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Abstract—The present paper reports the results of a numerical
analysis of electric fields in random dielectric materials. The ef-
fective permittivity of a three-dimensional (3-D) dielectric mixture
is calculated by the finite difference method. The results show the
distribution of the effective permittivity of a mixture with different
random inclusion positionings. New empirical mixing models are
created as least squares approximations to fit the collection of
numerical results. The calculated permittivity distribution is also
compared with theoretical mixture models, showing that in case
of clustered inclusions, the Bruggeman model is quite reasonable.
On the other hand, if the inclusions in the mixture are separate,
the results are closer to the Maxwell–Garnett model.

Index Terms—Effective permittivity, finite differences, mixing
rules.

I. INTRODUCTION

M ATERIALS encountered in geophysical applications of
remote sensing are quite often inhomogeneous and com-

plicated in structure. Certainly there are exceptions, like air and
water, which may safely be considered uniform to the electro-
magnetic wave but such common materials as snow, sea ice, and
soil are strongly inhomogeneous in their structure. Geoscience
objects like natural and cultural vegetation constitute an even
more difficult challenge for electromagnetic modeling.

In such cases, the number of degrees of freedom in the mate-
rial description has to be decreased very much in order to be able
to make a reasonable effort in treating the interaction problem
between electromagnetic waves and such a complex material
object. An important tool in such a simplification process is the
concept of effective dielectric constant. The dielectric response
of the complex original object is condensed into this macro-
scopic permittivity. Of course, such a homogenization approach
has limitations of which the user needs to be aware. A crucial
one is that the inhomogeneity to be averaged has to be of clearly
smaller scale than the wavelength of the operating field.

In earlier papers [1] and [2], we presented a way to calcu-
late numerically the effective dielectric constant of a two-di-
mensional (2-D) random mixture. The mixture was a two-com-
ponent mixture with a homogeneous background in which par-
allel cylinders of another material were embedded in random
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positions. One can find such 2-D mixture geometries in many
places in nature but very often mixtures have variation in all
three dimensions. In this paper we consider fully 3-D mixtures.
Instead of cylinders we now model spheres embedded in random
positions. Spherical inclusions are allowed to touch and overlap
which means that complex cluster geometries can be formed.

The electrostatic potential in the mixture is calculated using
the finite difference method. Because an infinitely large random
mixture cannot be modeled we end the computation domain
with periodic boundary conditions. It means that we are actu-
ally modeling a periodic material which has a period that in-
cludes many randomly placed inclusions. The electric poten-
tial generated by a homogeneous excitation field is calculated
in the mixture. The effective permittivity of the mixture is de-
termined by calculating the electrostatic field energy. Several
samples are analyzed with different random inclusion distribu-
tions. Of course, every new simulation of the random medium
is individually different even if they have the same volume pro-
portions of the phases, and hence a variation is to be expected
in the results.

We study both the mixtures with inclusion permittivity
higher than the environment permittivity and vice versa.
Empirical models based on the numerical results are created
for both types of mixtures. The electric flux distribution in a
3-D mixture is illustrated as a cross-sectional view. Although
the main attention in the study is on the mixtures allowing
inclusion clustering, also mixtures with separate inclusions
(i.e., no clustering) are studied.

II. THREE-DIMENSIONAL MIXING MODELS

The mixture under study consists of two dielectric compo-
nents, of which one is treated as host, and the other as the inclu-
sion phase. In the literature, many mixing models can be found
for the effective dielectric permittivity of such a mixture. Some
are presented here.

For the case of spherical inclusions, the prediction of the
effective permittivity of the mixture according to the
Maxwell–Garnett mixing rule reads [3], [4]

(1)

Here, spheres of permittivity are located randomly in a ho-
mogeneous environment and occupy a volume fraction.

Another famous mixing rule is the Bruggeman formula [5]

(2)
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The Bruggeman rule is also known as the Polder–van Santen
formula [6]. The mixing approach presented in [7] collects di-
electric mixing rules into one family

(3)

This formula contains a dimensionless parameter. For dif-
ferent choices of , the previous mixing rules are recovered:

0 gives the Maxwell–Garnett rule, 2 gives the
Bruggeman formula, and 3 gives the Coherent potential
[8] approximation.

Different mixing models predict different effective permit-
tivity values for a given mixture. However, there are bounds
that limit the range of the predictions. The loosest bounds are
the so-called Wiener bounds [9]. These effective permittivity
bounds are

(4)

and

(5)

These two cases correspond to capacitors that are connected in
parallel or series in a circuit. It is worth noting also that these
two cases are the effective permittivities from the mixing for-
mulas with aligned ellipsoids, where the depolarization factors
are 0 and 1, respectively. Note that the bounds retain the min-
imum and maximum character independently of the type of the
mixture, i.e., (4) is the minimum for both and .
Also, (5) is the maximum for both cases.

