 ∈ R2
+, model (1.3) has a unique stationary distribution.

Proof. (i) We compute
U(x) = (Uij(x))2×2,

where

U11(x) = σ21x
2
1 −

2ρ13σ1r1x
2
1x2

β + x2
− 2σ1δ1ρ15x

3
1 +

2r1δ1ρ35x
3
1x2

β + x2
+

r21x
2
1x

2
2

(β + x2)2
+ δ21x

4
1,

U22(x) = σ22x
2
2 −

2r2σ2ρ24x1x
2
2

β + x2
+ 2ρ26σ2δ2x

3
2 −

2ρ46δ2r2x1x
3
2

β + x2
+

r22x
2
1x

2
2

(β + x2)2
+ δ22x

4
2

and

U12(x) = U21(x) = −σ1σ2ρ21x1x2 +
ρ14r2σ1x

2
1x2

β + x2
− δ2σ1ρ16x1x22 +

r1σ2ρ23x1x
2
2

β + x2

− ρ34r1r2x
2
1x

2
2

(β + x2)2
+
r2δ2ρ36x1x

3
2

β + x2
+ δ1σ2ρ25x

2
1x2 −

ρ45δ1r2x
3
1x2

β + x2
+ ρ56δ1δ2x

2
1x

2
2.

The sufficient conditions (4.1) guarantee that U11(x) > 0, U22(x) > 0 and U11(x)U22(x)−U2
12(x) > 0.

Hence U(x) is a positive-definite matrix.

(ii) We define a C2−function V : R2
+ → R+:

V (x) = MV1(x) + V2(x) + e,

where

V1(x) = x1 + ln(β + x1)− ln(x1) +
l

h
x2 −

E1

h
lnx2, V2(x) = x1 +

s

h
x2,

and e, l and M are three constants. e = −min(MV1(x) + V2(x)) to keep the non-negativity of V (x),

l =
(hs
cβ

+
E1f

c
+
E1σ2δ2ρ̄26

c

)∨(E1δ
2
2

2f
+

hr21
2fβ2

+
E1h

4fβ2

)
(4.5)
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and M is to be defined later. First compute

LV1 =
(
x1 +

x1
β + x1

− 1
)(
a− bx1 −

sx2
β + x2

)
+

1

2

(
1− x21

(β + x1)2

)(
σ21 +

r21x
2
2

(β + x2)2
+ δ21x

2
1

− 2σ1r1ρ13x2
β + x2

− 2σ1δ1ρ15x1 +
2r1δ1ρ35x1x2

β + x2

)
+
( lx2
h
− E1

h

)( hx1
β + x2

− c− fx2
)

