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SUMMARY 

Techniques for analysing three-dimensional spatial point patterns are demonstrated on data from a 
confocal microscope recording the locations of cells in three dimensions. New computational 
techniques are proposed for edge corrections and empty space measurement. A novel feature of the 
data is replication and nesting in a sampling design: multiple spatial patterns were observed from each 
of several animals. For this we develop a ratio regression approach. 
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1. Introduction 

The three-dimensional structure of living tissue and solid materials can now be 
observed directly by imaging techniques such as confocal microscopy (Wilson, 1990). 
Existing statistical methods for analysing 'spatial' point patterns (Ripley (1981, 1988), 
Diggle (1983) and Cressie (1991), chapter 8) are mostly two dimensional; although the 
general theory works in d dimensions, there are problems for d > 2 with the 
complexity of edge correction, increased bias and variance due to edge effects, and 
extra computational load. 

At the same time, the increased ability to capture and store data and to navigate 
through the three-dimensional material has made it possible to collect replicated 
samples of a spatial pattern, e.g. three-dimensional images of several different 
locations in the material. Replication was not studied in the earlier statistical theory; 
indeed its absence caused difficulties. 
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This paper is a worked example of the analysis of a three-dimensional spatial 
pattern with replication. Our data are three-dimensional co-ordinates giving the 
positions of osteocyte lacunae in the skull bones of Macaque monkeys observed using 
a tandem scanning reflected light microscope at University College London (Howard 
et al., 1985; Baddeley et al., 1987). Osteocyte lacunae are holes in solid bone, 
occupied by bone cells in life. Several sampling volumes (called 'bricks') were taken 
within each animal skull, sufficiently far apart to assume independence, and the 
positions of the lacunae within each brick were recorded. The main scientific 
questions concerned 

(a) the density of lacunae per unit volume, and whether this density is uniform, 
(b) spatial patterns in the arrangement of neighbouring lacunae and 
(c) variability in lacunar density and spatial pattern within and between animals. 

The three-dimensional version of the standard K-statistic was described in 
Baddeley et al. (1987). Braendgaard and Gundersen (1986), Bjaalie and Diggle (1990) 
and Diggle et al. (1991) have analysed two-dimensional projections of three­
dimensional patterns, obtained from physical sections. Recently Konig et al. (1991) 
have described three-dimensional versions of the F-, G- and K-statistics. In the present 
paper we focus on implementation and statistical properties of these estimators. 

Replicated data from a confocal microscope were first collected by Howard et al. 

(1985) and a ratio regression approach was developed in Baddeley et al. (1987). Konig 
et al. (1991) found huge variations in estimates of point density A between replicated 
three-dimensional samples and concluded that their data (three replicates per animal) 
were insufficient to support quantitative conclusions. Diggle et al. (1991) have 
developed a bootstrap approach to inference for replicated spatial patterns. Here we 
shall extend the simpler ratio regression approach to F and G as well as K. 

A special feature of many three-dimensional spatial data sets is a distinguished 
direction, the 'z-axis', representing for example height or distance from the viewing 
device. Point patterns may often be regarded as uniform in the other two 'horizontal' 
directions but not in the z-direction, or they may have a different error structure in the 
z-direction. In our data, the z-co-ordinate represents depth inside the skull bone and 
has a definite reference origin (the bone surface) as well as direction; the x- and y-co­

ordinates are not so strongly distinguished. This makes the analysis of such data 
halfway between genuine three-dimensional points and marked two-dimensional 
points. The standard assumption of stationarity and isotropy may not be valid here. 

The data are described in the next section. Section 3 gives some theoretical 
background and numerical methods. Sections 4 and 5 develop an approach to the 
replication and nested sampling design. Section 6 records our analysis of the data. 

2. Data 

The experimental technique and sampling protocol are described by Howard et al. 
(1985) and Baddeley et al. (1987). We examined three intact adult skulls and one 
calvarium (incomplete skull), all attributed to the Macaque monkey Macaca 

fascicularis, from the collection of University College London. The focal plane of the 
confocal microscope was initially positioned 10 µm below the cranial surface, then 
racked down through the bone until no further lacunae could be visualized. The depth 
z of the centre of each lacuna was determined by adjusting the fine focus racking 
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control to yield maximum brightness. The (x, y, z)-co-ordinates of the centre of each 
lacuna were recorded only if (x,y) lay within a graduated rectangular frame fixed to 
the screen. The three-dimensional sampling volume was therefore a rectangular box, 
of dimensions 82 µm x 100 µm x d µm, called a brick. The depth d varied from brick 
to brick. 

10 bricks per animal were examined, arranged approximately in a rectangular grid 
pattern, with at least one brick width separating each pair of bricks. The initial brick 
position was determined randomly by applying a randomly generated co-ordinate 
shift to the moving stage. Subsequent bricks were reached by using the coarse controls 
of the microscope stage, in accordance with the grid pattern. 

Fig. 1 shows the pattern from brick 10 of animal 4 displayed as a binocular stereo 
view, in which each point has been displayed as a cube of side 3 µm. The three­
dimensional effect can be obtained with a stereoscopic viewer; many individuals can 
fuse the images without a viewer (see instructions and examples in Marr ( 1982) and 
Tufte (1990)). Instructions for preparing stereo pairs are available from the editors 
of the Journal of Microscopy. 

Stereo pairs seem to be accepted as the most faithful presentation of three­
dimensional data for publication. An alternative is a single perspective view with the 
points rendered as solid objects with shading cues (using standard packages such as 
GNUPLOT). For visualization on the computer screen, dynamic graphic techniques 
such as spinning (MACSPIN, SPLUS) give more insight. 