III. N UMERICAL TECHNIQUES

A. Simulation Setup

The effective permittivity of a mixture is determined by cal-
culating electrostatic fields in the mixture sample. The sample
is under influence of a homogeneous electric field. The compu-
tational domain is restricted with periodic boundary conditions.
The simulation setup can be seen in Fig. 1. The sample is com-
posed of the host material and randomly positioned spherical in-
clusions. Clustering of inclusions is allowed which means that
the inclusions can form connected sets when overlapping each
other. In - and -directions the potential has an ordinary peri-
odic boundary condition, i.e., the potential distributions on the
opposite faces of the computation domain are exactly the same.
Because the excitation field is polarized in the-direction the
potential on the upper face is a constant higher than on the lower
face

(6)

(7)

(8)

These boundary conditions mean that in the numerical calcu-
lations the opposite faces are connected directly to each other.
If an inclusion is placed on the boundary its body is continued
through the opposite boundary. Therefore every inclusion is
modeled as a whole sphere.

Fig. 1. Computation domain is one period of a periodic structure.

Fig. 2. Computation lattice.

B. Difference Equation for Potential

There are no free charges in an insulator medium. It means
that the electric flux over an arbitrary closed boundarysur-
rounding the insulator medium is zero, i.e.,

(9)

in which and are the electric potential and the permittivity.
The whole insulator medium can be divided into small cubes.
In every cube, (9) holds. Because the potential is defined in the
center of each cube we can write the finite difference approx-
imation for (9). The situation is illustrated in Fig. 2. In every
face of a lattice cube the electric field is supposed to be linearly
dependent of a spatial coordinate. Hence, the difference approx-
imation of (9) is

(10)

where are the effective permittivities of material between po-
tentials and . Equation(10) can be solved for the potential
in the center of a lattice cube

(11)
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Fig. 3. Determination of effective permittivity between potential nodes near a
material interface.

The Gauss-Seidel method with overrelaxation [10] is used to
get an iterative solution for the potential. We get the following
update equation:

(12)
The value of 1.95 was used for the overrelaxation coefficient.

The effective permittivity of a mixture is the permittivity
value of homogenized material which gives same electrostatic
energy as the studied mixture. Hence, effective permittivity can
be calculated by approximating the integral

(13)

with a discrete sum over finite difference solution of potential.

C. Local Permittivity Near Material Interfaces

When the grid cell falls on a material interface, the permit-
tivity value in the difference equation becomes ambiguous. In
this analysis the local permittivity values between poten-
tial nodes are determined by the mixture geometry in the cubic
volume element as shown in Fig. 3. This procedure gives the es-
timations of lower and upper limits for a local permittivity using
the following reasoning.

Conjecture 1:

a) If permittivity is locally decreased, the permittivity of the
structure (here cubic element) is decreased or remains the
same.

b) If permittivity is locally increased, the permittivity of the
structure is increased or remains the same.

To get the lower limit, we set material layers of zero permit-
tivity parallel to the line connecting potential points. Hence we
have a structure of parallel capacitors. For the upper limit esti-
mation we set material layers of infinite permittivity perpendic-
ular to the connecting line and we get a structure of capacitors
in series. Finally the local permittivity between potential nodes
is set to be an average of the lower and the upper limit. This is
accurate for the cases in which the material interface is perpen-
dicular or parallel to the connecting line. Naturally the technique
does not give exact permittivity values for arbitrary oriented ma-
terial surfaces. It is very difficult or maybe even an impossible
task to determine effective permittivity value near arbitrary ori-
ented surfaces. And one might doubt how just one number could
represent the characterictics of material surface. Therefore it is
reasonable to use mesh dense enough to clearly illustrate curved
boundaries.

IV. RESULTS

A. Random Mixture

Effective permittivity was calculated for two types of mix-
tures: raisin pudding, where the inclusion permittivity is higher
than the environment permittivity ( ), and Swiss cheese,
an inverted mixture, where the inclusion permittivity is lower
than the environment permittivity ( ). Inclusion and envi-
ronment permittivity contrasts of

(14)

were studied for the raisin pudding and for the Swiss
cheese mixtures. The dependence of effective permittivity on
inclusion volume fraction was studied in the whole range of

. This was possible because spherical inclusions were
allowed to overlap. To characterize effective permittivity of
random mixtures it was necessary to simulate a large group
of mixture samples with random inclusion positionings. In
every simulation, the inclusion volume fraction and positions
of inclusions were randomly chosen. The computation domain
size was cells. The diameter of
an inclusion sphere was chosen to be 20 cells. It means that
rather many inclusion balls did fit into the computation domain
and still the description of a curved surface was reasonable
accurate.

A distribution of simulation results for the permittivity con-
trast can be seen in Fig. 4.

