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Abstract

This paper is concerned with a stochastic SIR (susceptible → infective → re-
moved) model for the spread of an epidemic amongst a population of individuals,
with a random network of social contacts, that is also partitioned into households.
The behaviour of the model as the population size tends to infinity in an appro-
priate fashion is investigated. A threshold parameter which determines whether or
not an epidemic with few initial infectives can become established and lead to a ma-
jor outbreak is obtained, as are the probability that a major outbreak occurs and
the expected proportion of the population that are ultimately infected by such an
outbreak, together with methods for calculating these quantities. Monte Carlo simu-
lations demonstrate that these asymptotic quantities accurately reflect the behaviour
of finite populations, even for only moderately sized finite populations. The model
is compared and contrasted with related models previously studied in the literature.
The effects of the amount of clustering present in the overall population structure and
the infectious period distribution on the outcomes of the model are also explored.

Keywords: SIR epidemic; random social network; households; local and global con-
tacts; threshold behaviour; clustering.

1 Introduction

1.1 Background

There has been considerable recent interest in epidemic models which incorporate depar-
tures from the classical assumption that the underlying population is a collection of ho-
mogeneous individuals mixing homogeneously. In this paper we analyse and discuss an
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epidemic model which relaxes these assumptions by having the population partitioned into
households, within which local infectious contacts occur, and by using a random graph to
model contacts/social structures through which global infectious contacts might take place.

The idea of partitioning the population into households, within which infectious con-
tacts are made at a relatively high rate, while maintaining casual, homogeneously-mixing
contacts goes back to Bartoszyński [1] (see also Becker and Dietz [2] and Ball et al. [3]).
Models where an epidemic spreads over a random network with a prescribed degree distri-
bution have also received significant attention (see, for example, Andersson [4], Newman [5],
Kenah and Robins [6] and Myers et al. [7]). These network models have also been extended
by treating the random graph as a local contact structure and introducing casual, homo-
geneously mixing contacts (Kiss et al. [8] and Ball and Neal [9]). The spread of epidemics
on a different type of random graph structure, where individuals belong to several groups
(workplaces, homes, etc.) and can make infectious contact only with persons in one of the
same groups as themselves, is discussed by Britton et al. [10].

In a recent paper, Ball et al. [11], the authors formulate and analyse a new SIR (suscep-
tible → infective → removed) epidemic model featuring mixing on two levels: local contacts
with individuals in the same household and global contacts with an individual’s neighbours
in a random network with specified degree distribution. In that paper, rigorous branch-
ing process approximations are developed, which lead to a threshold theorem determining
whether a major outbreak is possible and the probability of such an outbreak, as well as
results which allow one to determine the expected proportion of the population that will
be infected by such a major outbreak. Though the analysis is exact only asymptotically as
the number of households becomes large, it was demonstrated through extensive simulation
that these results provide good approximations for moderately-sized populations.

Though the proofs in [11] are valid for general infectious period distributions, explicit
calculations for evaluating the probability of a major outbreak are only done for two special
cases of infectious period distribution. In addition, the paper [11] assumes that all house-
holds are of the same size, but we conjecture that the results still hold when household size
varies under very mild conditions on the household size distribution. The paper [11] focuses
on establishing rigorous limit theorems, based on couplings between processes associated
with the epidemic and certain branching processes, which show that many quantities of
interest in the model can be expressed, asymptotically, in terms of the criticality and extinc-
tion probabilities of these branching processes. In this paper we focus on the more applied
aspects of analysing this model, using these more theoretical results to derive methods for
finding properties of the model.

The remainder of the paper is organised as follows. In Section 1.2 we recap the details
of the model—including allowing for variable household size. Then in Sections 2 and 3
we discuss the calculation of the main quantities of interest for the model, with attention
given to the practicalities of calculating these quantities of interest as well as the more
theoretical results that tell us how to do these calculations. In Section 4 we firstly compare
the results of simulations of epidemics on finite populations to our analytical results for
large populations, then we compare our model to both the standard households model and
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Figure 1: An example of a population of the type we analyse. Individuals are denoted by
filled circles, with local (within-household) neighbours connected by solid lines and global
neighbours by dashed lines.

the standard network model. We also investigate the amount of clustering present in the
population structure in our model and look at the effect this has on the outcome of our
model, as well as exploring the effect of the infectious period distribution on our model.
Finally, we make some concluding comments in Section 5.

1.2 Model

The model we study consists of a finite, closed population of m households, of which mn are
of size n (for n = 1, 2, . . .). We then construct the network describing the global structure
of the population accoring to the ‘configuration model’ (see [12, 13]). This model works
by assigning each individual in the population a number of ‘half-edges’ (that individual’s
degree in the global network) according to independent samples from some distribution D
with P(D = k) = pk (k = 0, 1, . . .) and then pairing these half-edges uniformly at random
to form the edges of the graph describing the global network. An example of a (very small)
population of the type we consider is given in Figure 1.

The epidemic evolves as follows. It starts with a single infectious individual chosen
uniformly at random from the population. The infectious periods of different infectives
are independent and identically distributed according to a non-negative random variable
I, which we specify by its Laplace transform φ(θ) = E[e−θI ] (θ ≥ 0). Throughout its
infectious period each infective makes infectious contacts with any given local neighbour
at the points of a Poisson process with rate λL and with any given global neighbour at the
points of a Poisson process with rate λG. If an individual so contacted is susceptible then
it becomes infectious, otherwise the contact has no effect. An individual becomes removed
at the end of its infectious period and plays no further part in the epidemic. The epidemic
terminates when there is no infective remaining in the population. All infectious periods,
global degrees and Poisson processes are assumed mutually independent.
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For ease of exposition we have assumed that the epidemic begins with a single infective
chosen uniformly at random from the population. However, our results are easily modified
to accomodate several initial infectives and various ways of chosing them. Although our
model does not include a latent period our results, which concern the final outcome of an
epidemic, are invariant to very general assumptions concerning a latent period (see, e.g.,
Pellis et al. [14]). To be emphatic, λL and λG are per-pair rates, so that an infectious
individual of degree d in a household of size n makes infectious contacts at total rate
dλG + (n− 1)λL.

Our results are asymptotic as the number of households m → ∞. In order for the
asymptotic analysis to be valid it is necessary to impose conditions on the household size
and degree distributions. We assume that the mean µD and variance σ2

D of D are both
finite. We also require that m→ ∞ in such a way that

mn/m→ ρn (n = 1, 2, . . .). (1)

Suppose first that there is a maximal household size, nmax (i.e. for all m, mn = 0 for all
n > nmax). Then

∑nmax

n=1 ρn = 1, so (ρ1, ρ2, . . .) is a proper probability distribution, and (1)
is sufficient for all the results of the paper to hold. The situation is more delicate when
where is no maximal household size. In addition to (1) we assume that

∑∞
n=1 ρn = 1

and
∑∞

n=1 n
2ρn < ∞. We also need to impose further conditions on the household size

distributions for all sufficiently large m. These are met if instead we assume that, for each
m, the sizes of the m households are chosen independently from the distribution given by
P(H = n) = ρn (n = 1, 2, . . .). For simplicity, we make this assumption throughout the
paper. For the properties we consider, assuming prescribed household sizes or independent
and identically distributed household sizes from the appropriate limiting distribution yields
identical results. However, this is not true in general; for example, the asymptotic variance
of the size of a major outbreak is different under these two assumptions.

The requirement that σ2
D <∞ ensures that any multiple edges and self-loops amongst

individual become sparse in the global network as m→ ∞. The condition
∑∞

n=1 n
2ρn <∞

ensures that, in the global network, multiple edges between households and household
self-loops also become sparse as m→ ∞.

2 Early stages

2.1 Informal description of methods

As is prevalent in the literature on epidemic models, we analyse the early stages of an
epidemic by way of a branching process approximation, which is exact in the limit as the
population size becomes large in an appropriate manner. This leads to a threshold param-
eter which determines whether a major outbreak is possible; a major outbreak being the
event that infinitely many individuals are ultimately infected in the limit as the popula-
tion size tends to infinity. If such an outbreak is possible we can then further analyse the
branching process to determine the probability of such a major outbreak.
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The appropriate way to let the population size tend to infinity for our model involves
letting m, the number of households, tend to infinity in the manner described in Section 1.2.
The branching process we use to analyse the early stages of the epidemic approximates the
number of households which become infected in the course of the epidemic. In the limiting
process (which has infinitely many households) the infection of infinitely many households
is equivalent to the infection of infinitely many individuals; so that non-extinction of the
branching process corresponds to a major outbreak of the epidemic.

We now describe the branching process we use to approximate the number of infected
households. Note that because we are interested only in the final outcome of the epidemic
and not its precise time evolution we can think of the epidemic as evolving in the following
way. We first consider the epidemic spreading only within the household containing the
initial infective (the local epidemic that it initiates) and then consider the global infectious
contacts made by each individual infected by the local epidemic. In the early stages of the
epidemic it is highly likely that these global contacts are all with individuals in distinct
households, this being critical for the branching approximation. We then let each newly
infected household proceed in the same manner of local epidemic followed by global in-
fections. Again in the early stages it is highly likely that these global infectious contacts
are with individuals in distinct, previously uninfected households. We can view this as a
branching process if we consider the households infected by a local epidemic initiated by a
single infective within a typical household to be the children of that household. It is proved
in Ball et al. [11] that (when the household size is fixed) this approximation becomes exact
as m → ∞, in that the size of the epidemic process converges in distribution to the total
progeny of the approximating branching process.

To formally describe the (Galton-Watson) branching process we need to specify the
offspring distribution. To this end we define a random variable describing the total number
of global neighbours infected by the members of a household with a single initial infective.
However, note that this offspring distribution is different for the first generation of the
branching process than for all subsequent generations. This is because in the second and
subsequent generations the initial infective in a household has been infected by one of
its global neighbours, so the number of uninfected neighbours of this individual has the
same distribution as D̃ − 1. Here, the size-biased degree distribution D̃ is defined by
P(D̃ = k) = p̃k = kpk/µD (k = 1, 2, . . .) and is the degree distribution of an individual
from which a half-edge chosen uniformly at random emanates (under this sampling a given
individual of degree k is k times as likely to be chosen as a given individual of degree 1).
However, in the first generation the initial infective is the initial infective in the whole
population, and the degree distribution of this individual is distributed as D, because the
initial infective is chosen uniformly at random from the population. We denote by C̃
the random variable describing the number of global neighbours infected by the members
of a household with a single initial infective where the initial infective is infected by a
global contact and by C the corresponding quantity where the initial infective is chosen
uniformly at random from the population. The random variable C thus describes the
offspring distribution for the first generation of the approximating branching process and
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C̃ that of all subsequent generations.
Whether or not the epidemic can ‘take off’ is then determined by the criticality of the

branching process, i.e. the value of R∗ = E[C̃]. From the discussion in the previous para-
graph we see that this is the average number of households infected by a typical infected
household. In light of the discussions of Becker and Dietz [15] and Goldstein et al. [16] re-
garding different kinds of reproduction numbers/threshold parameters for epidemic models
with household structure, this is but one of several possible threshold parameters for our
model. We choose to use this particular threshold parameter due to the relative simplicity
of the calculations involved. Calculating R∗ is the focus of the next subsection, and the
following subsection considers the calculation of the probability generating functions of C
and C̃, from which we can obtain the probability of a major outbreak.

2.2 Threshold parameter

To calculate R∗ we firstly condition on the size of the household that the globally infected
individual is in, i.e.

E[C̃] =
∞
∑

n=1

ρ̃n E[C̃(n)], (2)

where C̃(n) is the random variable C̃ conditional on the household being of size n and
ρ̃n is the size-biased household size distribution, given by ρ̃n = nρn/

∑∞
j=1 jρj . This size-

biasing arises because an individual chosen uniformly at random from the population is in
a household of size n with probability proportional to nρn. Then we decompose C̃(n) into
the number of global infections emanating from each member of the household, i.e.