3. Theory 

General theory of point processes can be consulted in Daley and Vere-Jones ( 1989); 
for statistical methods see Ripley (1981, 1988), Diggle (1983), Stoyan et al. (1987), 
Cox and Isham (1980) and Cressie (1991), chapter 8. In the standard nonparametric 
approach (Ripley, 1981), simple summary statistics of the pattern are interpreted as 
unbiased estimates of the corresponding quantities for the point process, under 
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Fig. 1. Stereo pair display of the data in a sampling brick 82 µm x 100 µm wide and 60 µm deep, 
showing each point as a cube of edge 3 µm 
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minimal assumptions of stationarity. Popular summary statistics for a two­
dimensional point pattern are the functions K, (;and P, which are edge-corrected 
versions of the empirical distributions of (respectively) the distances between all pairs 
of points in the pattern, the distance from each point in the pattern to its nearest 
neighbour in the pattern and the distance from a randomly chosen point in the 
sampling window to the nearest point of the pattern. We shall adapt each of these 
functions to three dimensions (see also Diggle et al. (1991) and Konig et al. (1991)). 

Estimation is plagued by edge effects resulting from the inability to search outside 
the sampling window; Miles (1974), Ripley (1988), chapter 3, and Stoyanet al. (1987), 
section 4.6, give illuminating general discussions. Edge effects are worse in higher 
dimensions: for example, in a three-dimensional unit cube, the points that are closer 
than 0.1 units away from the boundary occupy about half the volume. If an unbiased 
estimate of a parameter is required (e.g. for comparison) there is no alternative but to 
seek bias corrections, which sometimes involve throwing away data. Corrections for 
edge effects inK, G andFfor two dimensions were given by Ripley (1981, 1988) and 
Hanisch (1984); some of these corrections have been adapted to three dimensions by 
Baddeley et al. (1987), Diggle et al. (1991) and Konig et al. (1991). In the present 
approach, we are further able to exploit the replication to develop efficient unbiased 
estimators and associated variance estimates. 

Edge effects can largely be ignored in hypothesis testing. In the standard Monte 
Carlo test of a simple null hypothesis, one uses an uncorrected (hence biased) version 
of a summary statistic, simulates 99 realizations of the null hypothesis and ranks the 
100 results according to some one-dimensional criterion. See Ripley (1981), Diggle 
and Gratton (1984), Hall (1988), Ripley (1988), Diggle et al. (1991) and Konig et al. 
(1991). 

3 .1. Assumptions 
The point pattern observed inside a sampling region Bis taken to be a realization of 

a spatial point process N( ). For estimations we may want to assume that the process is 
'stationary' (invariant under translations of R3) and 'isotropic' (invariant under 
rotations) with regard to moments of order up to k ('kth-order stationarity') or all 
probability distributions associated with the process ('almost sure stationarity'). 
Rigorous statements can be found in Stoyan et al. (1987). These are the minimum 
assumptions in order that the position and orientation of sampling regions need not be 
recorded, and that replicated data may be pooled. Usually we shall only assume 
'horizontal stationarity', i.e. invariance under rotations and translations of the 
(x, y)-plane, and shall test for full invariance. 

The usual null hypothesis (and bench-mark for estimation) is that N( ) is a uniform 
Poisson process with unspecified rate A> 0 (e.g. Ripley (1981)). The Poisson process 
serves as the model of complete spatial randomness; departures from Poisson (within 
the class of almost sure stationary and isotropic processes) are interpreted as 
indications of 'pattern'. These are traditionally lumped into 

(a) 'aggregated' and 
(b) 'regular' 

alternatives (Diggle, 1983). 
For departures from stationarity and isotropy, the natural asymmetry with respect 

to z suggests a class of alternative hypotheses such as the non-uniform Poisson 
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process with rate ,\(z) depending on z and Gibbs processes with anisotropic 
interaction potentials (Stoyan et al., 1987). 

3.2. Intensity 
First consider the average density of random points per unit volume. Let N(B) be 

the number of random points falling in a region B C R 3 • If N( ) is first order 
stationary then 

E N(B) = ,\ vol(B) 

for a constant,\ independent of B called the intensity. Thus an unbiased estimator of,\ 
is simply the observed density 

Jt = N(B)/vol(B) (1) 

for any window B. If N( ) is an arbitrary process then 

A(B) = EN(B) 

defines its intensity measure A. Under mild conditions A can be represented as the 
integral of a rate function ,\(x, y, z). A particularly interesting alternative to 
stationarity A(x,y,z) = ,\ > Oishorizontalstationarity ,\(x,y,z) = A1(z) ~ 0. Totest 
the null hypothesis of a stationary Poisson process of unspecified intensity ,\ against 
the alternative of a horizontally stationary Poisson process with unspecified intensity 
,\ 1(z), we note that the z-co-ordinates of the points in a rectangular box or prism B 

form a one-dimensional inhomogeneous Poisson process. Conditional on the number 
of points, the z-co-ordinates are independent and identically distributed with 
probability density proportional to >'I( ), and we can apply standard nonparametric 
tests for the uniform distribution. More general alternative hypotheses have been 
discussed by Cressie (1991), p. 657, Lawson (1988) and Ogata and Katsura (1986, 
1988). 

3 .3. Empty Space Function F 
Now consider summary statistics for the spatial pattern on the assumption of 

stationarity and isotropy. The 'empty space function' F of a point process (almost 
surely stationary and isotropic) is the probability distribution of the distance from an 
arbitrary point (say 0) to the nearest random point: 

F(r) = P{N(S(O, r)) > O} 

where S(x, r) is the sphere of radius raround pointxin R3 (Ripley, 1981, 1988; Diggle, 
1983). p(r) = 1 - F(r) equals the expected fraction of volume in R3 occupied by 
points x which are at least r units distant from the nearest random point of the process 
N( ). For a uniform Poisson process of intensity,\, 

F(r) = l - exp( -f A71"r3). (2) 

Values of F(r) greater than the Poisson value suggest that there is regularity or 
ordering in the point pattern; lower values suggest aggregation. 