+
E1

2h

(
σ22 +

r22x
2
1

(β + x2)2
+ δ22x

2
2 −

2r2σ2ρ24x1
β + x2

+ 2δ2σ2ρ26x2 −
2δ2r2ρ46x1x2

β + x2

)
6 ax1 − bx21 +

ax1
β + x1

− bx21
β + x1

+ bx1 −
E1x1
β + x2

− a+
sx2

β + x2
+

1

2
σ21 +

r21x
2
2

2β2
+
δ21x

2
1

2

+ r1σ1ρ̃13 +
(
σ1δ1ρ̃15 + r1δ1ρ̄35

)
x1 +

lx1x2
β + x2

− clx2
h
− flx22

h
+
E1c

h
+
E1fx2
h

+
E1σ

2
2

2h

+
E1r

2
2x

2
1

2hβ2
+
E1δ

2
2x

2
2

2h
+
E1σ2r2ρ̃24x1

hβ
+
E1σ2δ2ρ26x2

h
+
E1δ2r2ρ̃46x1

h

6
(a+ E2)βx1
β + x1

+
ax1

β + x1
+

bβx1
β + x1

− E1x1
β + x2

+
(
− b+

δ21
2

+
a+ E2

β + x1
+
E1r

2
2

2hβ2

)
x21

− a+
1

2
σ21 + r1σ1ρ̃13 +

E1c

h
+
E1σ

2
2

2h
+
( s
β

+
E1f

h
− cl

h
+
E1σ2δ2ρ26

h

)
x2 +

(E1δ
2
2

2h
+

r21
2β2

− fl

h

)
x22 +

lx1x2
β + x2

6
E1(x1x2 − x21)

(β + x1)(β + x2)
+
(
− b+

δ21
2

+
a+ E2

β
+
E1r

2
2

2hβ2

)
x21 − λ+

( s
β

+
E1f

h
− cl

h

+
E1σ2δ2ρ26

h

)
x2 +

(E1δ
2
2

2h
+

r21
2β2
− fl

h

)
x22 +

lx1x2
β + x2

,

where λ = a− 1
2σ

2
1 − r1σ1ρ̃13− E1c

h −
E1σ2

2
2h > 0 from condition (4.3). Under (4.4), (4.5) and the Young

inequality,

LV1 6 −λ+
(
− b+

δ21
2

+
a+ E2

β
+
E1r

2
2

2hβ2

)
x21 +

( s
β

+
E1f

h
− cl

h
+
E1σ2δ2ρ26

h

)
x2

+
(E1δ

2
2

2h
+

r21
2β2
− fl

h
+
E1

4β2

)
x22 +

lx1x2
β + x2

6 −λ+
lx1x2
β + x2

.

Then compute

LV2 = ax1 − bx21 −
sc

h
x2 −

sf

h
x22 6 ax1 − bx21 −

sf

h
x22.

Hence

LV (x) 6M
(
− λ+

lx1x2
β + x2

)
+ ax1 − bx21 −

sf

h
x22,

where M satisfies Mλ > a2/(4b) + 2. Now we aim to show

LV (x) 6 −1 for all x ∈ R2
+ −G := Gc. (4.6)

As if this holds, let x ∈ Gc be arbitrary and τG be the stopping time as defined in Lemma 4.1. From
(4.6), we have

0 6 V (x0)− E(t ∧ τG ∧ τk), ∀t > 0.

Letting k →∞ and then t→∞, we have

E(τG) 6 V (x0), ∀x0 ∈ Gc
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as required. To show that (4.6) actually holds, we define

Gc = Gc1 ∪Gc2 ∪Gc3 ∪Gc4,

where

Gc1 = {x|x1 ∈ (0, ε1]}; Gc2 =
{
x
∣∣∣x1 ∈ (0,

1

ε1

]
, x2 ∈ (0, ε2]

}
;

Gc3 =
{
x
∣∣∣x1 ∈ [ 1

ε1
,+∞

)}
; Gc4 =

{
x
∣∣∣x2 ∈ [ 1

ε2
,+∞

)}
with two constants ε1, ε2 ∈ (0, 1) satisfying

ε21 6
1

M2l2

∧ b

2(N1 + 1)
, ε22 6

sf

2h(N2 + 1)
and ε2 6

βε1
Ml

, (4.7)

where the constants N1 and N2 will be determined later. We then show that in any subset of Gc, (4.6)
holds. From (4.7),
(a) if x ∈ Gc1,

LV (x) 6 −Mλ+Mlx1 + ax1 − bx21 −
sf

h
x22 6Mlε1 − 2 6 −1;

(b) if x ∈ Gc2,

LV (x) 6 −Mλ+
Mlx1x2

β
+ ax1 − bx21 −

sf

h
x22 6

Mlε2
βε1

− 2 6 −1;

(c) if x ∈ Gc3,

LV (x) 6 −Mλ+ (Ml + a)x1 −
bx21
2
− bx21

2
− sfx22

h
.

Note that the polynomials −Mλ+ (Ml + a)x1 −
bx21
2 −

sfx22
h has an upper bound, say N1, hence

LV (x) 6 N1 −
b

2ε21
6 −1;

(d) if x ∈ Gc4,

LV (x) 6 −Mλ+ (Ml + a)x1 − bx21 −
sfx22
2h
− sfx22

2h
.

Note that the polynomial −Mλ+ (Ml + a)x1 − bx21 −
sfx22
2h is again bounded, say by N2, we have

LV (x) 6 N2 −
sf

2hε22
6 −1.

In all,
LV (x) 6 −1 for all x ∈ Gc.

�

Remark 4.3. Assume that all the Brownian motions in model (1.3) are uncorrelated. Then letting
ρij = 0 for i, j = 1, 2, · · · , 6 and i 6= j in condition (4.2)-(4.4) gives the parametric conditions of model
(1.3) to have a unique stationary distribution.

Remark 4.4. Given that condition (4.2)-(4.4) are satisfied with δ1 = δ2 = 0 and ρi5 = ρi6 = 0 for
i = 1, 2, · · · , 4, model (1.2) then has a unique stationary distribution.
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5 Simulations

The following examples are developed to illustrate our results. The system parameters are given in
appropriate units. The Euler-Maruyama (EM) scheme is used for the computer simulations [42]. From
the theory introduced in [43], the EM approximate solutions are convergent to the true solutions of
model (1.2) and (1.3) in probability.