C̃(n) = C0 +

n−1
∑

i=1

χiCi, (3)

where we have labelled the individuals in the household 0, 1, . . . , n − 1, with individual
0 being the globally infected initial infective (the primary infective in the household),
χi is the indicator of the event that individual i is infected by the local epidemic in-
tiated by the primary infective (i.e. χi = 1 if i is so infected and 0 otherwise) and
Ci is the number of global infections made by individual i. By symmetry, the random
variables (C1, χ1), (C2, χ2), . . . , (Cn−1, χn−1) have the same distribution. Also, for each
i = 1, 2, . . . , n−1, whether individual i is infected by the local epidemic is clearly indepen-
dent of individual i’s infectious period if it becomes infective, so χi and Ci are independent
(although whether or not a given individual is infected does depend on the infectious period
of other individuals in its household). Thus, taking expectations of (3),

E[C̃(n)] = E[C0] + E[T (n)] E[C1], (4)

where T (n) =
∑n−1

i=1 χi is the final size of the local epidemic amongst the initial susceptibles
(the secondary individuals) in the household.
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The expectation of each Ci can be determined by conditioning on individual i’s infectious
period (Ii) and the number of uninfected neighbours it has in the random graph (Ki).
All infectious periods have the same distribution, and K1 has the same distribution as
D (the specified degree distribution of the random graph); however the distribution of
K0 is the same as D̃ − 1, where D̃ is the size-biased degree distribution described in
Section 1.2 and discussed in Section 2.1 and the ‘−1’ accounts for the fact that one of the
primary individual’s neighbours is already infected—the one that infected it. Now note
that, conditional on Ii and Ki, individual i makes infectious contacts with each of its Ki

susceptible neighbours independently at the points of Poisson processes of rate λG for a
time Ii. Thus, because a Poisson process with rate λG has no points before time Ii with
probability 1−e−λGIi , Ci | Ii, Ki ∼ Bin(Ki, 1−e−λGIi). (If X is a random variable, n a non-
negative integer and p ∈ [0, 1] then X ∼ Bin(n, p) means thatX has a binomial distribution
with n trials and success probability p, with the convention that X is identically zero if
n = 0.) Therefore, recalling that φ(θ) = E[e−θI ],

E[Ci] = E[E[Ci | Ii, Ki]] = E[Ki(1 − e−λGIi)] = E[Ki](1 − φ(λG)).

Thus we immediately have E[C1] = µD(1−φ(λG)). In addition, it follows from the definition
of D̃ that E[D̃] = E[D] + Var[D]/E[D], whence E[C0] = (µD + σ2

D/µD − 1)(1 − φ(λG)).
Substituting these results into (4) yields, with µT (n) = E[T (n)],

E[C̃(n)] =

(

µD(µT (n) + 1) +
σ2

D

µD
− 1

)

(1 − φ(λG)),

and then substituting into (2) leads to the expression

R∗ = E[C̃] = (1 − φ(λG))
(

µD(µT + 1) + σ2
D/µD − 1

)

, (5)

where µT =
∑∞

n=1 ρ̃nµT (n) is the (size-biased) mean within-household final size.
Unless the household sizes are all very small we need to evaluate R∗ numerically, there

being no simple expression for µT (n). We formulate an expression for µT (n) in terms of
Gontcharoff polynomials, first introduced to the study of epidemic models by Daniels [17].
Given a parameter sequence of real numbers U = (ui, i = 0, 1, . . .), the Gontcharoff poly-
nomials (Gk(x |U), k = 0, 1, . . .) are defined by G0(x |U) = 1 and the recurrence

Gk(x |U) =
xk

k!
−

k−1
∑

j=0

uk−j
j

(k − j)!
Gj(x |U), k = 1, 2, . . . .

Note that Gk(x |U) depends on U only through its first k entries. From Corollary 3.3 of
Lefèvre and Picard [18] (cf. Ball [19, equations (2.25) and (2.26)]) one can deduce easily
that

µT (n) = n− 1 −
n−1
∑

i=1

(n− 1)[i]q
n−i
i Gi−1(1 | V ), (6)

where a[i] is the falling factorial a!/(a− i)!, qi = φ(iλL) and V = (qi+1, i = 0, 1, . . .).
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2.3 Major outbreak probability

As indicated at the end of Section 2.1, we approximate the probability of a major outbreak
by the probability that the above approximating branching process for the early stages of
the epidemic spread avoids extinction. In order to calculate this probability we require
the probability generating functions (PGFs) of the offspring distributions. Calculating the

PGFs fC(s) = E[sC ] and fC̃(s) = E[sC̃ ] is complicated somewhat by the fact that, unless
the infectious period is constant, the numbers of successful global contacts emanating from
different individuals in the same household are not independent. For example, a large
number of contacts emanating from one individual suggests that it had a long infectious
period, which in turn increases the chance that any given other individual in the household
was infected and thus increases the number of global infectious contacts it might make.
However, we can apply the theory of so-called ‘final state random variables’ developed by
Ball and O’Neill [20] to find the PGFs fC and fC̃ . We present the background to this and
the proof of the following result in Appendix A.

Theorem 1 The PGF of C is given by fC(s) =
∑∞

n=1 ρ̃nfC(n)(s), where C(n) is the random
variable C conditioned on the household size being n, which has PGF

fC(n)(s) =

n−1
∑

j=0

(n− 1)[j]ψ0(s, j)ψ1(s, j)
n−1−jGj(1 |U∗), 0 ≤ s ≤ 1.

Here, for l = 0, 1, j = 0, 1, . . . and 0 ≤ s ≤ 1,

ψl(s, j) =

∞
∑

i=0

(1 − s)iφ(jλL + iλG)

i!
f

(i)
Kl

(s), (7)

where f
(i)
Kl
, i = 0, 1, . . . , is the ith derivative of the PGF fKl

and Gj(x |U∗), j = 0, . . . , n−1,
are Gontcharoff polynomials with parameter sequence U∗ = (u∗i = ψ1(s, i), i = 0, 1, . . .).

Remarks. 1. In an obvious notation, the same conditioning on household size for the
PGF of the random variable C̃ yields fC̃(s) =

∑∞
n=1 ρ̃nfC̃(n)(s); and the PGF of C̃(n)

differs from that of C(n) only in that ψ0 is different because, as discussed previously,
the distribution of the number of susceptible neighbours of the primary infective
in the household in the first generation differs from that of subsequent generations.

Thus, we always (i.e. for the calculation of both fC and fC̃) have K1
D
= D (here

and henceforth A
D
= B means that the random variables A and B have the same

distribution); for the first generation K0
D
= D (and thus ψ0 = ψ1) and for subsequent

generations K0
D
= D̃ − 1.

2. Some care needs to be taken with the expression (7) when s = 1, as f
(i)
Kl

(1) may be
infinite for i > 0 (i.e. if E[Ki

l ] = ∞). If this is the case then we interpret 0 ×∞ as 0
and 00 as 1, so that only the i = 0 term of the sum is non-zero.
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We note here that it easily follows from the definition of D̃ that fD̃−1(s) = f
(1)
D (s)/µD,

so f
(i)

D̃−1
(s) = f

(i+1)
D (s)/µD. Also worthy of note is the fact that D and D̃−1 have the same

distribution if and only if D has a Poisson distribution.
In practice we can often evaluate the PGF of the random variable C(n) or C̃(n) numer-

ically using Theorem 1 exactly as stated. This computation is relatively straightforward,
the main potential problem being approximating infinite sums in the expression for ψ·(·, ·).
If a closed form expression for a derivative of arbitrary order of fD is available then it
is quite efficient to use a finite truncation of (7) to approximate ψl(s, j). However, it is

possible for numerical problems to arise due to both f
(i′)
Kl

(s) and i′! becoming very large

and (1− s)i′ and φ(jλL + i′λG) becoming very small when i′ is large but not large enough
that the sum (7) truncated at i = i′ is a good approximation of the infinite sum. If such

problems arise, or if there is no closed form expression available for f
(i)
Kl

, then one needs
to approximate ψl(s, j) using a form along the lines of (20) of Appendix A, taking care to
avoid numerical problems such as those just mentioned. Using these methods we can then
approximate σ, the smallest root of fC̃(s) − s in [0, 1] and then the probability of a major
outbreak pmaj = 1 − fC(σ) numerically.

To be emphatic, fC is obtained from Theorem 1 by putting K0 as D (or possibly some
other distribution if we make different assumptions about how the epidemic is initiated)
and fC̃ by putting K0 as D̃ − 1, whilst K1 is D in both cases.

3 Final outcome

3.1 Informal description of methods

We now consider the final outcome of an epidemic by examining the expected relative final
size of a major outbreak. By relative final size we mean the proportion of the population
ultimately infected, thus we ask the question ‘when a positive proportion of individuals
are ultimately infected, what, on average, is that proportion?’ Again our analysis is of the
m → ∞ limiting epidemic process, for which we find the probability that an individual
chosen uniformly at random from the initial susceptibles is ultimately infected in the event
of a major outbreak. This probability is equal to the asymptotic mean proportion of the
population (individuals, not households) that are ultimately infected by a major outbreak.
This quantity serves as our approximation of the expected proportion infected in a major
outbreak in a finite population. (Although not proved in Ball et al. [11], the numerical
results presented in Section 4.1 and similar results for other epidemic models, e.g. Andersson
and Britton [21, Theorem 4.2] and Ball et al. [3, Section 4.2], suggest that the variance of
the relative final size of a major outbreak converges to 0 as m → ∞.) We determine the
probability that a given individual is infected by considering (the size of) its susceptibility
set. This concept has proved a fruitful framework within which to study the final outcome
of epidemics where individuals interact with each other in more than one way (see, for
example, Ball and Lyne [22] and Ball and Neal [23]).

The idea behind susceptibility sets is that for each individual in the population we

9



can, by sampling from the infectious period distribution and then the relevant Poisson
processes, make a (random) list of other individuals it would make infectious contact with
if it was to be infected itself. We then construct a digraph (directed graph) based on these
lists, where the nodes represent individuals and we put a directed arc from i to j when i
would make infectious contact with j were i to become infected, i.e. if j is in i’s list. The
susceptibility set of individual i consists of those individuals from which there exists a path
to i in the digraph (including i itself). An individual i will become infected if and only if
the initial infective is in i’s susceptibility set. The probability of this occuring is related
to the size of i’s susceptibility set, which for our purposes is the number of households it
intersects. We also require the notion of an individual’s local susceptibility set, the portion
of an individual’s susceptibility set that arises by considering only local (within-household)
infectious contacts. When we discuss the size of a local susceptibility set, however, we mean
the number of individuals it contains.

Again we can make progress in the asymptotic case as m → ∞, and we can construct
the susceptibility set of an individual in such a way that its size can be coupled with an
approximating branching process. The first generation of this branching process consists
of the households containing an individual that makes infectious contact with a member
of individual i’s local susceptibility set (we call these individuals the primary individual in
their household, similarly to the primary individuals in the forward process). Subsequent
generations then consist of those households with individuals who make infectious contact
with the local susceptibility set of any of the primary individuals of the previous genera-
tion. (One can think of this process growing through the population by following the arcs
backwards in the random digraph described above; whereas the process we looked at to
analyse the early stages of an outbreak follows these arcs forwards.) It follows from the
methods used to construct the random graph of global contacts that, in the early stages
of this ‘growth’, the individuals that join the susceptibility set are highly likely to be in
households that are not already in it, enabling a branching process approximation to be
found for the number of households in an individual’s susceptibility set.

The offspring distribution for our branching process approximating the size of the sus-
ceptibility set of an individual is therefore the number of global neighbours of a household
that, were they infected, would make infectious contact with the members of the local
susceptibility set of the primary individual in that household. In the first generation the
primary individual is an initial susceptible chosen uniformly at random and in subsequent
generations the primary individuals are individuals who have joined the susceptibility set
by means of making a global contact with an individual who is already in the susceptibility
set—this affects the degree of the primary individual in the same way as in the previous
section. Thus it seems plausible that we can calculate (as the complement of the extinc-
tion probability of a branching process) the probability that an initial susceptible has an
asymptotically infinite susceptibility set as m→ ∞.

The connection between asymptotically infinite susceptibility sets and ultimate infection
in the event of a major outbreak is quite complicated, so we do not attempt to describe
it here. Very loosely, we find that, as m → ∞, in the event of a major outbreak the
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initial susceptible in question is ultimately infected if and only if its susceptibility set
is asymptotically infinite. More detail of this connection, as well as a summary of these
ideas concerning susceptibility sets, their approximation with branching processes and their
relation to ultimate infection in the event of a major outbreak with more technical detail
can be found in Section 3.2 of Ball et al. [11]. We next look in detail at the analysis of the
approximating branching process described here and thus the calculation of the expected
proportion of initial susceptiblesinfected by a major outbreak.