Typically F is estimated by taking a fine grid in the sampling region B and 
computing the distance from each grid point to the nearest observed point of the 
process. However, edge effects arise because we cannot search for points outside B. 
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The only unbiased estimator of F that is currently in use is the minus sampling 
estimator. For a given distance r this considers only points x that are at least r units 
from the boundary of B and estimates F(r) by the volume fraction of such points 
which lie closer than r units from some point of the process, i.e. 

F _(r) = vol[B<-r> n { U jS(Aj, r)}J 

vol(B<-r» 

= vol{xeB<-r>: minkllx-Xkll ~ r} 

vol(Bc-r» 

where Xt. k= 1, ... , N(B), are the observed points and 

Bc-r> = {xeB: S(x, r) CB} 

(3) 

(4) 

is the set of points of B more than r units distant from the boundary of B. The points x 
featuring in the numerator of equation (3) are those for which it is known that the 
closest random point is within a distance r. This estimator is clearly unbiased point­
wise for F. Minus sampling was first discussed by Miles (1974) for planar problems. 

The two-dimensional analogue of equation (3) is typically computed by evaluating, 
for each point x in a fine rectangular grid, the distance to the nearest point: 

d(x) = minjlx-Xkll 
k 

and counting the grid points x in Be_ r> for which d (x) ~ r. Diggle and Matern ( 1981) 
discuss the optimal choice of the grid, and Lotwick (1981) describes an algorithm 
(based on the Dirichlet tessellation) for computing the areas exactly. However, a good 
approximation to d(x) can be computed very rapidly for all x on a fine rectangular 
grid by using the distance transform algorithm developed in image processing 
(Rosenfeld and Pfalz, 1968). This also works in higher dimensions (Borgefors, 1984, 
1986). For accurate comparisons the expression (4/3)7rr3 in equation (2) should then 
be replaced by the discrete volume of the sphere of radius r in this discrete 
approximation. 

Minus sampling throws away part of the data; Diggle (1983) and others prefer to 
ignore edge effects and use the empirical distribution PB of the observed distances 
d(x). Clearly PB is biased for Fbut can be used in a Monte Carlo significance test of 
any simple hypothesis. This approach is appealing because it makes full use of the 
data, but with replicated data we cannot pool F 8 from different bricks B since the bias 
and variance of FB(r) depend on the geometry of B. For the Poisson process 

- i r 
EFB(r) = vol(B) JB (1-exp[-Avol{B n S(x, r)}]) dx, (5) 

whereas if we condition on the number of points n then 1 - exp( - u) should be 
replaced by 1 - (1- u)n. An analytical expression for the integrand is given in 
Appendix A. 

3.4. Estimation of G 
The function G is the distribution of the distance from a typical point of the process 

to the nearest other point: loosely 
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G(r) = P{N(S(x, r)) > I I point at x} 

where x is arbitrary. Under suitable conditions 

1 
G(r) = A l(B) E ~ l{N(S(X,., r)) > l} 

VO X,eB 
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where Bis arbitrary. For a Poisson process G(r) = 1 - exp{ -(4/3).:\'ll"r3}; again, this 

is taken as a bench-mark for interpretation of empirical G-functions. Edge effects 

arise because we can only observe nearest neighbour distances within B, 

sk = rnin 
X1eB,l*k 

Ripley (1981) (see also Ripley (1988), chapter 3) introduced the minus sampling 

estimator 

j 
G1(r) = ---------

~ l{XjeB(-r)} 
(7) 

j 

where 1{ } denotes an indicator variable and B(-r) was defined in equation (4). The 

denominator is the number of all points lying more than r units from the boundary of 

B, and the numerator is the number of these that have si ~ r. 

Hanisch (1984)(see also Stoyan et al. (1987), p. 128, and Ripley, (1988), chapter 3) 

observed that in general G1 will not be an increasing function and may have values 

greater than 1. Hanisch developed two further edge-corrected estimators of G, of 

which we shall use 

(8) 

This consists in restricting both the numerator and the denominator of equation (7) to 

points Xk for which sk is known to be the 'true' nearest neighbour distance, i.e. for 

which the nearest other point is closer than the boundary. Clearly G3 is a distribution 

function; Hanisch (1984) showed that it is pointwise consistent in the limit as the 

sampling region expands to cover R3• 

Edge effects can be severe for G, so it becomes appealing to employ the uncorrected 

empirical distribution 6 8 of the observed s1c. This can be treated in the same way as F8 • 

For the Poisson process E G8 (r) = EF8 (r) as given by equation (5), but if we 

condition on the number n of points then exp( - x) in equation (5) is replaced by 
(1-x)n-1. 

3.5. Estimation of K 
Finally K(r) is the mean number of other points of the process that lie within a 

radius r of a typical point of the process, divided by the intensity ).: 

E{N(S(x, r))-1 lpoint at x} 
K(r) = ). . 
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Under stationarity assumptions 

1 
>.K(r) = >.vol(B)E _b _b l{llXk-Xtll ~ r} 

XkeB X1o1'Xk 
(9) 

(where X 1 is not restricted to lie inside B). If the process is also isotropic, K(r) 

completely determines the second-order moments of the process. For a Poisson 

process 

K(r) = !7rr3 

and again this serves as a bench-mark for the interpretation of empiricalK-functions. 

Ripley (1988), pages 31-35 (see also Stoyan et al. (1987), pages 122-126), describes 

several edge effect corrections for estimating Kin two dimensions. Here we consider 

three-dimensional versions of the 'border', 'translation' and 'isotropic' corrections. 

The border correction estimate is 

(10) 

this is a straight application of minus sampling to equation (9) and is valid for any 

second-order stationary process. The sum is an unbiased consistent estimator of 

,\ 2 vol(B<-rl) K(r) so estimate (10) is consistent and approximately unbiased. 

The (Miles-Lantuejoul-Stoyan-Hanisch) translation-corrected estimate is 

A vol(B)2 ~ ~ l{jjXk-X,JI ~ r} 
Kr (r) = 2 L.J L.J 

N(B) XkeBX1*X* 'YB(Xk-X1) 
(11) 

where 'YB is the 'set covariance' 

'YB(v) = vol{xeB: x+veB}. 