Example 5.1. We perform a computer simulation of 10000 iterations of model (1.2) with initial value
x(0) = (0.7, 0.15)T using the Euler-Maruyama (EM) method [40, 42] with stepsize ∆ = 0.01 and the
system parameters given by

a = 1, b = 0.5, β = 5, s = 16, h = 0.9, c = 2, f = 3, σ1 = 1.5, σ2 = 1.0, r1 = 0.5

r2 = 0.95 and ρ13 = 0.15. (5.1)

This group of parameters satisfies condition (2.5) clearly. Theorem 2.4 then indicates that both species
die out ultimately with probability 1. This is illustrated in Figure 1.

Example 5.2. We keep the system parameters of model (1.2) the same as Example 5.1 but let
σ1 = 0.5. Moreover, we let ρ13 = 0.15 and ρ24 = 0.9. As a result, condition (2.6) is fulfilled. From
Theorem 2.4(b), the prey abundance has the property that

1.75 6 lim inf
t→∞

1

t

∫ t

0
x1(u)du 6 lim sup

t→∞

1

t

∫ t

0
x1(u)du 6 1.825 a.s.

and the consumers will tend to zero exponentially with probability 1. Figure 2 supports these results
clearly.

Example 5.3. In this example, we remain the system parameters of model (1.2) the same as Example
5.2 except that we let ρ24 = −0.95. This group of parameters does not obey condition (2.6) but satisfy
(2.7). Hence Theorem 2.4(b) suggests that

1.75 6 lim inf
t→∞

1

t

∫ t

0
x1(u)du 6 lim sup

t→∞

1

t

∫ t

0
x1(u)du 6 1.825 a.s.

and the consumers will tend to zero exponentially with probability 1. Figure 3 supports these results
clearly.

Then we study the case when the SDE system (1.2) and (1.3) have a stationary distribution.

Example 5.4. We assume that the parameters of system (1.2) are the same as in Example 5.3 but
let β = 2.5, h = 10, σ1 = 0.01, and σ2 = 0.02. Also the correlation matrix is given by

R = (ρij)4×4 =


1 0 −0.8 0
0 1 0 −0.95
−0.8 0 1 0

0 −0.95 0 1

 .
The time series of the correlated Brownian motions is shown in Figure 4. It is found that these pa-
rameters obey conditions (4.1)-(4.4) with δ1 = δ2 = 0 and ρi5 = ρi6 = 0 = ρ56 for i = 1, 2, · · · , 4.
From Theorem 2.4 and Remark 4.4, system (1.2) has a stationary distribution. The ergodic prop-
erty enables us to obtain the approximate probability distribution for the stationary distribution by
computer simulation of a single sample path of a solution to model (1.2). Therefore the histogram of
the 10000 iterations shown in Figure 5(b)(d) can be regarded as approximate p.d.f.s of the stationary
distribution.
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Example 5.5. In this example, the stationary distribution of model (1.3) is examined. We keep
the system parameters the same as in Example 5.4 and let δ1 = 0.01 and δ2 = 0.02. Moreover the
correlation matrix is given by

R = (ρij)6×6 =



1 0 −0.8 0 −0.5 0
0 1 0 −0.95 0 0.7
−0.8 0 1 0 0.9 0

0 −0.95 0 1 0 −0.8
−0.5 0 0.9 0 1 0

0 0.7 0 −0.8 0 1

 .

Obviously, these parameters obey conditions (4.1)-(4.4). From Theorem 4.2, model (1.3) has a sta-
tionary distribution. The approximate p.d.f.s of the stationary distribution could be identified from
Figure 6(b)(d).

6 Summary

In this chapter, the different properties of the SDE population models (1.2) and (1.3) incorporating
white noise were studied. The correlations between the Brownian motions do make an effect on the
long-time behaviours of the systems. Especially, in model (1.2), a positive correlation between B1(t)
and B3(t) leads to a slightly different condition for both populations to be extinct. Moreover, if B2(t)
is strongly negatively correlated to B4(t), the population system always remains extinct (the prey
populations become persistent while the consumers die out) and has no chance to have a multiple
coexisting stationary status. In the contrast, provided that the correlation coefficient between B2(t)
and B4(t) is bigger than − h