3.2 Expected relative final size of a major outbreak

We have seen that in order to calculate the (asymptotic) expected relative final size of a
major outbreak we must analyse the offspring distribution of the branching process outlined
in the first paragraphs of the previous subsection. The ‘offspring’ of a household in which
individual i is the primary individual—either the individual whose susceptibility set we
are considering or one that has joined the susceptibility set of interest by way of a global
contact—in this process are those households with a member who globally infects a member
of i’s local susceptibility set. In order to find the extinction probability of the branching
process we must determine the PGF of the distribution of the number of these offspring.
To this end, we denote by B this number of individuals directly leading to (in graph-theory
parlance) the local susceptibility set of a given individual (say i) from outside i’s household
when i is the individual whose susceptibility set we are considering. Denote by B̃ the
corresponding quantity when i is an individual that has joined the susceptibility set by
making a global contact.

Theorem 2 For s ∈ [0, 1], the PGFs of B and B̃ are given, respectively, by

fB(s) =

∞
∑

n=1

ρ̃nfD(1 − pG + spG)fM (n)(fD(1 − pG + spG)) (8)

and

fB̃(s) =

∞
∑

n=1

ρ̃nfD̃−1(1 − pG + spG)fM (n)(fD(1 − pG + spG)), (9)

where the random variable M (n) is the size of the local susceptibility set of a typical indi-
vidual residing in a household of size n, not counting that individual.

Proof. For the purposes of the proof let B be a random variable which could be either
B or B̃—the differences in the calculation are only slight and are pointed out when they
arise. The first step is to condition on the size of the household individual i is in, so

fB(s) =
∞
∑

n=1

ρ̃nfB(n)(s), (10)
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where B(n) is the quantity B conditioned on the household size of individual i being n.
We then decompose B(n) into the number of global contacts made with each member of i’s
local susceptibility set, i.e.

B(n) = B0 +

M (n)
∑

j=1

Bj , (11)

where Bj is the number of contacts made with individual j (again labelling the individuals
within the household 0, 1, . . . , n− 1, with 0 corresponding to the primary individual) and
M (n) is the size of i’s local susceptibility set, not counting i itself. (If M (n) = 0 then i’s
local susceptibility set consists only of i itself and the sum in (11) is empty and equal to 0.)
Now Bj |Kj ∼ Bin(Kj , pG), where Kj is the number of global neighbours of j not already
in the susceptibility set and pG = 1 − φ(λG) is the probability that a given global contact
is made. We do not need to condition on the infectious period of individual j because the
contacts we are considering come from other (distinct) individuals; the independence of the
infectious periods of these individuals implies that the events that each of these individuals

contacts j are also independent. In the first generation Kj
D
= D for all j = 0, 1, . . . , n− 1,

however in subsequent generations this holds only for j = 1, 2, . . . , n− 1 and K0
D
= D̃ − 1.

We first note that, by independence, fB(n)(s) = E[sB(n)
] = E[sB0 ] E[s

PM(n)

j=1 Bj ]. Now,

E[sB0 ] = E
[

E
[

sB0 |K0

]]

= E[(1 − pG + spG)K0]

= fK0(1 − pG + spG),

where fK0 is either fD or fD̃−1, as above. Similarly we have

E

[

s
PM(n)

j=1 Bj

]

= E

[

E

[

s
PM(n)

j=1 Bj |M (n), K1, K2, . . . , Kn

]]

= E





M (n)
∏

i=1

(1 − pG + spG)Ki





= E[(fD(1 − pG + spG))M (n)

]

= fM (n)(fD(1 − pG + spG)).

Thus,

E[sB(n)

] = fK0(1 − pG + spG)fM (n)(fD(1 − pG + spG)), (12)

so, now denoting the offspring distribution random variable for the first generation by B
and for subsequent generations by B̃ and substituting (12) into (10), we get (8) and (9).
�

In order to determine fM (n) we use a result of Ball [24, Lemma 3.1] (see also Ball
and Neal [23, Lemma 3.1], which gives the same result but not in terms of Gontcharoff
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polynomials), where it is shown that the mass function of M (n) is

P(M (n) = k) = (n− 1)[k]q
n−1−k
k+1 Gk(1 | V ), k = 0, 1, . . . , n− 1,

where Gk(V ) is a Gontcharoff polynomial with V as in (6). Unfortunately this distribution
appears not to admit a simple form for its PGF (unless P(I = c) = 1 for some c, in
which case M (n) has the same distribution as T (n), the final size of the corresponding
single-household epidemic), but because M (n) has finite support its PGF is easily evaluated
numerically from the mass function.

The formulae (8) and (9) enable us to calculate fB(s) or fB̃(s) for given s and thus it is
a relatively simple matter to (numerically) find the probability of extinction fB(ξ) of this
branching process, where ξ is the smallest solution of fB̃(s) = s in [0, 1]. The proportion
of individuals infected by a major outbreak in a finite population is then approximately
z = 1 − fB(ξ). Evaluating fB and fB̃ only requires evaluating fD and fD̃−1 = f ′

D/µD (i.e.
no higher order derivatives of fD), which is usually straightforward and free of potential
numerical problems.

4 Model behaviour

In this section we investigate several aspects of our model. First we compare our asymptotic
analytical results to those of simulations for finite populations. Then we compare our
model with both the standard households model and the standard network model. Next we
investigate some of the clustering properties of the population structure and look at how this
affects the behaviour of the epidemic model and finally we look at the effect of the infectious
period distribution on the predictions of our model. Throughout this section we use the
notation H for a random variable representing the household size distribution. When the
distribution of H has finite support we write H ∼ (ρ1, ρ2, . . . , ρn), where ρi = P(H = i). In
addition, we sometimes write H ∼ Poi+(µ) to denote the household size distribution being
Poisson with parameter µ > 0 conditioned to be strictly positive. If H ∼ Poi+(µ), it is
easy to show that µH = µ/(1− e−µ) and, for h = 0, 1, . . ., P(H̃−1 = h) = e−µµh/h! (H̃−1
being the number of local neighbours of an individual chosen uniformly at random from the
population). Also note that letting µ ↓ 0 results in both the household size and the size-
biased household size distributions having all their mass concentrated at 1, thus allowing
us to recover the standard network model with all households of size 1. It is therefore
consistent if we define Poi+(0) to be the distribution having unit mass concentrated at
1. We will also use the notation Gam(α, θ) to denote a distribution with density function
xα−1e−x/θ/Γ(α)θα (x ≥ 0), i.e. a gamma distribution with shape parameter α and scale
parameter θ (which has mean αθ and variance αθ2).

4.1 Comparison with finite populations

Firstly we investigate whether the asymptotic values of the quantities of interest we have
calculated give good approximations to these quantites in finite populations. In order to
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Figure 2: Histograms of relative final sizes from 10,000 simulations of our model show-
ing the appearance of the distinction between minor and major outbreaks. The sys-
tems simulated are of 50 and 150 households respectively, with other parameters H ∼
(0.2, 0.25, 0.25, 0.25, 0.04, 0.01), λL = 1, λG = 1/10, D ∼ Poi(8) and I ∼ Gam(3, 1/3).

do this we run 10,000 simulations of the epidemic on finite populations and estimate the
quantities of interest empirically (for increasing numbers of households m), then compare
these estimates to the results of the asymptotic (m = ∞) calculations. Each simulation
of our model involves generating a random population with the desired structure (both
the household sizes, which are independent and identically distributed, and the network
of possible global contacts) and running one epidemic on it; we do not simulate all of the
epidemic processes on a single randomly generated network. Note that in small populations
the determination of a cut-off for whether a particular final size constitutes a major or minor
outbreak can be difficult—the population has to be moderately large for the distinction to
be clear. We determine this cut-off by inspecting histograms of the relative final size for our
simulations and we find that for m larger than about 100 a cut-off of 0.15 of the population
size is appropriate for the parameter values we use. Figure 2 shows two such histograms
which illustrate the ‘overlap’ between minor and major outbreaks for smaller population
sizes and the increasingly obvious distinction as m becomes larger. If the parameters were
chosen so that the major outbreaks are smaller then a lower cut-off would be necessary
and a larger number of households would be needed for the distinction between minor and
major outbreaks to be clear.

Figure 3 shows how these simulation-based estimates of the probability, pmaj, and the
expected relative final size, z, of a major outbreak for finite popuations compare with the
asymptotic value for two different degree distributions; one is Poisson and the other is a
distribution with a power law tail that has mass function

pk ∝
{

k−a
∗ , for k = 1, 2, . . . , k∗,

k−a, for k = k∗ + 1, k∗ + 2, . . .,

which we denote by Pow(k∗, a). All parameters are chosen so that a major outbreak occurs
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Figure 3: Comparison of simulation-based estimates of major outbreak probability and
relative final size of a major outbreak for finite populations with asymptotic results (hor-
izontal lines). The first two plots ((a) and (b)) have D ∼ Poi(8) (so µD = σ2

D = 8 and
R∗ ≈ 2) and the second two ((c) and (d)) have D ∼ Pow(10, 7/2) (so µD ≈ 8, σ2

D ≈ 96 and
R∗ ≈ 3). Other parameters are H ∼ (0.2, 0.25, 0.25, 0.25, 0.04, 0.01), λL = 1, λG = 1/10
and I ∼ Gam(3, 1/3).

with positive probability. The plots show point estimates of the quantities of interest and
error bounds which are ±2 standard errors (SEs) of the estimator. For the probability of
a major outbreak, estimated as p̂maj, SE =

√

p̂maj(1 − p̂maj)/n0, where n0 is the number
of simulations. For the mean relative final size SE = σ̂RFS/

√
n1, where σ̂2

RFS is the sample
variance of the relative final sizes of the n1 major outbreaks. Note that the standard errors
are appreciably smaller for pmaj than for z. This is because each simulation only gives one
piece of information regarding whether a major outbreak occured, but each simulation that
does yield a major outbreak gives one piece of information for each initial susceptible (i.e.
whether or not it was ultimately infected). The latter are highly correlated but overall they
contain more information than that available from one realisation of the forward process.
We see from these plots that the asymptotic values are quite good approximations for the
corresponding quantities in finite populations, even for moderately sized populations. We
note also that the convergence of these quantities to their asymptotic limits is somewhat
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Figure 4: Plot showing apparent convergence of the variance of the relative final size of a
major outbreak, scaled by m, to a constant for different degree distributions D. All of the
degree distributions have mean 8, the heavy-tailed distribution being Pow(10, 7/2). The
other parameters of the model are H ∼ (0.2, 0.25, 0.25, 0.25, 0.04, 0.01), λL = 1, λG = 1/10
and I ∼ Gam(3, 1/3).

slower when the degree distribution D is heavy-tailed. Other simulations (not shown)
suggest that changing the household size distribution H realistically (i.e. no heavy tails)
has little effect on this convergence.

In connection with the parenthetical observations in the first paragraph of Section 3.1
regarding the possible convergence in distribution of the relative final size of a major out-
break, we also investigate the behaviour of the sample variance σ̂2

RFS of the relative final size
of major outbreaks as a function of m. From Figure 4 it seems plausible that mσ̂2

RFS(m)
(= σ̂2

FS(m)/m, where σ̂2
FS(m) is the sample variance of the absolute, rather than relative

final size) converges to a constant value as m → ∞, lending credence to the suggestion
made in Section 7 of Ball et al. [11] that the relative final size might satisfy a central limit
theorem of the form

√
m(RFS − ERFS) → N(0, σ2) with the variance σ2 depending only

on H , D, λG, λL and I.

4.2 Comparison to standard household model

An interesting question is whether or not our model necessarily behaves differently to the
standard households model, where global contacts are homogeneously mixing rather than
through a random network. We first determine conditions under which our networked
household model (NHM) does give the same outcomes as the standard household model
(SHM), then examine whether the outcomes of a natural limit of our model (as µD → ∞)
converge to those of the SHM.
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4.2.1 SHM and NHM with the same outcomes

A first point we need to be careful of is exactly what we mean by the NHM and SHM having
the same outcomes. The analyses we can perform are not on the models directly, but on the
branching process approximations of them (valid for large populations). We say that the
models are effectively the same if the corresponding approximating branching processes
(both forward and backward) have the same distribution in both models (though these
distributions may be different for the forward and backward processes), which is equivalent
to their offspring distributions having the same distribution. To simplify the presentation
we assume that the household size distributions are the same, so it is sufficient to consider
the case where the household size n is fixed. We denote the parameters of the NHM by I,
D, λG and λL and those of the SHM by I ′, λ′G and λ′L. Note that although λL and λ′L have
the same interpretation, λ′G is a total contact rate whilst λG is a per-pair contact rate. For
the sake of simplicity we look first at the backward processes.