Again this is valid for any second-order stationary process. If additionally the process 

is known to be isotropic, then the isotropic correction estimate 

A vol(B) ~ ~ l{llXk-X1ll ~r} 
K 1(r) = 2 L.J L.J 

N(B) XteBX1*X* wB(Xk>X1)sB(jjXk-X1ll) 
(12) 

is valid, where w8 (Xk> X 1) is an edge correction equal to the proportion of the surface 

area of the sphere with centre at Xk and radius JIXk - X 1 JI which lies within the 
sampling window B: 

area{oS(x, llx-yll) n B} 
wB(x,y) = --------­

area{ oS(x, llx-yJI)} 

where oS(x, r) is the surface of the sphere S(x, r). Meanwhile s8 (r) is a global geometry 
correction 

_ vol{xeB: Jlx-yJI =r, someyeB} vol{xeB: oS(x, r) n B ::t= 0} 
%(r)- = . 

vol(B) vol(B) ' 

it was first noted by Hanisch (1984) that the term sB(r) is needed for larger r. We give 

analytical expressions for wB and sB in Appendix A for a rectangular box. 

The sum in equation (12) is a consistent unbiased estimator of 
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Y(r) = ..\2 vol(B)K(r) 
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(in the limit as the sampling region expands to cover R3); hence estimate (12) is 
consistent and approximately unbiased. 

In two dimensions, Ripley (1981) and Diggle (1983), p. 71, generally recommend 
that estimates of K (r) should only be employed for r less than half the minimum side 
length of the sampling rectangle. However, we shall go to larger values of r by pool­
ing information from replicates. 

3.6. Comments 
No one of the functions F, G and K should be regarded as superior to the others, 

nor as characterizing a point pattern. For example, two quite different processes may 
have the same K-function (Baddeley and Silverman, 1984). This insensitivity is a 
feature of most current techniques in spatial statistics. Analysis of a point pattern 
should normally include several measures of interaction. 

Alternatives to F, G and K may be proposed if there is a suggestion of anisotropy or 
directional asymmetry in the pattern. The sphere S(x, r) used in the definitions of F, G 
and K may be replaced by a cylinder or ellipsoid, so that the statistic becomes a 
function of two or nine parameters respectively. This is equivalent to replacing the 
ordinary Euclidean distance II a - bll by some other metric. The edge corrections 
discussed here continue to hold, except for the isotropic correction for K. The simplest 
way to induce an isotropic correction for the ellipsoidal K-function is to subject the 
point pattern data to a linear transformation which maps the ellipse to a sphere, then 
to apply the isotropic estimator. Note that a linear transformation maps a Poisson 
process to a Poisson process, but for example a hard core process (Stoyan et al., 1987) 
is mapped to a process with genuinely anisotropic pattern. 

4. Pooling Replicates by Ratio Estimation 

Our data include replicate observations from 10 bricks in each animal. It may be 
appropriate to pool across bricks within each animal, and possibly to pool across 
animals to produce an overall estimate for the animal population. In this section we 
discuss pooling estimates of..\, K, Fand G from replicates within each animal, assum­
ing that the bricks are true replicates: in particular, assuming that ,\is constant across 
replicates. 

It does not seem to have been pointed out in the spatial statistics literature that the 
usual statistics K, G and Fare ratio estimators. Equations (1), (3), (7)-(8) and 
(10)-(12) define statistics Tof the form T= U/Vwhere 

t = EUIEV (13) 

is the parameter of interest. In all but the first two cases, the denominator Vis not 
fixed and T is biased for t: hence the usual remark that K and G are approximately 
unbiased and consistent (asymptotically in the size of the sampling region). 

It is then appropriate to use ratio regression to estimate tin equation (13). Take the 
standard additive effects model 

~=t~+ej, j=l, ... ,m, (14) 

(Cochran, 1977; Cruz Orive, 1980) where the errors ej are conditionally independent 
given the ~, with 
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var( ej I Jtj) ex Jtj. (15) 

The sample mean of the ~ is biased for t and is not consistent as the number of 
replications increases. The ratio of sums 

(16) 

is unbiased fort and is the best linear unbiased estimator conditional on the Jtj. The 
bias and variance of equation (16) are to first order (Cochran (1977), pages 161, 154) 

- t 
E(t-t) ""'-{Cuu-Cuv}, (17) 

m 

- t2 
var(t):::::: -{ Cuu+ Cvv-2Cuv} 

m 
(18) 

where Cuu, Cuv and Cvv are the entries in the covariance matrix of ( U /EU, V /E V). 
The estimator of}. in equation (1) is of the form A= U/Vwhere U = N(B) is the 

number of random points in Band V=vol(B). In a Poisson point process var{N(B)} 
= E N(B) = ,\ vol(B) so expressions (14) and (15) apply. For more general processes, 
if we can assume that the effective range of spatial dependence is small compared with 
the size of the sampling region, we can appeal to central limit theorems (e.g. Baddeley 
(1980) and Jolivet (1980)). 

For the estimation of F(r) for fixed r via equation (3), central limit theorems for 
Poisson superpositions ofrandom sets (see for example Hall (1989)) suggest that the 
variance of the numerator of equation (3) may be taken as approximately 
proportional to the denominator. Hence the best estimate of F(r) is the ratio of total 
numerator to total denominator in equation (3), 

m 

b pUl(r) vol(Bj( _ r)) 
- j=I 

Fratio(r) = --------
m 

b vol(Bj(-rJ) 
j=l 

(19) 

where pU>(r) is the estimate from data in Bj, and an estimate of the variance of this 
estimator may be obtained from approximation (18). 