r2σ2
, the system is possible to have a stationary distribution for both

species with a larger value of a. In model (1.3), the correlations between B4(t) and B5(t) and between
B5(t) and B6(t) also make a difference on the parametric conditions of the bounded properties. These
imply how the correlations between the Brownian motions affect the dynamical behaviours of the
populations. Theorem 4.2 reflects that a smaller amplitude environmental noise leads to a permanent
population system. The ergodic property of the stationary distribution makes it possible to generate
the approximate probability distribution using a single sample path of the solution to the SDE model
by computer simulations.
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Figure 1: Numerical simulations of the paths (a) x1(t) and (b) x2(t) of SDE model (1.2) using
the EM scheme with stepsize ∆ = 0.01 and initial value x0 = (0.7, 0.15)T with the system
parameters provided by (5.1). Times series of the correlated Brownian motions B1(t) and
B3(t) is shown in (c).
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Figure 2: Under the system parameters described in Example 5.2, we obtain the numerical
simulations of the paths (a) x1(t) and (b) x2(t) of SDE model (1.2) using the EM method with
stepsize ∆ = 0.01 and initial value x0 = (0.7, 0.15)T . Times series of the correlated Brownian
motions B2(t) and B4(t) is shown in (c).
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Figure 3: With the system parameters given in Example 5.3, we obtain the computer simu-
lations of the paths (a) x1(t) and (b) x2(t) of SDE model (1.2) using the EM method with
stepsize ∆ = 0.01 and initial value x0 = (0.7, 0.15)T . Times series of the correlated Brownian
motions B2(t) and B4(t) is shown in (c).
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Figure 4: Time series of the correlated Brownian motions adopted in Example 5.4 and 5.5.
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Figure 5: Numerical simulations of the paths (a) x1(t) and (c) x2(t) of SDE model (1.2) based on
the model parameters described in Example 5.4 using the EM technique with stepsize ∆ = 0.01
and initial value x0 = (0.7, 0.15)T , followed by the histograms for the SDE paths (b) x1(t) and
(d) x2(t).
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Figure 6: Computer simulations of the paths (a) x1(t) and (c) x2(t) of SDE model (1.3) based on
the model parameters provided in Example 5.5 using the EM technique with stepsize ∆ = 0.01
and initial value x0 = (0.7, 0.15)T , followed by the histograms for the SDE paths (b) x1(t) and
(d) x2(t).
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R. Rosà, P. Poletti, and S. Merler, “Potential risk of dengue and chikungunya outbreaks in
northern italy based on a population model of aedes albopictus (diptera: Culicidae),” PLoS
neglected tropical diseases, vol. 10, no. 6, p. e0004762, 2016.

[16] T. A. Morrison, A. B. Estes, S. A. Mduma, H. T. Maliti, H. Frederick, H. Kija, M. Mwita,
A. Sinclair, and E. M. Kohi, “Informing aerial total counts with demographic models: population
growth of serengeti elephants not explained purely by demography,” Conservation Letters, vol. 11,
no. 3, p. e12413, 2018.

[17] D. Lindenmayer, H. P. Possingham, R. Lacy, M. McCarthy, and M. Pope, “How accurate are
population models? lessons from landscape-scale tests in a fragmented system,” Ecology letters,
vol. 6, no. 1, pp. 41–47, 2003.

[18] T. W. Green, D. H. Slone, E. D. Swain, M. S. Cherkiss, M. Lohmann, F. J. Mazzotti, and K. G.
Rice, “Evaluating effects of everglades restoration on american crocodile populations in south
florida using a spatially-explicit, stage-based population model,” Wetlands, vol. 34, no. 1, pp.
213–224, 2014.

[19] D. T. Crouse, L. B. Crowder, and H. Caswell, “A stage-based population model for loggerhead
sea turtles and implications for conservation,” Ecology, vol. 68, no. 5, pp. 1412–1423, 1987.

26



[20] R. Cook, “A rough guide to population change in exploited fish stocks,” Ecology letters, vol. 3,
no. 5, pp. 394–398, 2000.

[21] X. Mao, G. Marion, and E. Renshaw, “Environmental Brownian noise suppresses explosions in
population dynamics,” Stochastic Processes and their Applications, vol. 97, no. 1, pp. 95–110,
2002.

[22] X. Mao, C. Yuan, and J. Zou, “Stochastic differential delay equations of population dynamics,”
Journal of Mathematical Analysis and Applications, vol. 304, no. 1, pp. 296–320, 2005.

[23] X. Mao, “Stationary distribution of stochastic population systems,” Systems & Control Letters,
vol. 60, no. 6, pp. 398–405, 2011.