We observe first that the decomposition (11) of the random variable for the offspring in

the backward branching processes in the NHM isB(n) = B0+
∑M (n)

j=1 Bj , where B0, B1, . . . , Bn−1

are independent, with B1, B2, . . . , Bn−1 ∼ Bin(D, pG) and B0 ∼ Bin(D, pG) or B0 ∼
Bin(D̃ − 1, pG) according as we are looking at the first or subsequent generations. It
follows from the homogeneously mixing nature of the global contacts in the SHM that the

corresponding decomposition, B(n)′ = B′
0 +
∑M (n)′

j=1 B′
j, has B′

0, B
′
1, . . . , B

′
n−1 as independent

and identically distributed Poi(λ′GµI′) random variables. By considering the PGFs of B(1)

and B(1)′, and in particular their factorial moments, the distributions of B(1) and B(1)′ are
different unless D̃ − 1 ∼ Poi(µD) (for some µD), which implies that D ∼ Poi(µD), and

µDpG = λ′GµI′. Note that if D ∼ Poi(µD) then Bi ∼ Poi(µDpG). If we take I
D
= I ′ and

λL = λ′L, then M (n) D
= M (n)′ and the backward processes agree if and only if

λ′GµI = µD(1 − φ(λG)),

where µI = E[I]. Note that if this is the case then the expected relative final size of a
major outbreak z is the same for the two models, as is the threshold parameter R∗.

To examine what happens in the forward process (still assuming D ∼ Poi(µD)), we
first consider the case n = 1, so our NHM reduces to the standard network model and
the SHM reduces to the basic homogeneously mixing model. Here the random variables
that describe the number of offspring in the forward processes for the NHM and SHM
are, respectively, C ∼ Poi(µD(1 − e−λGI)) and C ′ ∼ Poi(λ′GI

′). For these distributions to

coincide it is necessary and sufficient that µD(1− e−λGI)
D
= λ′GI

′. Furthermore, it is simple
to verify that this implies that the backward processes also coincide. If we also consider
households of size 2, then we can derive a contradiction unless the infectious periods are
fixed. The argument is quite involved, so we present it in Appendix B.

Since the forward and backward processes for both models coincide when their infectious
periods are constant, we have thus seen that, given a NHM, it is possible to construct a
SHM which coincides in the sense that both the backward and forward branching process
approximations of the two models have the same distribution if and only if D is Poisson and
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I is fixed. Moreover, under these conditions, the forward and backward processes coincide if
and only if λLc = λ′Lc

′ and µD(1−e−λGc) = λ′Gc
′ (where c and c′ are the constant infectious

periods for the NHM and SHM, respectively). Similarly, given a SHM there exists a NHM
that coincides in the above sense if and only if I is almost surely constant. In that case the
degree distribution of the NHM is necessarily Poisson and the parameters must satisfy the
same relations given above.

4.2.2 SHM as a limit of the NHM

Another, perhaps more natural, way that we might be able to recover the SHM from our
NHM is by letting µD → ∞ and λG ↓ 0 in such a way that λGµD → λ′G ∈ (0,∞). Here
we show that under certain circumstances we do recover the properties of the standard
household model and give some indication of when and why this can fail to hold. In the
calculations which follow in the rest of this section we either put λG = λ′G/µD and let
µD → ∞ or we put µD = λ′G/λG and let λG ↓ 0, according to which one yields the simplest
arguments; we thus have µD → ∞ and λG ↓ 0 with λGµD being equal to rather than
tending towards λ′G. For ease of presentation, any unspecified limit henceforth refers to
this limit. Firstly we determine whether or not the threshold parameter R∗ of the NHM
converges to that of the SHM.

Recall that µI = E[I] is the mean of the infectious period distribution. Application of
l’Hôpital’s rule shows that limλ↓0 λ

−1(1 − E[e−λI ]) = µI ; note this holds even if µI = ∞.
Suppose that κ = limµD→∞ σ2

D(µD)/µ2
D exists. Then taking the appropriate limit in (5)

shows that R∗ → λ′GµI(µT +1+κ). The corresponding threshold parameter of the SHM is
R∗ = λ′GµI(µT + 1) (see equation (3.31) of Ball et al. [3]). Thus, if µI < ∞, the threshold
parameter R∗ for the limiting NHM coincides with that of the SHM if and only if κ = 0,
i.e. σ2

D = o(µ2
D). This holds if, for example, D is Poisson or constant, but not if D has a

tail which is geometric or heavier.
Now we examine the possibility of the actual branching process approximations of the

NHM converging to those of the SHM, i.e. the offspring distributions converging, rather
than just the threshold parameter. Firstly we consider the forms of the PGFs describing
the offspring distributions of the SHM that we hope to recover from letting µD → ∞ and
λG ↓ 0 in our model. The key feature of the SHM that we need to recover is that, in the
forward process, the ‘contribution’ to C from each infected individual (i.e. the number of
infectious global contacts it makes) is a Poisson random variable with (random) mean λ′GI.
Similarly for the backward process, in the SHM each individual in the susceptibility set is
globally contacted by a Poisson number of individuals with mean λ′GµI .

We consider the backward process first as it is simpler. With reference to equation (11),
we have Bj |Kj ∼ Bin(Kj, 1−E[e−λGI ]) and we need Bj to tend to a Poisson random vari-
able with mean λ′GµI , which is equivalent to requiring E[Bj [i]] → (λ′GµI)

i for all i = 0, 1, . . .

(see, for example, [25, Section 2.3.e]). Now, since fBj |Kj
(s) = (E[e−λGI ]+(1−E[e−λGI ])s)Kj
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and E[Bj [i] |Ki] = f
(i)
Bj |Kj

(s)|s=1, we have (dropping the subscript j for cleanliness)

E[B[i]] = E[E[B[i] |K]]

= E[K[i](1 − E[e−λGI ])i]

=
E[K[i]]

µi
K

(

1 − E[e−λ′

GI/µK ]

1/µK

)i

,

which (assuming µI < ∞) converges to (λ′GµI)
i if and only if E[K[i]]/µ

i
K → 1, (which

we write as E[K[i]] ∼ µi
K) or, equivalently, if and only if E[Ki] ∼ (µK)i. Note also that

E[Dn] ∼ µn
D implies E[(D̃ − 1)n−1] ∼ µn−1

D̃−1
(n = 1, 2, . . .). Now observe that the random

variables B0, B1, . . . , BM (n) and M (n) in (11) are mutually independent. It follows that

E[Di] ∼ µi
D (i = 1, 2, . . .) (13)

is a necessary and sufficient condition for the backward branching process of the NHM to
converge to that of the SHM.

Turning now to the forward process, with reference to (3), we have Cj | Ij, Kj ∼
Bin(Kj, 1 − e−λGIj) and we need Cj | Ij to tend to a Poisson random variable with mean
λ′GIj , which is equivalent to requiring E[Cj [i] | Ij] → (λ′GIj)

i for all i = 0, 1, . . .. There-

fore, since fCj |Ij ,Kj
(s) = (e−λGIj + (1− e−λGIj)s)Kj and E[Cj [i] | Ij, Kj] = f

(i)
Cj |Ij,Kj

(s)|s=1, we

obtain that (again dropping the subscript j)

E[C[i] | I] = E[E[C[i] | I,K]]

= E[K[i](1 − e−λGI)i]

=
E[K[i]]

µi
K

(

1 − e−λ′

GI/µK

1/µK

)i

,

which converges to (λ′GI)
i if and only if E[K[i]] ∼ µi

K . Recall from above that this condition

is equivalent to E[Ki] ∼ (µK)i and that E[Dn] ∼ µn
D implies E[(D̃ − 1)n−1] ∼ µn−1

D̃−1
(n =

1, 2, . . .). Let I = (I0, I1, . . . , In−1), recall (3) and note that, given I, (C0, C1, . . . , Cn−1)
and (χ0, χ1, . . . , χn−1) are independent and Ci | I = Ci | Ii (i = 0, 1, . . . , n − 1). It then
follows from (3) that (13) is sufficient for the forward branching process approximation of
the NHM to converge to that of the SHM.

It is straightforward to show that (13) holds in the cases where D ≡ µD and D ∼
Poi(µD), but not when D ∼ Geom(1/(1 + µD)) (here D ∼ Geom(p) means that, for
k = 0, 1, . . ., P(D = k) = p(1 − p)k). Investigating the latter case further, it can be shown
that rather than each infected individual asymptotically making infectious contact with
a Poisson distributed number of global neighbours with mean cI, a secondary individual
in a household makes infectious contact with a geometrically distributed number of global
neighbours with parameter (1 + cI)−1 (mean cI), whilst a primary individual makes infec-
tious contact with a number of global neighbours that has a negative binomial distribution
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Figure 5: Comparison of asymptotic properties of our model with different degree
distribution (and global contact rate) with the corresponding properties of the stan-
dard households model (solid horizontal lines). Other model parameters are H ∼
(0.2, 0.25, 0.25, 0.25, 0.04, 0.01), λL = 2, I ∼ Gam(3/2, 1/3) and λG = 1/µD. The heavy-
tailed distribution is Pow(k, 7/2), for k = 5, 10, . . . , 100 and k = 1, 2, . . . , 29.

with parameters 2 and (1 + cI)−1 (which has mean 2cI). The same comments apply re-
garding the backwards process, with ‘make contact with’ replaced by ‘contacted by’ and I
replaced by µI .

This has potentially important implications as just ‘people having, on average, lots of
contacts/friends’, i.e. µD being large, in most circumstances does not imply that the stan-
dard household model is a good approximation for our network-household model. Figure 5
demonstrates numerically some of the conclusions of this section, that the SHM is a good
approximation for our model when D is concentrated around its large mean µD, λG is small
and µDλG = λ′G is of moderate order. Note that, for large µD, the degree distributions that
give a larger R∗ generally give larger pmaj and z, except for the heavy-tailed distribution.
Although not what one might initially expect, this is an artefact of the particular distri-
butions we have used. For the heavy-tailed distribution to have a mean of moderate order
it must have appreciable mass near zero, so there is a relatively large chance that the first
few infectives will have few global neighbours and thus not spread infection.
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(‘µ=0’ corresponding to the

standard network model). The other model parameter is I ∼ Gam(3, 1/3).

4.3 Comparison to standard network model

Another interesting comparison to make is that between our model and the standard net-
work model (SNM) studied extensively by Newman [5] and others (notably Kenah and
Robins [6]). This is the special case of our model where the households are all of size 1. A
reasonable comparison to make here to gauge the effect of including households is to specify
a total degree distribution Q and compare the critical value of λ in the SNM with degree
distribution Q to the critical value of λ = λL = λG in our model with the same overall
degree distribution but with some household structure, i.e. with some household size and

global degree distributions H and D such that H̃ − 1 + D
D
= Q. Note that Q must be

chosen carefully so that this is possible. An example of this is given in Figure 6, where we
see that increasing the (average) household size at first makes little difference, but then as
larger households become more prevalent a much higher infection rate is required to bring
the epidemic above threshold in order to overcome the increase in the proportion of infec-
tious contacts that are with individuals who have already been infected. This behaviour is
somewhat more satisfactorily explained by looking to the amount of clustering present in
the network of possible contacts, which is the subject of the next section.

4.4 Clustering

The clustering of a network measures whether the neighbours of an individual tend to also
be neighbours of each other or, expressed in terms of friendships, whether a typical individ-
ual’s friends are also friends with each other. We consider just one of the several measures
of clustering in the literature. In this section we present our results only with heuristic
arguments suggesting their truth; rigorous justifications are presented in Appendix C.
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Firstly we note some simple facts about the population structure in our model. For large
m the fraction of the vertices that are in a household of size h and have global degree d is
well approximated by ρ̃hpd, by the law of large numbers. Such a vertex has degree d+(h−1).
Let fD(s) and fH(s) denote the PGFs of the global degree distribution and the household
size distribution, respectively. The PGF of the size-biased household size distribution H̃
is given by fH̃(s) =

∑∞
h=0 ρ̃hs

h =
∑∞

h=0 hρhs
h/µH = sf ′

H(s)/µH , where we have assumed
that µH = E[H ] < ∞. The PGF of the total degree distribution Q is therefore, for large
m, well approximated by fQ(s) =

∑∞
j=0 qjs

j = s−1fH̃(s)fD(s) = f ′
H(s)fD(s)/µH.