For K(r), take Uto be the double sum in each of estimates (10)-(12). Then Ripley 
(1981, 1988) and Hanisch (see Stoyan et al. (1987)) have shown that EUIEV = K(r) 

for any second-order stationary and isotropic process. Ripley (1979) pointed out that 
~ is a U-statistic 

~ = b uAX1k>Xj!) 
btd 

where the summation is over all ordered pairs of distinct points in pattern _9J, and the 
function u1 depends on the geometry of B1. Symmetrize u1 if necessary. For a uniform 
Poisson process, since Jtj is a 1-1 function of N = N (Bj), 

var(~ I Vj) = var{ UjlN(Bj)} 

= 2N(N- l)var{uj(.XI>X2)} +2N(N-l)(N-2)var[E{uj(X1,X2) j.Xi}] 

where X 1 and .X2 are independent uniformly distributed points in B1. If edge effects 
could be ignored and if the B1 were all identical, the conditional expectation in the 
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second term would be constant and expression (15) would hold. Ripley (1979) showed 
that in two dimensions the first term indeed dominates, at least for r no greater than a 
quarter of the smallest edge length of the sampling rectangle. In our case we can 
assume that expression (15) holds when r is 'sufficiently small' and when the 
dependence of ui on Bi can be neglected. Thus for example in estimate (12) we estimate 
the pooled K(r) across bricks within one animal by the weighted average of the brick 
estimates Ki(r) weighted by N(B1)2. 

Finally, for G, the numerator U and denominator V of equation (7) clearly satisfy 
EUIEV = G(r), and Hanisch (1984) showed that the same holds forequation(8). An 
argument similar to that for K above justifies expression ( 15), again if we ignore edge 
effects. 

For the count data used in estimating,\, Kand G, we could alternatively take a 
quasi-likelihood approach assuming var(N) = wEN, with w = I corresponding to 
Poisson variation. 

S. Analysis of Variance 

In this section we consider pooling estimates across animals and performing an 
analysis of variance within animals compared with between animals. 

The full experiment analysed here is a one-way nested design yielding point patterns 
9u from bricksj = 1, ... , m in animals i = 1, ... , n. In place of equation (14) we now 
have 

UiJ = t; Vii + e;1 (20) 

where the t; are independent random effects with meant and variance r 2, and the eiJ are 
conditionally independent given t;, with 

var(eiJ I Vii• t;) = w;ViJ. (21) 

Here t is the parameter to be estimated, r 2 is the between-animal variance (of the 
random effects t;) and W; are nuisance parameters controlling the within-animal 
variability. The simplification W; = w did not seem justified for our data. 

The parameter t is now the population mean of the spatial statistic ,\, K(r), F(r) or 
G(r). It is not always clear how to interpret this. The population mean is well defined 
but, since the values of Fand G for a Poisson process depend on,\, there is no natural 
bench-mark for the population means of F(r) and G(r) unless ,\is constant across the 
population. The K-function is adjusted for,\ and has a natural bench-mark; however, 
the interpretation of the population mean of K(r) is also affected by variation in,\, 

Our approach is first to estimate t; and at = var(f;I t;) by the ratio regression 
method above, giving values i; and ur. Then we compute a sequence of estimates t<kl' 

rA> oft, r2 fork= 0, 1, 2, ... by setting t<0>, r~ 1 to be the sample mean and variance of 
the i;, and iterating 

Tz -
(k+I) -

~ i;l(rlk) +al) 
tCk+I) = , 

~ 1/(T0c) +a[') 

( ~ {(i;- t<k>) 2 -a['}(T(~)+ ar>-') 

~ll<rA>+ar) + 

(22) 

(23) 
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where (x) + = max { x, O}. Here equation (22) takes the best linear unbiased estimator 
oft given observations !; with known variances, and equation (23) forms an unbiased 
estimate of 7 2 given!; when t and al are known. Together equations (22) and (23) are 
respectively the E-step and M-step of the EM algorithm for t and r 2 in the model where 
the al are known and ~are normal, i.e. regarding S; = t; - t as missing observations. 

This method will be adopted unless data are scarce, when we shall resort to pooling 
all data (Xii, YiJ) and performing a simple ratio regression; this is equivalent to fixing 
t; = t, r 2 = 0 and W; = w. ~ 

Steps (22) and (23) are iterated until convergence to produce estimates t and 72• The 
variance of i can be estimated by the sample version of 

var(i) """ l j ~ b; (24) 

where b; = 1/(r2 +al). The contributions to approximation (24) associated with 
between-animal and within-animal, between-brick variation can be estimated 
respectively by 

6. Analysis of Our Data 

6.1. Intensity 

Vbetween = 7 2 ~bf/(~ b;)2, 

Vwithin = byal /(:b b;) 2 • 

(25) 

(26) 

Fig. 2 is a scatterplot of point count nil against brick depth diJ (proportional to 
volume) labelled by animal index i. Since brick depth was determined by our ability to 
see through the material, it might have some association with the spatial pattern and 
would usually not be ancillary. However, this association was thought neither 
relevant nor severe, so we condition on the diJ and regard ~j for j = 1, ... , 10 as 
independent realizations of the same point process NUl( ) in R3 , observed inside 
predetermined windows BiJ. The four animals furnish distinct point processes NCil( ). 

The ratio regression model (14)-(15) looks plausible across bricks within each 
animal, but the data for animal 1 appear to have a different slope from the rest. 

Table 1 shows the individual estimates n;/vu of cell density from each brick, the 
pooled ratio estimate A; for each animal i from equation (16) and the estimated 
standard deviation&; of A; from approximation (18). 