[24] X. Li, D. Jiang, and X. Mao, “Population dynamical behavior of lotka–volterra system under
regime switching,” Journal of Computational and Applied Mathematics, vol. 232, no. 2, pp. 427–
448, 2009.

[25] X. Li, A. Gray, D. Jiang, and X. Mao, “Sufficient and necessary conditions of stochastic per-
manence and extinction for stochastic logistic populations under regime switching,” Journal of
Mathematical Analysis and applications, vol. 376, no. 1, pp. 11–28, 2011.

[26] C. Ji, D. Jiang, and N. Shi, “Analysis of a predator–prey model with modified leslie–gower
and holling-type ii schemes with stochastic perturbation,” Journal of Mathematical Analysis and
Applications, vol. 359, no. 2, pp. 482–498, 2009.

[27] J. Lv and K. Wang, “Asymptotic properties of a stochastic predator–prey system with holling ii
functional response,” Communications in Nonlinear Science and Numerical Simulation, vol. 16,
no. 10, pp. 4037–4048, 2011.

[28] Q. Liu, L. Zu, and D. Jiang, “Dynamics of stochastic predator–prey models with holling ii func-
tional response,” Communications in Nonlinear Science and Numerical Simulation, vol. 37, pp.
62–76, 2016.

[29] X. Zhang, Y. Li, and D. Jiang, “Dynamics of a stochastic holling type ii predator–prey model
with hyperbolic mortality,” Nonlinear Dynamics, vol. 87, no. 3, pp. 2011–2020, 2017.

[30] R. He, Z. Xiong, D. Hong, and H. Yin, “Analysis of a stochastic ratio-dependent one-predator and
two-mutualistic-preys model with markovian switching and holling type iii functional response,”
Advances in Difference Equations, vol. 2016, no. 1, p. 285, 2016.

[31] X. Mao and C. Yuan, Stochastic differential equations with Markovian switching. Imperial College
Press, 2006.

[32] C. Ji and D. Jiang, “Dynamics of a stochastic density dependent predator–prey system with
beddington–deangelis functional response,” Journal of Mathematical Analysis and Applications,
vol. 381, no. 1, pp. 441–453, 2011.

[33] B. E. Kendall, O. N. Bjørnstad, J. Bascompte, T. H. Keitt, and W. F. Fagan, “Dispersal, envi-
ronmental correlation, and spatial synchrony in population dynamics,” The American Naturalist,
vol. 155, no. 5, pp. 628–636, 2000.

[34] A. Liebhold, W. D. Koenig, and O. N. Bjørnstad, “Spatial synchrony in population dynamics,”
Annu. Rev. Ecol. Evol. Syst., vol. 35, pp. 467–490, 2004.

[35] A. Hening and D. H. Nguyen, “Stochastic lotka–volterra food chains,” Journal of mathematical
biology, pp. 1–29, 2017.

27



[36] N. T. Dieu, D. H. Nguyen, N. H. Du, and G. Yin, “Classification of asymptotic behavior in
a stochastic sir model,” SIAM Journal on Applied Dynamical Systems, vol. 15, no. 2, pp.
1062–1084, 2016. [Online]. Available: https://doi.org/10.1137/15M1043315

[37] N. T. Dieu, N. H. Du, H. Nguyen, and G. Yin, “Protection zones for survival of species in random
environment,” SIAM Journal on Applied Mathematics, vol. 76, no. 4, pp. 1382–1402, 2016.

[38] R. Rudnicki, “Long-time behaviour of a stochastic prey–predator model,” Stochastic Processes
and their Applications, vol. 108, no. 1, pp. 93–107, 2003.

[39] A. Gray, D. Greenhalgh, L. Hu, X. Mao, and J. Pan, “A stochastic differential equation sis
epidemic model,” SIAM Journal on Applied Mathematics, vol. 71, no. 3, pp. 876–902, 2011.

[40] X. Mao, Stochastic differential equations and applications. Elsevier, 2007.

[41] R. Khasminskii, Stochastic stability of differential equations. Springer Science & Business Media,
2011, vol. 66.

[42] D. J. Higham, “An algorithmic introduction to numerical simulation of stochastic differential
equations,” SIAM review, vol. 43, no. 3, pp. 525–546, 2001.

[43] X. Mao, “Numerical solutions of stochastic differential delay equations under the generalized
khasminskii-type conditions,” Applied Mathematics and Computation, vol. 217, no. 12, pp. 5512–
5524, 2011.

28