A natural measure of clustering is the total number of ordered triangles divided by
the total number of ordered triples (a triple being three vertices of which the second is a
neighbour of both the first and third) in a network of m households [26, 27], say C(m). We
use the fact that the number of triangles not entirely in the same household is small. If m
is large then the law of large numbers implies that the number of ordered triples that are
not entirely in the same household per household is well approximated by E[H(2D(H −
1) + D(D − 1)], while the total number of triples per household is well approximated by
E[H(D +H − 1)(D +H − 2)]. We therefore have

C(m) ≈ 1 − E[H(2D(H − 1) +D(D − 1)]

E[H(D +H − 1)(D +H − 2)]
. (14)

This formula becomes exact as m → ∞ (see Appendix C), so we define the clustering
coefficient C to be the right hand side of (14). Note that, because H andD are independent,
the expectations in (14) are easily evaluated and

C = 1 − f
(1)
H (1)f

(2)
D (1) + 2f

(2)
H (1)f

(1)
D (1)

f
(1)
H (1)f

(2)
D (1) + 2f

(2)
H (1)f

(1)
D (1) + f

(3)
H (1)

. (15)

Note that if H has infinite third moment and finite second moment, while D has finite
second moment, then C = 1. In this situation the total degree Q has infinite variance and in
the SNM this implies R∗ = ∞ (see, for example, [5]). However, in the NHM, equation (5)
implies that, under these conditions on H and D, R∗ < ∞. This apparent discrepancy
is a consequence of the clustering in the overall contact network in the NHM. A similar
phenomenon is observed (in different models to ours) in [26] and [27].

To investigate further the effect of varying clustering on our model we examine a situa-
tion where it is simple to vary the household size and global degree distributions whilst keep-
ing the total degree distribution fixed. We do this by taking H ∼ Poi+(µ) and D ∼ Poi(µD)
with µ+µD fixed, so that µH = µ/(1−e−µ) and H̃−1 ∼ Poi(µ). In this situation it follows
easily from (15) that C = µ2/(µ + µD)2. In Figure 7 we compare the properties of these
different models in both the situation where λL = λG, so the changes in the quantities of
interest reflect only the changes in the structure of the network of possible contacts (plots
(a) and (b)) and also in the more realistic case λL > λG, where an increase (decrease) in
clustering is accompanied by an increase (decrease) in the overall rate at which a typical
infected individual makes infectious contacts (plots (c) and (d)). Plot (b) tells much the
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(d) λL > λG

Figure 7: Plots of threshold parameters and the probability and expected relative final
size of a major outbreak for networks with varying clustering by having H ∼ Poi+(µ)
and D ∼ Poi(10 − µ) (so Q is always Poi(10)), for µH ∈ [0, 10]. Other parameters are
I ∼ Gam(3, 1/3) and λL = λG = 1/5 for (a) and (b) and λL = 1 and λG = 1/15 for (c)
and (d).
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same story as Figure 6, that more clustering (i.e. larger households) results in more re-
peat contacts with individuals who are already infected, thus reducing both pmaj and z.
Although the graph of R∗ in plot (a) might appear to contradict this, we must remem-
ber that R∗ is a household-to-household reproduction number and that the distribution of
household sizes changes as C changes. A somewhat better comparison can be obtained by
using a reproduction number which reflects the proliferation of infected individuals rather
than households, as is the case with R∗ (cf. Section 2.1, final paragraph). Two reproduction
numbers which attempt to do this, R1 and R2, are therefore included in Figure 7. Details
concerning their definition and interpretation are provided in Appendix D. The sometimes
substantial difference between R∗, R1 and R2 serves as a reminder that simply comparing
the reproduction numbers of different models can be misleading; though note that of course
all of the reproduction numbers cross their critical value, 1, at the same time.

Plots (c) and (d) of Figure 7, however, demonstrate that the monotonic relationships of
the probability and expected relative final size of a major outbreak to C do not necessarily
obtain in the more realistic part of the parameter space where λL > λG. In this situation,
whilst increased clustering results in each infectious contact having a reduced chance of
being with a susceptible there are many more such contacts and so some increase in clus-
tering can actually enhance the spread of the infection. However, when the clustering is
already high this is outweighed by the fact that increasing the clustering further reduces
the number of possible global contacts dramatically.

4.5 The effect of the infectious period distribution

Another aspect of our model that we investigate is its dependence on the choice of the
infectious period distribution (IPD). A number of different IPDs are used in the litera-
ture, including the exponential distribution (in the so-called general stochastic epidemic
and implicitly in most deterministic models), the gamma distribution and an almost surely
constant infectious period. It has long been recognised that the exponential distribution,
though mathematically convenient as it means the epidemic process is Markov, does not
provide a realistic model of the infectiousness of real diseases (see, for example, Gross-
man [28] and Keeling and Grenfell [29]). A fixed infectious period also offers some mathe-
matical advantages and is usually more realistic than an exponentially distributed one, but
it still eliminates a potentially important source of randomness in an epidemic model.

To study the effect of the IPD we use the results of Kuulasmaa [30], in particular
Theorem 2.1 of that paper. Trapman [26, Section 3] has applied Kuulasmaa’s work to
obtain similar results in a context where there is only one kind of contact rather than the
two types—local and global—that we consider here. In Appendix E we prove the following
theorem.

Theorem 3 Let NHM(H,D, φ, λL, λG) denote our epidemic model with household size
distribution H, degree distribution D, infectious period distribution given by the Laplace
transform φ(·) and infection rates λL and λG. Let the epidemics E and E ′ be given by
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NHM(H,D, φ, λL, λG) and NHM(H,D, φ′, λ′L, λ
′
G), respectively, and suppose that

φ(iλL + jλG) ≥ φ′(iλ′L + jλ′G) (16)

for all i, j = 0, 1, . . .. Then R∗(E) ≤ R∗(E ′), pmaj(E) ≤ pmaj(E ′) and z(E) ≤ z(E ′).

Remarks. 1. When the conditions of this theorem obtain we say, somewhat loosely,
that the process E ′ is an upper bound for E (or E a lower bound for E ′), in the sense
that the stated measures of severity are all higher (or at least not smaller). Note that
it is not necessarily the case that the final size of E ′ is stochastically larger than that
of E .

2. As outlined in Appendix E, we can also use Kuulasmaa’s result to show that the
probability that all individuals in a given subset of the initially susceptible individuals
avoid infection in E is greater than the correponding probability in E ′. Thus, in
particular, the probability that a given initially susceptible individual avoids infection
is greater in E than in E ′. Summing over all such initially susceptible indivuduals
then shows that the unconditional expected final size of E is smaller than that of E ′.

One way of using this result is to compare the properties of epidemic models with
a relatively complicated infectious period distribution to those with an infectious period
distribution that admits simpler computation, in order to obtain bounds on quantities of
interest for the model with the more complicated IPD (cf. [11, Section 4.1]). For example,
Trapman [26] uses Kuulasmaa’s result to give upper and lower bounds on certain properties
of an epidemic model with only one type of contact by comparing the model with an
arbitrary infectious period to a similar model where the infectious period is either fixed or
can only take the values 0 or ∞. Our theorem might also be used to compare the predicitions
of two models which have different IPDs but are otherwise the same. For example, if one has
in mind a value for the mean infectious period, how would the predictions of a modeller
who specified an exponential IPD differ from those of a modeller who specified a fixed
infectious period?

The upper bounding processes we derive have, as in Kuulasmaa’s and Trapman’s work,
a constant infectious period, say c′. With this in mind, we want to show that

φ(iλL + jλG) ≥ φ′(iλ′L + jλ′G) = e−c′(iλ′

L+jλ′

G) = φ′(λL)iφ′(λG)j , (17)

for suitable constants c′, λ′L and λ′G. However, since E[e−(a+b)X ] ≥ E[e−aX ] E[e−bX ] for any
non-negative random variable X and constants a, b > 0 (see Kuulasmaa [30, Lemma 4.2]),
we have (also using Jensen’s inequality)

φ(iλL + jλG) = E[e−I(iλL+jλG)]

≥ E[e−iλLI ] E[e−jλGI ]

≥ (E[e−λLI ])i(E[e−λGI ])j

= φ(λL)iφ(λG)j.
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It thus follows that φ(λL) ≥ φ′(λ′L) = e−c′λ′

L and φ(λG) ≥ φ′(λ′G) = e−c′λ′

G (equivalently
pL ≤ p′L and pG ≤ p′G, where pk = 1 − φ(λk) (k ∈ {L,G}) is the marginal probability that
an infective individual infects a given type k neighbour) are together sufficient for (17).

A naive but reasonable guess at approximating a given epidemic process with a sim-
ilar epidemic process with a constant infectious period is to simply replace the aribtrary
infectious period I with a constant infectious period c′ = E[I]. It follows from Jensen’s in-
equality that φ(λi) = E[e−λiI ] ≥ e−λi E[I] = e−λic′, so this does result in an upper-bounding
epidemic process. Note that in terms of the marginal probabilities of infection, this results
in pk ≤ p′k, usually with strict inequality for both k ∈ {L,G}.

In order to get tighter bounds on the quantities of interest, we might try choosing the
constant infectious period c′ as small as possible so that φ(λk) ≥ e−λkc′ (equivalently, pk ≤
p′k) for both k ∈ {L,G}, which amounts to chosing c′ = maxk{− log φ(λk)/λk}. Supposing
that c′ = − logφ(λG)/λG, we firstly have e−c′λG = exp(−(− log φ(λG)/λG)λG) = φ(λG).
Now, noting that − log φ(λL)/λL ≥ − log φ(λG)/λG, we have

e−c′λL = exp(−(− log φ(λG)/λG)λL) ≤ exp(−(− log φ(λL)/λL)λL) = φ(λL).

Of course, if instead we have c′ = − log φ(λL)/λL the same argument holds with Ls and Gs
interchanged and either way we have e−c′λL ≤ φ(λL) and e−c′λG ≤ φ(λG), so this process
also gives an upper bound. In terms of the marginal probabilities of infection we now
have pk ≤ p′k, with equality for one k ∈ {L,G} and strict inequality for the other (unless
λL = λG), so one would expect this to be a better upper bound than the first upper bound
discussed above where both inequalities are in general strict.

Finally, we can do better again by changing the local and global contact rates too, in
such a way that pk = p′k, for both k ∈ {L,G}. We can do this by setting c′ = 1 (any
constant will do) and λ′k = − log φ(λk). It then follows that e−c′λk = elog φ(λk) = φ(λk) for
both k.

Turning to the question of finding a lower bounding epidemic process, we are hindered
somewhat by the fact that when we take the infectious period distribution to be zero or
infinity, i.e. P(I = ∞) = 1−P(I = 0) = π, the infection rates λL and λG have no influence
on the epidemic from the viewpoint of the final size. To ensure that p′L and p′G are as large
as possible but still respect the inequalities φ(λk) ≤ φ′(λk) = 1−π′ (equivalently p′k ≤ pk),
we must take π′ = mink{pk} = 1 − φ(mink{λk}). It then easily follows that, for i+ j > 0,
φ(iλL + jλG) ≤ 1− π′ = φ′(iλL + jλG) and so this process with a zero or infinite infectious
period gives the desired lower bound.

In the special case where all households are of size 1, i.e. the standard network model,
we find that R∗ and the expected relative final size of a major outbreak are the same for
the best upper bounding process and the lower bounding process we have described. This
is because these quantities depend on φ and λG only through φ(λG) and this is the quantity
that we have matched up in order to ensure that the bounds are as good as possible. (Note
λL is irrelevant here.) Similarly, if we consider households of size 2 then the threshold
parameter R∗ and the expected relative final size of a major outbreak are the same in any
‘original’ process with arbitrary IPD and the last upper bound described above, as these
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quantities depend on φ, λL and λG only through φ(λL) and φ(λG) and both of these are
matched in the approximating process. For any household size, however, the probability
of a major outbreak is different from that of the original process in both of the bounding
processes, since it is clear from equation (7) that pmaj depends on φ(iλL + jλG) for all
i, j = 0, 1, . . . and in constructing the bounding processes we only match these quantities
for one or both of (i, j) = (0, 1), (1, 0). Note also that appreciable simplification obtains
when λL = λG, for then the two marginal infection probabilities become one and so the
second and third upper bounding processes become equivalent and also the lower bounding
process achieves p′k = pk for all links (since there is only one type of link.)

Examples of these bounds are plotted in Figure 8, where we have taken as an ‘original’
model one with an exponential IPD and then calculated the properties of it and of the
bounding models we have just described; the upper bounds being numbered in the order
that they are presented above. In all cases we see that the upper bounds appear in the plots
in the order we expect from the observations concerning the marginal infection probabilities
pk associated with the bounding processes, the better bounds obtaining when the differences
p′k − pk are smaller. We see from the difference between columns (a) and (b) in the figure
that as household sizes become larger the bounds get worse. This is in part because there
are more values (i, j) for which the quantity φ(iλL + jλG) is not being matched up, so
the approximation is worse. This also explains the fact that the approximations are much
worse for pmaj than for z.