Applying steps (22) and (23) to the tabulated data gives A= 32.3 with estimated 
variance 9.1 (standard error 3.0). The within-animal and between-animal variance 
contributions were 1.1 and 8.0 respectively. The estimate of population between­
animal variance r 2 was 31.4 (standard deviation 5 .6) and a notional within-animal 
variance per sampling brick is 10 x 1.1 = 11 = 3 .32• 

The data for animal l appeared to be self-consistent but in conflict with the 
(mutually consistent) data for animals 2-4. Given the small number of animals it was 
difficult to decide whether to regard the result for animal 1 as an outlier. When we 
repeated the analysis without animal 1, the EM procedure led to a zero estimate for r 2 

and weighted mean A=35.l with estimated variance 1.5 (standard error 1.2). 
In the light of this, the bone material was re-examined. Animal 1 was only 
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Fig. 2. Scatterplot of cell count nij against brick depth dii labelled by animal index i 
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3 

represented by a calvarium (skullcap); from animals 2-4 we had complete intact 
skulls. Anatomical differences were found on closer examination. The three intact 
skulls recurved strongly behind the parietal-occipital suture, whereas in animal 1 the 
skull continued backwards. It was concluded that animal 1 came from a different 
species, though anatomically not very different. In the subsequent analysis we handle 
animal 1 separately and pool only across animals 2-4. 

TABLE 1 

Estimates of ft. 

Animal ,\estimates (per 106(µm)3} ,\i a; 

1 35.7 22.6 24.7 24.7 20.3 16.5 20.8 28.5 22.2 19.8 22.6 1.4 
2 30.2 41.2 37.0 38.4 37.0 27.2 49.4 37.0 30.4 35.0 35.6 1.9 
3 61.7 47.1 32.9 39.5 32.9 53.5 34.6 32.9 44.1 23.6 37.8 3.9 
4 37.0 32.3 29.2 28.2 38.2 35.8 40.1 32.9 33.4 41.l 34.8 1.3 
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6.2. Uniformity in z-co-ordinate 
The empirical distribution functions of the depths of the points in each brick 

were compared with the uniform distribution by using a standard two-sided 
Kolmogorov-Smirnov test. Of the 40 bricks in the four animals the null hypothesis 
was rejected at the 50Jo level only for the two bricks belonging to animals 2 and 4. 
Inspection of the plots showed no strong suggestion of non-uniformity. 

6.3. K-function 
Initially the K-function was estimated separately from each brick. Fig. 3 shows a 

comparison of K-estimates for one brick by using the translation and isotropic 
corrections. There was generally very close agreement between the two methods on 
this data set. 

Fig. 4 shows for each animal the superimposed K-estimates from all bricks. The 
theoretical K-function for the Poisson process is plotted for comparison. There is a 
clear dip in the K-function over the range 15-35 µm for all cases. 
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Fi~. 3. Con;parison of es~imates of ~by using the Ripley-Hanisch isotropic correction(--) and the 
M1les-LantueJoul translation correction (········) for data from brick 1 of animal 4: the theoretical 
Poisson K-function (--------)is plotted for comparison 
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Fig. 4. Superimposed K-function estimates (isotropic correction) from all bricks for (a) animal 1, 
(b) animal 2, (c) animal 3 and (d) animal 4 

Ripley (1981) recommends that we plot ..JK(r) against r, because in two dimensions 
this transformation stabilizes the variance as well as linearizing the plot. Diggle (1983) 
and others plot the 'residuals' K(r)- 7rr2 • In three dimensions K 113 is linear but 
(contrary to Konig et al. (1991), p. 416) this does not stabilize the variance. Forthree­
dimensional patterns we shall usually plot K(r) against the theoretical Poisson curve 
(4/3)11"r3 in P-Pstyle; Fig. 5. 

Fig. 6 shows diagnostic scatterplots of the numerator and denominator of equation 
(11) for several choices of distance r, from all bricks and animals, with numerals 
identifying the animals. The regression model looks broadly acceptable, although for 
small r many observations have U = 0, which might call for revision of the model. 
Despite the differences previously encountered between animal 1 and the others, there 
seems to be general agreement in the K-functions. 
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Fig. 5. K-statistics (isotropic correction) from each brick in animal 2 plotted P-P style: --, 

estimated; ········, Poisson function 

Fig. 7 shows pooled K-function estimates for each animal, using the ratio 
regression method to combine replicated bricks. The associated confidence bands are 
pointwise 95 OJo confidence intervals computed from the estimated variances under the 
ratio regression method and the two-tailed 95% points of the t-distribution with 9 
degrees of freedom. These figures strengthen the interpretation of a strong dip in the 

range 15-35 µm. There is also good agreement between the K-functions for the 
various animals. 

Finally Fig. 8 shows an overall K-estimate formed by pooling all bricks in animals 

2-4 by using the EM approach of Section 5, with point wise confidence intervals based 
on the t2rdistribution. 

Our conclusion is that K shows an unambiguous dip in the range 15-35 µm and a 

recovery beyond 35 µm. This combination suggests an ordered or regular pattern; 
however, it is not clear how much of the dip can be attributed solely to the absence 
of overlap between osteocyte lacunae (lacunae were roughly ellipsoidal and typically 
10 µm x 5 µm across and 5 µm thick, mostly aligned with the main axis in the horizon­
tal plane). Again the recovery at large distances could reflect spatial inhomogeneity 
at larger scales. These questions could be resolved by simulating a purely inhibitory 

model. 

6.4. G-function 
Estimators 0 1 and G3 were computed for each brick. Fig. 9 shows a comparison 

of these for a chosen brick, showing the typical non-monotonicity of G1• 
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Fig. 6. Diagnostic scatterplots of the numerator and denominator of equation (11) for (a) r= 20, 

(b) r= 30, (c) r=40 and (d) r= 50 (the data are labelled by animal number) 

However, in most cases the individual estimates were absurd, since both the 

numerator and the denominator consisted of only a few points. Recall that a point 

contributes to the denominator of 0 3 only when it is closer to its nearest neighbour 

than to the boundary of the box. In three dimensions this condition becomes very 

stringent. In our data 23 of the 40 bricks had no point Xk satisfying the condition. No 

brick had more than three such points. For the same reason the diagnostic scatterplot 

for ratio regression was nearly meaningless. The behaviour of 0 1 was only slightly 

better. 
Fig. 10 shows pooled 0 1-estimates with pointwise confidence intervals, computed 

by ratio regression. There is moderate evidence supporting an ordered pattern (short 

nearest neighbour distances are relatively few). 