B. Empirical Mixing Model Based on the Numerical Results

One of the main interests of this study was to create a new
mixing model with the help of calculated simulation results.
The goal was to seek for a formula that gives a good fit to the
set of over 4000 simulation results. In our earlier article [2]
it was clarified for 2-D mixtures that the-model [7] with a
constant cannot offer a good fit to numerical results in the
whole range of inclusion volume fraction and permittivity con-
trast. This is also true for 3-D mixtures. However, if parameter

is given a freedom to depend on both inclusion volume frac-
tion and permittivity contrast ( ) the model becomes
much more flexible. Hence, by taking the-model as a basis



1016 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 39, NO. 5, MAY 2001

Fig. 4. Effective permittivity distribution of random mixtures (k = 102).

the fitting problem is now reduced to the problem of seeking for
a function . was determined by least squares method
for every calculated permittivity contrast as a function of in-
clusion volume fraction. After some studies it turned out that
a second-order polynomial is good enough to describe the vari-
ation of in volume fraction direction. Therefore parameter
is assumed to be of form

(15)

Coefficients , , and were determined for all permittivity con-
trasts calculated and it is noted that they are well represented by

(16)

(17)

(18)

for the raisin pudding mixture in which and

(19)

(20)

(21)

for the Swiss cheese mixture in which . The proposed
model based on the numerical results is therefore the model of
(3) with parameter shown in

if

if .
(22)

The function values for some permittivity contrasts are plotted
as a function of inclusion volume fraction in Fig. 5.

The validity of the model is of course restricted to the per-
mittivity contrast values below 102. But the model is such that
it does not give absurd values beyond this region either. This
new model is plotted along with numerical results and theoret-
ical mixing models in Figs. 6–8. At low volume fraction values
the Bruggeman model agrees well with the simulated results.

(b)

(a)

Fig. 5. �-values for the permittivity contrastsk = 2, 11, 102 andk = 1/2,
1/11, 1/102.

Fig. 6. Mixing models are plotted with numerical results for the raisin pudding
mixture (k = 51).

C. Mixture Without Clustering

In many practical mixtures inclusions can be solid material
and therefore they do not overlap and form clusters. With the
introduced technique it is possible to model also these kind of
mixtures. However, the range of inclusion volume fraction must
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Fig. 7. The lower left corner of Fig. 6 is magnified to show effective
permittivities of dilute mixtures.

Fig. 8. Mixing models are plotted with numerical results for the Swiss cheese
mixture (k = 1=51).

be restricted because even the maximum packing would have an
inclusion volume fraction of only 0.74. In this study we modeled
mixtures with volume fraction less than 0.3. During calculations
it was found out that the results converged rather poorly when
grid step size was reduced. A better convergence was found by
using the minimum estimation of Fig. 3 rather than the average
of limit estimations in the determination of local permittivity.
The results showed that the effective permittivity values of the
raisin pudding mixture were lower than in the clustered case (see
Fig. 9). The -value seemed to be circa 0.3 which is rather close
the Maxwell–Garnett model ( ). The -value of Swiss
cheese mixture also came down and appeared to be about 1.3.

D. Field Distribution

From a discrete potential solution it is easy to calculate
electric field as a gradient and electric flux by multiplying this
field with local permittivity. The electric flux has a tendency
to favor high permittivity materials. This is clearly seen in
Figs. 10 and 11.

Fig. 9. Mixing models are plotted with numerical results for the raisin pudding
mixture without clustering (k = 51).

Fig. 10. Electric flux at the cross section of a random raisin pudding mixture
(� =� = 6).

V. CONCLUSIONS

The reported technique offers the ability to study average
characteristics of a random dielectric mixture. Naturally the cal-
culated results agree well with theoretical models at low inclu-
sion volume fractions. But at higher volume fraction values the
effective permittivity seem to differ from models. A new mixing
model based on numerical simulations is introduced.

One interesting result of this study was to realize that for
dilute raisin pudding mixtures the Maxwell–Garnett prediction
is acceptable when clustering is not allowed whereas the
Bruggeman model is closer to the simulations when clustering
is allowed. Comparing the results of 2-D mixtures [2] with the
3-D mixtures one can see that the overall effective permittivity
distribution of 2-D mixtures is much wider than the distribution
of 3-D mixtures. This is very natural because randomly placed
parallel cylinders are more likely to connect together to form
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Fig. 11. Electric flux at the cross section of a random cheese mixture (� =� =

1=6).

special chain-like structures than randomly placed spheres. A
common factor for 2-D and 3-D mixtures is that numerical
results fall between the Maxwell–Garnett and the Bruggeman
models in both cases.

The derivation of finite difference equations for electric po-
tential is an essential issue. Random mixtures have numerous
arbitrarily oriented material interfaces which are problematic to
model in the discrete computation lattice. The technique based
on the minimum and maximum limits of the local permittivity
was used.

The introduced algorithm is straightforward and fast but still
accurate enough to be used in the studies of random dielectric
mixtures.
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