5 Discussion

In this paper we have shown how to analyse the potential spread of an SIR epidemic
in a structured population incorporating household structure and a random graph model
with a specified degree distribution to model potential global contacts. We have extended
the results of Ball et al. [11] to incorporate variable household sizes and calculate the
probability of a major outbreak for a general infectious period distribution. In addition we
have discussed the numerical implementation of the methods we describe for calculating a
threshold parameter and the probability and expected relative final size of a major outbreak
in the limit as the number of households becomes large. We have seen that these asymptotic
results give good approximations to the behaviour of our model in modestly sized finite
populations and given numerical results suggesting that the relative final size in the event of
a major outbreak satisfies a central limit theorem as m → ∞, as conjectured in Section 7
of Ball et al. [11]. Further, we have compared our model with the standard households
model and the standard network model for SIR-type infections and seen that some of the
differences between the standard network model and ours can be viewed as a result of the
different amount of clustering in the population structure. Moreover, when λL = λG (in
which case our model provides one way of introducing clustering into the standard network
model), we have demonstrated that such clustering can appreciably decrease the spread
of disease. We have also shown that the choice of infectious period distribution, for given
marginal local and global contact probabilities, can have a very significant impact on both
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Figure 8: Plot of quantities of interest and their bounds for ‘original’ models with expo-
nential infectious period with mean µI ranging from 0.1 to 1.5 and fixed household sizes
(a) H ≡ 3 and (b) H ≡ 6. Other model parameters are D ∼ Geom(8/9), λL = 1 and
λG = 1/5. (In the lower left plot there is a difference between ‘original’ and ‘upper1’ but
it is very small.)
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the probability and size of a major outbreak.
One of the more obvious next steps to take is to analyse the effect of vaccination on the

behaviour of our model, including the effect of different models for the action of the vaccine
and different vaccine allocation methods—this work is currently in progress. In addition,
our model can be generalised to allow one or more of the global degree distribution D and
the contact rates λL and λG to depend on household size. These changes are in principle
quite simple to incorporate because as soon as we take what is invariably the first step
in our calculations—conditioning on the household size—these quantities are fixed and
the calculations then proceed in exactly the same way as in this paper. It follows that
the numerical computation of all of the quantities of interest will be only slightly more
complicated but potentially much more time-consuming than in the situation where D and
the contact rates are independent of household size. Another possible generalisation of our
model which should still be amenable to analysis but will be much more complicated to
implement numerically is to allow for correlations between the global degrees of individuals
in the same household; again the nature of these correlations might depend on household
size. Furthermore, the results of Ball and O’Neill [20] on final state random variables are
stated in terms of multitype epidemics, so our results could be extended to this situation
(e.g. for modelling differences between adults and children).

Another aspect of our model that could be generalised without making the analysis sig-
nificantly more complex is the infectiousness profile of individuals over time. The model we
present in this paper assumes a constant rate of infectiousness for a random time (the infec-
tious period) but all that is important is the total infectiousness over this time period—the
area under the (random) function Jk(t), the rate at which type k contacts (local or global)
are made t time units after an individual becomes infected. Currently Jk(t) = λk1(t ≤ I), so
∫∞

0
Jk(t)dt = Iλk, but in principle Jk(·) could be a random function drawn from say all inte-

grable functions taking non-negative values on [0,∞). (This also emphasises the point that
our results are insensitive to the inclusion of a latent period, as

∫∞

0
Jk(t)dt =

∫∞

0
Jk(t−L)dt,

assuming that Jk(t) = 0 for t < 0.) If we write ϕ(θ) = E[exp(−∑k∈{L,G} θk

∫∞

0
Jk(t)dt)],

where θ = (θL, θG), for the joint Laplace-Stieltjes transform of the local and global in-
fectious pressure exerted by an individual on each of its neighbours, we could change our
model specification to include ϕ(θ) instead of φ(θ), λL and λG. The arguments used in
this paper are easily modified to show that our results would then hold with all occurences
of φ(iλL + jλG) in our formulae replaced with ϕ(i, j), this being the probability that an
infectious individual fails to infect all of a given set of i of its local and j of its global
neighbours.
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Appendix A Final state random variables

We first describe the setup for dealing with final state random variables in multiple group
epidemics, then introduce multivariate Gontcharoff polynomials and the main results of Ball
and O’Neill [20] before applying them to our model. We take the opportunity to present
these results in terms of probability generating functions rather than Laplace transforms
because the former are most often applied to discrete random variables (as in our situation).
To simplify the presentation of Ball and O’Neill’s results we omit from their setup the
possibility of individuals moving between groups.

We introduce some notation we require throughout this appendix. For suitable vectors
x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym), we define x! =

∏m
i=1 xi! and xy =

∏m
i=1 x

yi
i .

We say that x ≤ y if the inequality holds componentwise, and that x < y if in addition
at least one of the componentwise inequalities is strict. We also adopt the convention that
any summation over vector indices is rectangular, i.e.

∑k

i=j =
∑k1

i1=j1
· · ·∑km

im=jm
.

A.1 Multiple group framework and main result

The framework we use is that of an SIR epidemic amongst a population of individuals
who each belong to one of m groups, labelled 1, 2, . . . , m. For i = 1, 2, . . . , m, there are
initially ai infectives and ni susceptibles in group i, and we write a = (a1, a2, . . . , am) and
n = (n1, n2, . . . , nm). The infectious periods of infectives in group i are each distributed
according to a random variable I(i). For i, j = 1, 2, . . . , m, the individual to individual
infection rate from a given group i infective to a given group j susceptible is λij. As usual,
such infections are governed by Poisson processes, and all Poisson processes and infectious
periods are mutually independent.

To each infective we also attach a random real-valued attribute describing some quantity
of interest. This attribute may depend on the individual’s infectious period and in our
setting it will be the number of global neighbours that the individual infects. The attributes
of different infectives are mutually independent and, for i = 1, 2, . . . , m, the attributes
of infectives in group i are distributed according to the random variable A(i). For i =
1, 2, . . . , m, let Ti be the number of susceptibles that are ultimately infected in group i
and let Ai be the sum of the attributes over all ai + Ti infectives in group i. Let T =
(T1, T2, . . . , Tm) and A = (A1, A2, . . . , Am). The components of A are called final state
random variables. Let

Φ(x, s) = E[xn−TsA], (18)

where x = (x1, x2, . . . , xm) and s = (s1, s2, . . . , sm). In order to give an expression for
Φ(x, s) it is convenient to define the multivariate Gontcharoff polynomials first studied by
Lefèvre and Picard [18]. If U = (uj ∈ R

m, j ∈ Z
m
+ ) is a collection of real numbers, then

the Gontcharoff polynomials (associated with U) are defined by G0(x |U) = 1 and, for
k ∈ Z

m
+ \ {0},

Gk(x |U) =
xk

k!
−
∑

0≤j<k

u
k−j
j

(k − j)!Gj(x |U).
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Note that Gk(x |U) is a polynomial of degree k1, k2, . . . , km in the variables x1, x2, . . . , xm,
respectively, depending only on those parameters uj ∈ R

m for which j < k. The following
result is an immediate application of Ball and O’Neill [20, Theorem 5.1] to the special case of
their model with no movement between groups, noting that

∏m
i=1 s

Ai
i = exp(

∑m
i=1Ai log si).

Theorem 4 (Ball and O’Neill [20]) The joint PGF defined by (18) is given by

Φ(x, s) =
n
∑

j=0

n!

(n− j)!(ψ(s, j))n+a−jGj(x |U∗), (19)

where ψ(s, j) = (ψ1(s1, j), ψ2(s2, j), . . . , ψm(sm, j)) with

ψi(si, j) = E

[

exp

(

−I(i)
m
∑

k=1

λikjk

)

sA(i)

i

]

(i = 1, 2, . . . , m),

and U ∗ = (uj, j ∈ Z
m
+ ) has components uj = ψ(s, j).

A.2 Application to our model

We now apply these results to the analysis of the number of global infections emanating from
a household with a single initial infective in our model. Because the degree distribution
of the primary and secondary individuals are different the attributes (number of global
infections made) associated with primary and secondary have different distributions and
so these are the groups. We see considerable simplification arising from the fact that there
are initial susceptibles in only one group and also because we are interested not in the
individual final state random variables A1 and A2 but their sum.

Consider the problem of determining the distribution of the number of global neighbours
infected by the members of a household of size n in our model with a single initial infective.
We let the initially infective individual (the primary infective) comprise group 1, and the
remaining (secondary) individuals be in group 2; so that a = (1, 0) and n = (0, n− 1). We

also have I(i) D
= I and λij = λL for all i, j = 1, 2. The attribute A(i) we associate with each

infected individual in group i is the number of its global neighbours it infects. Denoting
by T the final size as defined in Section 2.2, this leads to

A(1) +
T
∑

j=0

A
(2)
j

D
= C0 +

T
∑

j=1

Cj = C(n),

where the A
(2)
j are independent copies of A(2). Because we are not interested in A(1) and

∑T
j=0A

(2)
j individually but rather their sum, we set s = (s, s) in (19). Similarly, the fact

that there are no initial susceptibles in group 1 means that T = (0, T ) is essentially a
scalar and thus the first component of x is irrelevant and we may set x = (1, x). With
these choices of x and s, Φ(x, s) is the joint PGF of n− 1 − T and C(n).
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Further simplification arises from the fact that the index j of the summation in the
expression (19) ranges from 0 = (0, 0) to n = (0, n − 1), so we only need to consider
j of the form (0, j). It follows easily from the definition of the multivariate Gontcharoff
polynomials that when the index has one component which is always 0 we can ignore the
variable corresponding to this component and thus reduce an m-variable polynomial to an
(m−1)-variable polynomial, which in our case means we need only deal with single variable
Gontcharoff polynomials.

In order to calculate ψl(s, j) = E
[

e−jλLIsCl−1
]

(l = 1, 2), we first condition on the
number of global neighbours Kl (excluding its infector if l = 1) and infectious period I of a
group l individual. The number Cl−1 of global neighbours that it infects is then binomially
distributed with parameters Kl and 1 − e−λGI . Thus

ψl(s, j) = EKl,I

[

e−jλLI
ECl−1

[

sCl−1 |Kl, I
]]

= EKl,I

[

e−jλLI
(

e−λGI +
(

1 − e−λGI
)

s
)Kl
]

= EKl,I

[

e−jλLI
(

s+ (1 − s) e−λGI
)Kl
]

.

Using the binomial theorem, evaluating the expectations and interchanging the order of
the sums, we find that, with p

(l)
k = P(Kl = k) (k = 0, 1, . . .),

ψl(s, j) = EI

[

e−jλLI

∞
∑

k=0

p
(l)
k

k
∑

i=0

(

k

i

)

sk−i(1 − s)ie−iλGI

]

=
∞
∑

k=0

p
(l)
k

k
∑

i=0

(

k

i

)

sk−i(1 − s)iφ(jλL + iλG) (20)

=

∞
∑

i=0

(1 − s)iφ(jλL + iλG)

i!

∞
∑

k=i

k!

(k − i)!
sk−ip

(l)
k

=

∞
∑

i=0

(1 − s)iφ(jλL + iλG)

i!
f

(i)
Kl

(s),

where, for i = 0, 1, . . ., f
(i)
Kl

is the ith derivative of the PGF fKl
.

The PGF of C(n) follows using Theorem 4, since fC(n)(s) = Φ((1, 1), (s, s). Note that
in the statement of Theorem 1 we have re-labelled ψ1 and ψ2 as ψ0 and ψ1, as they are
quantities associated with primary and secondary individuals, respectively, which we have
labelled 0 and 1, 2, . . .. To complete the proof of Theorem 1, note that the decomposition
fC(s) =

∑∞
n=1 ρ̃nfC(n)(s) follows from a simple conditioning on household size.
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Appendix B Matching the NHM and SHM with house-

holds of size 2

Here we present the proof that when we allow households of size 2, it is not possible to
match up the forward processes of the NHM and the SHM unless the infectious period
distributions are both almost surely constant. Recall that we have shown in Section 4.2
that for households of size 1 the forward processes coincide if and only if D ∼ Poi(µD)

and λ′GI
′ D

= µD(1 − e−λGI), and that this implies that the backward processes coincide.
Now, assuming that these conditions hold, we investigate what happens if we also allow
households of size 2.