The alternative uncorrected G-estimates GB were computed and compared with the 

corresponding Poisson GB-functions for the same bricks, computed numerically by 
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Fig. 7. K-statistics (isotropic correction) pooled across bricks within each animal by using the ratio 
regression approach of Section 4: (a) animal 1; (b) animal 2; (c) animal 3; (d) animal 4 

equation (5). A Monte Carlo test of the Poisson null hypothesis was conducted on 
each brick independently. 19 simulations of a binomial process (i.e. a fixed number 
of independent uniform points) were generated in each brick and ranked by mean 
nearest neighbour distance. The numbers of rejections at the 5% level (one sided in 
the direction of larger distances) were 7, 8, 9 and 10 bricks for animals l, 2, 3 and 4 
respectively. 

6.5. F-function 
Fwas estimated by minus sampling, equation (3). We used the discrete distance 

transform algorithm of Borgefors (1984, 1986) with step distances of 48, 58 and 71, 
which form a good rational approximation to the proportions 1, ../ 2 and ../ 3. The grid 
unit or 'voxel' size was 1 µm. The distance r(x) from each x to the boundary of B was 
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also computed and the estimate of F was obtained as the cumulative distribution of 

the distance transform values d(x) for those voxels satisfying d(x) ~ r(x). 

To compute the theoretical Poisson F-function we determined the volume of the 

sphere of radius r in the discrete distance function, by running the Borgefors 
algorithm on a larger grid (sufficiently large to include the entire sphere of radius R 

equal to the maximum diameter of any brick) and taking a cumulative histogram of 

the result restricted to the range 0-R. 
Fig. 11 shows the pooled estimates for each animal, and Fig. 12 the population 

estimate pooled from animals 2-4. The Poisson curve lies everywhere outside or on 

the boundary of the pointwise confidence intervals for these estimates. The plots thus 
identify a relative shortage of larger empty spaces, again indicative of an ordered 

pattern. 

7. Discussion 

In this paper we adapted standard estimators for two-dimensional F-, G- and K­

functions to three dimensions and demonstrated them on a replicated data set. The 

techniques were successful for Kand F, but the estimation of G is severely hindered by 
edge effects and should be studied further. It seems to us that the use of kernel 
smoothing techniques for G (e.g. Konig et al. (1991)) only obscures this problem. 

Some recent work (e.g. Baddeley and Gill (1992)) suggests that a Kaplan-Meier-type 

estimator of G is more appropriate. 



660 

~ -

ci -

d -

ci -

I 

0 

BADDELEY, MOYEED, HOWARD AND BOYDE 

I 
I 

I 

I 

I 
I 

I 

10 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

,- ' 

,' [\ 

: I 

: I 

l I 
:, 
; ,, 

/1 
I : 

I . 

f :. 

! \ 

: : 

I 

20 

I 

I 

, 
I 

---

I 

30 

I 

40 

I 

50 

Fig. 9. Comparison of G-estimates for brick 1 of animal 4, using the minus sampling correction 
(········)and Hanisch's G3 (--)(--------,Poisson function) 

The new aspect of replication has been attacked by recognizing that the standard 
estimators are ratios of unbiased consistent estimators. Variance arguments suggest 
that the best pooled estimate is the ratio of the mean numerator to the mean 
denominator; this seems to be a workable approximation, but for edge effects (for 
large r) and discrete data effects (for small r). An alternative approach based on 
pseudolikelihood models of count data seems worth pursuing. 

We have exploited the replication to yield standard errors for the pooled estimates. 
This is new in spatial statistics, since most previous applications have produced 
confidence bands around the Poisson theoretical curve rather than confidence 
intervals around the empirical curve. 

A rudimentary analysis of variance has also been developed. Its validity is more 
difficult to assess from the data studied here, although we managed to detect an 
unexpected outlier in the animal population. 

Monte Carlo tests of the Poisson null hypothesis were generally rejected, more 
emphatically when based on Fthan on G. This accords with the paucity of data in the 
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numerator and denominator of equations (7) and (8). In two dimensions Diggle (1983) 
found on the contrary that nearest neighbour distances are more powerful than point 
to nearest event distances against regular alternatives. 

Our conclusions about the data set are that 

(a) animal 1 is not from the same population as the others, 
(b) there is some evidence of an ordered pattern and 
(c) there is appreciable sampling (hence spatial) variation between bricks within 

an animal. 

Regarding the second conclusion, there was widespread agreement between 
animals 2-4 in the K- and F-functions. All three statistics F, G and K suggested an 
ordered or regular spatial pattern at a scale of 15-35 µm. The biological interpretation 
is uncertain, because this regularity is partly attributable to the physical size of the 
lacunae (say 5-10 µm across). A similar situation was encountered with the two­
dimensional biological cell data discussed by Ripley (1981) and Diggle (1983), p. 2. 
The next step in the analysis of the present data could be to model the process by an 
inhibitive or regular model such as a Markov point process in the standard way (e.g. 
Ripley (1988)) to determine how much of the observed regularity can be ascribed to 
the non-overlap constraint. 