In the SHM, we have fC(2)′(s) = E[E[sC(2)′ | I ′0]], where I ′0 is the infectious period of the
primary case, and

C(2)′ | I ′0 ∼
{

Z ′
0 with probability e−λ′

LI′0,

Z ′
0 + Z ′

1 with probability 1 − e−λ′

LI′0,

where Z ′
0 and Z ′

1 are independent, Z ′
0 ∼ Poi(λ′GI

′
0) and Z ′

1 is Poisson with random mean
λ′GI

′
1. (Here I ′1 is the infectious period of the secondary case if one occurs.) Thus,

fC(2)′(s) = E[e−λ′

LI′0 e−λ′

GI′0(1−s) + (1 − e−λ′

LI′0) e−λ′

GI′0(1−s)f1(s)],

where f1(s) = E[e−λ′

GI′(1−s)]. Hence,

fC(2)′(s) = E[e−(λ′

LI′0+λ′

GI′0(1−s))](1 − f1(s)) + f1(s)
2.

In the NHM, on the other hand, we have fC(2)(s) = E[E[sC(2) | I0]], with

C(2) | I0 ∼
{

Z0 with probability e−λLI0,

Z0 + Z1 with probability 1 − e−λLI0,

where Z0 and Z1 are independent, Z0 ∼ Poi(µD(1−e−λGI0)) and Z1 is Poisson with random
mean µD(1 − e−λGI1). It follows in the same way as above that

fC(2)(s) = E[e−(λLI0+µD(1−e−λGI0 )(1−s))](1 − f2(s)) + f2(s)
2,

where f2(s) = E[e−µD(1−e−λGI0 )(1−s)].
Now

λ′GI
′ D
= µD(1 − e−λGI) ⇐⇒ f1(s) = f2(s), s ∈ [0, 1],

so fC(2)′(s) = fC(2)(s) if and only if

E[e−(λ′

LI′0+λ′

GI′0(1−s))] = E[e−(λLI0+µD(1−e−λGI0 )(1−s))]

for all s ∈ [0, 1]. Assume without loss of generality that λG = 1. Then λ′GI
′ D
= µD(1− e−I),

so we require

E[e−κY e−(1−s)µDY ] = E[(1 − Y )λLe−(1−s)µDY ] (0 ≤ s ≤ 1),

33



where κ = λ′LµD/λ
′
G and Y = 1 − e−I , so Y takes values in [0, 1]. Putting θ = (1 − s)µD,

we therefore have that fC′(s) ≡ fC(s) if and only if

E[e−θY e−κY ] = E[e−θY (1 − Y )λL ] (0 ≤ θ ≤ µD).

It then follows from the uniqueness of Laplace transforms of measures (see, for example,
Feller [31, Section XIII.1]) that this is impossible unless P(Y = y) = 1 for some y ∈ [0, 1].

Appendix C Clustering proofs

In this appendix we provide precise statements concerning the behaviour of the empirical
total degree distribution and the asymptotics of the clustering coefficient C(m) in our model
for large numbers of households. We construct a sequence of random graphs (Gm), with m
the number of households, such that as m→ ∞, the PGF of the empirical degree distribu-
tion converges almost surely pointwise to f ′

H(s)fD(s)/µH and C(m) converges almost surely
to C given in (14). Here we consider the model with independent, identically distributed
household sizes. The model with finite support for household sizes can be dealt with in a
similar way.

Firstly, let Q(m) = (q
(m)
j , j = 0, 1, . . .) describe the empirical degree distribution of the

random network of m households, constructed as described in Section 1.2. That is, the
fraction of vertices in the network that have j incident edges (global plus local) is q

(m)
j . Or,

equivalently, q
(m)
j is the probability that the total degree of a vertex chosen uniformly at

random from a population of m households is j. Note that Q(m) only depends on the first
m household sizes and the (global) degrees of the individuals in these first m households.
The pairing of the global ‘half-edges’ is independent of Q(m).

We construct the sequence of random graphs (G1, G2, . . .) as follows. Let H1, H2, . . . be
a sequence of independent and identically distributed household sizes with distribution ρ
(i.e. distributed as H). Furthermore, let D1, D2, . . . be a sequence of independent global
degrees identically distributed as D. For convenience we define Ĥm =

∑m
i=1Hi.

The graph Gm consists of m households of respective sizes H1, H2, . . . , Hm. If
∑Ĥm

j=1Dj

is even, then the j-th vertex in k-th household has global degree DĤk−1+j (if that vertex

is present in Gm), i.e. this individual has DĤk−1+j half-edges attached to it. If
∑Ĥm

j=1Dj

is odd, then for all but the Hm-th vertex in the m-th household the j-th vertex in the
k-th household has global degree DĤk−1+j, while the Hm-th vertex in the m-th household
has global degree DĤm

+ 1. This implies that the sum of global degrees in Gm is even.
To complete the construction of Gm the half-edges are paired uniformly at random. The
sequence of networks G1, G2, . . . may be constructed by assuming that the pairings of half-
edges in G1, G2, . . . are mutually independent, although in our proofs we require only that
for every Gm the marginal probability of every possible pairing of the half-edges is equal.
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C.1 The empirical degree distribution

By the strong law of large numbers the fraction of the vertices in Gm that are in a household
of size h and have global degree d converges almost surely to ρ̃hpd as m→ ∞. This implies
that for every c <∞ and s ∈ [0, 1],

∑c
i=0 q

(m)
i si a.s.→ E[sD+H̃−11(D+ H̃−1 ≤ c)] as m→ ∞,

where
a.s.→ denotes almost sure convergence and, as before, q

(m)
i is the fraction of vertices

in Gm of total degree i. This in turn implies that the PGF fQ(m) of the empirical degree

distribution Q(m) almost surely converges pointwise to f ′
H(s)fD(s)/µH for s ∈ [0, 1].

C.2 An auxilliary graph

Before discussing the clustering we define and find some basic properties of a graph which
represents the global connections between households rather than individuals. Define T̄ =
(Ti, i = 1, 2, . . .) as the sequence of random variables denoting the total global degree of
the households:

Tm =
Ĥm
∑

i=Ĥm−1+1

Di.

Note that by construction T1, T2, . . . are independent and identically distributed. Let T
be a random variable distributed as Ti. Since H and D have finite second moments, T
also has finite second moment. Let Li =

∑i
j=1 Tj be the sum of the degrees of the first i

households.
For ease of exposition, we consider a new random graph Ĝm constructed by the con-

figuration model in which vertices have degrees T1, T2, . . . Tm. (To be complete, if the
total degree

∑m
i=1 Ti is odd, 1 half-edge is added to the final vertex). We denote the ver-

tices in this graph by v1, v2, . . . , vm. The half-edges assigned to vertex vj are denoted by
ej,1, ej,2, . . . , ej,Tj

. We use the notation [ei,a, ej,b] ∈ E if ei,a and ej,b are paired. We have

therefore constructed Ĝm so that it has the same distribution as Gm with vertices in the
same household projected to a single vertex.

By arguments similar to those used to prove [32, Theorem 3.1.2], we can prove that the
number of triangles (here defined as the number of circuits of length 3) plus the number of
self-loops (an edge for which the start and end vertex are the same) and parallel edges (two
edges with the same start and end vertex) in Ĝm converges in distribution to a Poisson
distribution, with parameters depending only on the first two moments of T . This implies
that the number of these imperfections per household converges in probability to 0 as
m→ ∞.

C.3 Triangles and clustering

We denote the number of (rooted and oriented) triangles in Ĝm by Wm, i.e. if the vertices
vα, vβ and vγ form a triangle we count 6 distinct triangles corresponding to the 6 ordered

triples (α, β, γ), (α, γ, β), · · · , (γ, β, α). We also let Ŵm(α, β, γ) be the number of triangles
that can be formed from the ordered triple (vα, vβ, vγ) of vertices. (Note that Ŵm(α, β, γ)
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may be strictly greater than 1 if Ĝm has multiple edges.) Our first goal is to prove that
m−1Wm

a.s.→ 0. In order to prove this we need the following lemma.

Lemma 1 For a sequence T̄ = (Tm, m = 1, 2, . . .) of independent and identically dis-
tributed non-degenerate random variables with finite second moment, we have, as m→ ∞,
(a) 1(max1≤i≤m Ti <

√
m)

a.s.→ 1 and (b) 1(Lm > P(T > 0)m/2)
a.s.→ 1.

Proof. For the convergence of 1(max1≤i≤m Ti <
√
m), observe that

∑∞
i=1 P(Ti >

√
i) =

∑∞
i=1 P((Ti)

2 > i) = E[T 2
i ] < ∞. By the first Borel-Cantelli lemma this implies that,

almost surely, {Ti >
√
i} occurs for at most finitely many i and the first statement of the

lemma follows. The convergence of 1(Lm > P(T > 0)m/2) follows by the strong law of
large numbers. �

The next step is to prove that m−1Wm1(max1≤i≤m Ti <
√
m)

a.s.→ 0 as m → ∞. To do
this we show that, for every ε > 0,

∑∞
i=1 P(i−1Wi1(max1≤j≤i Tj <

√
i) > ε) <∞.

Lemma 2 For T̄ = (Tm, m = 1, 2, . . .) as in Lemma 1 and Wm as above, there is a
constant C <∞ such that E[W 2

m1(max1≤j≤m Tj <
√
m)] < C for all m.

Proof. Firstly, observe that

E[W 2
m1( max

1≤j≤m
Tj <

√
m)] = E[(6

∑

1≤α<β<γ≤m

Ŵm(α, β, γ))21( max
1≤j≤m

Tj <
√
m)].

The square of the sum contains terms Ŵ (α1, β1, γ1)Ŵ (α2, β2, γ2) for which the quantity
|{α1, β1, γ1, α2, β2, γ2}| takes the values 3, 4, 5 and 6.

The sum of terms with |{α1, β1, γ1, α2, β2, γ2}| = 3 is bounded above by

6m(m− 1)(m− 2) E((Ŵm(α, β, γ)21( max
1≤j≤m

Tj <
√
m)).

Observe that

E[(Ŵm(α, β, γ))2 | T̄ ]

= 26
∑

1≤a1<b1≤Tα

∑

1≤a2<b2≤Tβ

∑

1≤a3<b3≤Tγ

∑

1≤a′
1<b′1≤Tα

∑

1≤a′
2<b′2≤Tβ

∑

1≤a′
3<b′3≤Tγ

P([eα,a1 , eβ,b2 ], [eα,a′
1
, eβ,b′2

], [eβ,a2 , eγ,b3], [eβ,a′
2
, eγ,b′3

], [eγ,a3 , eα,b1 ], [eγ,a′
3
, eα,b′1

] ∈ E).

If we write
(

Tα,β,γ

i,j,k

)

=
(

Tα

i

)(

Tβ

j

)(

Tγ

k

)

and a[i] = [(a− 1)(a− 3) · · · (a− 2i+ 1)]−1, straight-
forward algebra shows that

E[(Ŵm(α, β, γ))2 | T̄ ] = 26
{

(

Tα,β,γ

2,2,2

)

L
[3]
m +

(

(

Tα,β,γ

3,3,2

)

+
(

Tα,β,γ

3,2,3

)

+
(

Tα,β,γ

2,3,3

)

)

L
[4]
m

+
(

(

Tα,β,γ

3,3,4

)

+
(

Tα,β,γ

3,4,3

)

+
(

Tα,β,γ

4,3,3

)

)

L[5]
m +

(

Tα,β,γ

4,4,4

)

L
[6]
m

}

,
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where the first term arises if the set of half-edges under consideration has cardinality 6
(the summands with three edges), the second term arises if the set of half-edges under
consideration has cardinality 8, etc.

It follows that there exists c1 > 0 such that

c1 E[(Ŵm(α, β, γ))21( max
1≤j≤m

Tj <
√
m) | T̄ ] ≤ (TαTβTγ)

2(L[3]
m +mL[4]

m +m2L[5]
m +m3L[6]

m ).

By the almost sure convergence of 1(Lm ≥ P(T > 0)m/2) to 1 (Lemma 1(b)), E[T 2] < ∞
and

E[(Ŵ (α, β, γ))21( max
1≤j≤m

Tj <
√
m)] = E

[

E[(Ŵ (α, β, γ))21( max
1≤j≤m

Tj <
√
m) | T̄ ]

]

,

we conclude that terms with |{α1, β1, γ1, α2, β2, γ2}| = 3 add at most a constant to

E[(6
∑

1≤α1<β1<γ1≤m

(6
∑

1≤α2<β2<γ2≤m

Ŵm(α1, β1, γ1)Ŵm(α2, β2, γ2)))1( max
1≤j≤m

Tj <
√
m)].

In a similar fashion we can deal with summands for which |{α1, β1, γ1, α2, β2, γ2}| 6= 3,
and computations are available from the authors. The lemma now follows. �

We are now ready to prove the following theorem.

Theorem 5 For T̄ = (Tm, m = 1, 2, . . .) as in Lemma 1 and Wm as above, m−1Wm
a.s.→ 0

as m→ ∞.

Proof. By Chebychev’s inequality we have that, for any ε > 0,
∞
∑

m=1

P(m−1Wm1( max
1≤j≤m

Tm <
√
m) > ε) ≤

∞
∑

m=1

(m−2
E[1( max

1≤j≤m
Tj <

√
m)(Wm)2]/ε2,

which by Lemma 2 is bounded above by C
∑∞

m=1m
−2 < ∞ for some C < ∞. This

implies that
∑∞

m=1 P(m−1Wm1(max1≤j≤m Tj <
√
m) > ε) < ∞. We therefore have

m−1Wm1(max1≤j≤m Tj <
√
m)

a.s.→ 0 as m → ∞. By Lemma 1(a), we also have that, al-
most surely, m−1Wm1(max1≤j≤m Tj <

√
m) = m−1Wm for all sufficiently large m, whence

m−1Wm
a.s.→ 0 as m→ ∞. �

Remark. By similar arguments it is possible to prove that the number of self-loops and
parallel edges per vertex converges almost surely to 0 as m→ ∞; this is stronger than the
convergence in probability which follows from [32, Theorem 3.1.2].

Because the pairing of the global half-edges in Gm follows the same rules as the pairing
of the half-edges in Ĝm, the number of triangles per household, using global edges in Gm

converges almost surely to 0 by Theorem 5. The number of triples in Gm does not depend
on the pairing of the half-edges and the number of triples per household converges almost
surely to E[H(H − 1 + D)(H − 2 + D)] by the strong law of large numbers; while the
number of triples that contain global edges per household converges, by the strong law of
large numbers, to E[H(2D(H − 1) +D(D − 1))]. This implies that C(m) a.s.→ C1 as m→ ∞,
where C is given by (15).
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Appendix D Alternative threshold parameters

In this appendix we describe two alternative threshold parameters that are derived from
looking at the proliferation of infected individuals rather than households. One such pa-
rameter, say R1, is given by the largest eigenvalue of the matrix

M1 =

(

µD̃−1(1 − φ(λG)) µT

µD(1 − φ(λG)) 0

)

,

recalling that µT =
∑∞

n=1 ρ̃nµT (n) is the expected within-household final size amongst sec-
ondary individuals (cf. equation (3.36) of Ball et al. [3], who give a similar threshold param-
eter for the SHM). Here the first row describes the mean number of primary and secondary
individuals infected by a primary infective and the second row gives the same quantities for
a secondary infective. Note, however, that this formulation assigns all secondary infectives
in a household to the primary infective in that household, when clearly some secondary
infectives will infect further secondary infectives. The threshold parameter derived from
this mean matrix is thus, in some sense, part way between an individual and a house-
hold reproduction number and in Figure 7(a) we see that R1 is increasing for small values
of the clustering coefficient C. It is rather difficult to calculate the exact means which
‘should’ be in the second column of this mean matrix to make the interpretation of its
leading eigenvalue as an individual reproduction number strictly correct, but the following
approximation turns out to be satisfactory.

As in Becker and Dietz’ reproduction number based on potential cases [15], we assign
all secondary individuals that the primary infective contacts to that primary infective.
The mean number of secondary individuals assigned to the primary infective is thus a =
(E[H̃] − 1)(1 − φ(λL)). Suppose that each secondary infective infects on average b further
secondary individuals and that this process continues until the within-household epidemic
stops. Thus the mean within-household final size satisfies µT = a(1+b+b2+· · · ) = a/(1−b),
whence b = 1 − a/µT < 1. The threshold parameter R2 is then given by the largest
eigenvalue of the matrix

M2 =

(

µD̃−1(1 − φ(λG)) a
µD(1 − φ(λG)) b

)

.

In Figure 7(a) we find that R2 is decreasing in C, confirming that the proliferation of
infected individuals is on average reduced by an increase in clustering when λL = λG. We
note here that it is not difficult to show that R1 and R2 take values greater than and less
than 1 together, so that R2 is indeed a threshold parameter for our model. Note also that
R2 > 0 when C = 1; this is because when C = 1 there is still some proliferation of infected
individuals within the initially infected household, though the infection cannot escape the
initial household and this is reflected by the fact that R2 = b < 1 when µD = µD̃−1 = 0
(i.e. C = 1.)
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Appendix E Proofs of comparison results

In this appendix we prove Theorem 3, which enables comparisons to be made between
network household models having common degree and household size distributions, D and
H , but different infectious period distributions and infection rates, so that the models have
the same population structure but different disease dynamics. The proofs utilise a theorem
of Kuulasmaa [30] concerning a class of percolation models called locally-dependent random
graphs, which we describe first. Let G = (V,E) be a directed graph, where V is a set of
vertices and E is a set of directed edges. We assume that V is finite and G is simple, in
the sense that E does not contain any loops or multiple edges, though we do allow two
edges having opposite directions between any pair of vertices. (Kuulasmaa allows V to be
countably infinite, however we require only the finite case where the results are slightly
simpler to state.) A percolation model on G is defined as follows. Each directed edge in E
is coloured black or white. For each v ∈ V , let Ev be the set of directed edges from v in
G. The colours of edges in Ev are determined by a probability measure Pv and the colours
of edges emanating from distinct vertices are mutually independent. Let P be the product
probability measure

∏

v∈V Pv. The pair (G,P ) is called a locally-dependent random graph.
A (self-avoiding) path ξ in G is an ordered set v0, v1, . . . , vn of (at least two) distinct

vertices such that the directed edge from vi to vi+1 is in E for each i = 0, 1, . . . , n−1. A path
is called black if and only if all of its constituent edges are black. For any set Ξ of paths in
G, BΞ is the event that at least one of the paths in Ξ is black, i.e. BΞ = ∪ξ∈Ξ{ξ is black}.

For each v ∈ V , define the zero-function pv by

pv(J) = Pv(every edge in J is white) (J ⊆ Ev).

Note that the zero-functions (pv, v ∈ V ) uniquely determine P (through a Möbius inversion
formula such as those given in Martin-Löf [33, Section 1]). The following result is contained
in Theorem 2.1 of Kuulasmaa [30].

Theorem 6 Let (G,P ) and (G,P ′) be two locally-dependent random graphs, defined on
the same directed graph G, with zero-functions (pv, v ∈ V ) and (p′v, v ∈ V ), respectively.
Suppose that, for each v ∈ V , pv(J) ≥ p′v(J) for all J ⊆ Ev. Then for any set Ξ of paths
in G we have P (BΞ) ≤ P ′(BΞ).

To connect this result with our epidemic model, suppose that G is the directed graph
of possible contacts corresponding to a given realisation of a network of households and
global neighbours and, as in Section 3.1, for each individual in the population (vertex v
in V ) we draw up a list of who v would make infectious contact with if it were to become
infected. For each v ∈ V , the directed edges emanating from v are coloured black if the
recieving vertex is in v’s list and white otherwise. This yields a locally-dependent random
graph whose zero-functions are given by

pv(J) = φ(|JL|λL + |JG|λG) (v ∈ V, J ⊆ Ev), (21)

where JL and JG are, respectively, the sets of local and global edges in J .
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We now prove Theorem 3. Let E and E ′ be two NHM epidemics, as in the statement
of Theorem 3, which satisfy (16). Turning first to the threshold parameter R∗, consider
a household of size n and label its members 0, 1, . . . , n − 1. Let D0, D1, . . . , Dn−1 be in-

dependent random variables with D0
D
= D̃ − 1 and Di

D
= D (i = 1, 2, . . . , n − 1), and let

DH =
∑n−1

i=0 Di. Conditional on D = (D0, D1, . . . , Dn−1), let GD be the directed graph
on n + DH vertices, labelled 0, 1, . . . , n − 1 + DH , in which there is a pair of directed
local edges between every pair of members of the household (individuals 0, 1, . . . , n − 1)
and, for i = 0, 1, . . . , n − 1, a pair of directed global edges between i and each of its
Di global neighbours (labelled k +

∑i−1
j=0Dj, for k = 1, 2, . . . , Di). Let (GD, PD) be the

locally-dependent random graph with zero-functions given by (21) and let (GD, P
′
D) be

the locally-dependent random graph with zero-functions given by (21) but with (φ, λL, λG)
replaced by (φ′, λ′L, λ

′
G).

For i = n, n+ 1, . . . , n− 1 +DH , let ΞD
i be the set of all paths in GD from vertex 0 to

vertex i. Given that (16) holds, we have, recalling (3) and Theorem 6, that

E[C̃(n) |D] =

n−1+DH
∑

i=n

PD(BΞD
i ) ≤

n−1+DH
∑

i=n

P ′
D(BΞD

i ) = E[C̃(n)′ |D],

say. Taking expectations with respect to D yields E[C̃(n)] ≤ E[C̃(n)′] and R∗(E) ≤ R∗(E ′)
then follows using (2).

Consider next the probability of a major outbreak pmaj(E). Let k be a strictly positive
integer and construct a (random) tree of households Tk as follows. The initial (root)
household has size, H0 say, distributed according to ρ (defined in Section 1.2). Suppose
that H0 = n and let D0, D1, . . . , Dn−1 be independent and identically distributed to D.
These give the number of global neighbours of the members of the root household. For
each such global neighbour, its household size is found by sampling independently from the
size-biased household size distribution ρ̃. These households comprise the first generation of

Tk. Subsequent generations are defined in a similar fashion, except that D0
D
= D̃−1 rather

than D. Of course the degrees of distinct individuals are mutually independent, as are the
sizes of distinct households. The construction is continued up to and including generation
k, yielding Tk. (It is possible that the network of households dies out before generation k,
say at generation k′ < k, in which case Tk is the tree given by these first k′ generations.)
Let GTk

be the corresponding directed graph in which there is a pair of directed local edges
between any two individuals who are in the same household and a pair of directed global
edges between any two individuals who are global neighbours in the construction of Tk. Let
(GTk

, PTk
) and (GTk

, P ′
Tk

) be locally-dependent random graphs with zero-functions given,
respectively, by (21) and (21) with (φ, λL, λG) replaced by (φ′, λ′L, λ

′
G).

Let Y = (Y0, Y1, . . .) denote the approximating branching process introduced in Sec-
tion 2.1. Thus Y0 = 1 and for j = 1, 2, . . ., Yj is the number of infectious households in
generation j. Specify an individual in the root household in Tk to be the initial infective
and label this individual 0. Observe that (GTk

, PTk
) can be used to construct a realisation

of Y0, Y1, . . . , Yk | Tk in an obvious fashion. In particular, if ΞTk
is the set of all paths in
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GTk
from individual 0 to any individual in generation k of Tk, then Yk 6= 0 if and only if

the event BΞTk occurs. (Note that ΞTk
is empty if the construction of Tk dies out before

generation k.) Thus Theorem 6 implies that

P(Yk = 0 | Tk) = 1 − PTk
(BΞTk ) ≥ 1 − PTk

(BΞTk ) = P(Y ′
k = 0 | Tk), (22)

where Y ′ = (Y ′
0 , Y

′
1 , . . .) denotes the approximating branching process for E ′. Taking ex-

pectations of (22) with respect to Tk yields P(Yk = 0) ≥ P(Y ′
k = 0) and pmaj(E) ≤ pmaj(E ′)

follows by letting k → ∞.
The corresponding result for the expected relative final size of a major outbreak is proved

similarly, except that we now take ΞTk
to be the set of all paths in GTk

from individuals in
generation k of Tk to individual 0.

To prove the assertion at the beginning of Remark 2 following Theorem 3, we construct
a realisation, N say, of the network and then define the obvious locally-dependent random
graphs (GN , PN ) and (GN , P

′
N ). Then the assertion, conditional on the network configu-

ration N , comes from considering BΞ, where Ξ is the set of paths leading from the initial
infective to the given set of initial susceptibles. The unconditional result then follows from
taking expectations with respect to the network configuration N .
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