For a biologically conclusive analysis we would need to collect three-dimensional 
images of entire sampling volumes and to fit a random set model. However, the third 
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Fig. 11. F-statistics (minus correction) pooled across bricks by using ratio regression (Section 4): 
(a) animal 1; (b) animal 2; (c) animal 3; (d) animal 4 

finding underlines the fact that a single three-dimensional image would not yield 
sufficient information because of the spatial sampling variability. 
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Appendix A: Sphere Volume and Surf ace Area 

The purpose of this appendix is to derive expressions for the volume and surface area of the 
intersection between a three-dimensional rectangular box 
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B= {xeR3:0:s;;x,<b;,i=l,2,3} 

with sides b; > 0 and a sphere 

S(x,r) = {yeR3 : lly-x!I :s;; r} 

with centre x e B and radius r > 0. The results are equations (27), (28), (33) and (34) for 

volume, and equations (35) and (37) for area. 
Thus the aim is to compute 

V(x, r) = ..5t"'3{B n S(x, r)}, 

A(x, r) = ~ 2 {B n 8S(x, r)} 

where ..5t"'3 is Lebesgue volume measure and ~ 2 is two-dimensional Hausdorff (surface area) 

measure in R3 • Representing Bas an intersection of half-spaces 

B = H1(0) n H1(b1Y n H2(0) n Hi(bi)c n H3(0) n H3(b3)° 

where H;(t) = {x e R3 : X; ;;;:: t}, and applying the inclusion-exclusion formula, we obtain 

4 3 

3 11"r3 - V(x,r) = ~ {Vi(X;,r)+ Vi(b;-X;, r)}- ~ ~ {V2(x;,Xj,r)+ V2(x;, brxi, r) 
i=I i<j 

+ V2(b;-X;, xj, r) + V2(b;-X;, b1 -xj, r)} + V3(x1> X2 , x3 , r) 

+ V3(x1' x2 , b3 -x3, r) + V3(x1, b2 -x2, x3, r)+ Vi(x1, b2 -x2, b3 -x3, r) 

+ V3(b1 - x 1, x2 , x3, r) + Vi(b1 - X1, x2, b3 -x3, r) + V3(b1 - x 1, b2 -x2, x3, r) 

+ V3(b1 - x 1, b2 - x 2, b3 - x 3, r) (27) 
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where Vi. V2 and V3 represent the volumes delimited by 1, 2 or 3 half-spaces: 

Vi(t" r) = ..st'3{S(O, r) n H 1(t1)}, 

V2(t1, t2, r) = ..st'3{S(O, r) n H 1(t1) n H 2(tz)}, 

V1(t1> t2, t3 , r) = ..st'3{S(O, r) n H 1(t1) n H 2(t2) n H 3(t3)} 

fort;~ 0. Ifwe define U(a, b, c) = V3(a, b, c, 1) then by symmetry and scaling properties of 
volume 

V1(t1> r) = r 3 V1(t/r, 1) = 4r3 U(t/r, 0, 0), l 
V2(t1, t2, r) = r 3 Vz(t/r, t2/r, 1) = 2r3 U(t/r, t2/r, 0), 

V3(t1, t2, t3, r) = r 3 U(t/r, t2/r, t3/r). 

(28) 

It suffices to find an expression for U(a, b, c) when a, b, c ~ 0 and a 2 + b2 + c2 < 1. 
Now 

Using 

( l -a2-x2)112 dx = -x(l -a2-x2)112 + -(l-a2) sm- 1 1 1 1 . [ x J 
2 2 (I - a 2) 112 

this becomes 

7C' 7C' 7C' 7r 
+-(l-a2-b2)112_ -c- -(1-a2-b2)112+-c1 

4 4 12 12 

1 (t-a•rb2)lll 2 . -1[ a J 
- 2 J (1 - z ) sm (1 - z2)112 dz 

c 

i (1-alrb2>1/2 2 . -1 [ b J 
-2 J (1-z) sm (l -z2)112 dz. 

c 

Here the inverse sine maps (0, 1) to (0, 7rl2). The remaining terms are integrated by parts 
with the help of the following identities, holding for 0 < A < 1, 0 < t < (1 -A 2) 112: 
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(29) 

(30) 

x 2(1-A 2 -x2)- 112 dx = -(1 -A2) sin- 1 - -t(l -A 2 - t2)u2. it 1 [ t J 1 
o 2 (1 - A 2)112 2 ' 

(31) 

rt (l-x2)-1(l-A2-x2)-112dx= (l-A2)-112tan-1[ t J 
Jo (1-A 2 -t2) 112 

2 -112 -1[ At ] -A(l-A) tan ( 2 2 112 • 
1-A -t) 

(32) 

The last three results were suggested by applying the complex identity log(a+ ib) == 

log(a 2 + b 2) 112 + i tan- 1(b/a) to Gradshteyn and Ryzhik's (1980) formulae (69) and (8) in 
section 2.584 and (33) in section 2.583. They can be checked directly. 

Collecting terms and applying trigonometric identities between inverse sine and inverse 
tangent, we finally have 

7r 
U(a, b, c) == 12 {2-3(a+ b+c)+ (a3 + b 3 + c 3)} + W(a, b)+ W(b, c)+ W(a, c)-abc (33) 

where 

The values of the inverse tangent computed here lie in [O, 7r/2). As a check we can verify the 
boundary conditions 

7r 
U(O, 0, 0) = '6' 

1r 
U(a, 0, 0) = 12 (2- 3a+ a 3). 

Thus formulae (27), (28), (33) and (34) specify an algorithm for computing V(x, r). 

Turning to the surface area problem, we have a decomposition that is analogous to equa­
tion (27) with A(x, r) replacing V(x, r), A 1, A 2 and A 3 replacing V1, V2 and V3 and 47rr2 

replacing t ?rr3 • Analogous to system (28) we have 

A 1(t 1, r) == 4r2 C(t/r, 0, 0), l 
A 2(t1, t2, r) = 2r2 C(t/r, t21r, 0), 

A 3(t1, t2 , t3 , r) = r 2 C(t/r, t21r, t2/r). 

(35) 

TocomputeC(a, b, c) fora, b, c > 0, a 2 + b 2 + c2 < l,parameterizetheunitsphereS(O, 1) 
by angular co-ordinates 8 and <P defined by 
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u: [O, 211") x ( - ; , ; ) -+ S(O, 1), 

u(8, <P) = (cos 8 cos cp, sin 8 cos Q'>, sin Q'>), 

i.e. 8 represents 'longitude' and Q'> is 'latitude'. The representation of area measure is now 

u,dS = cos Q'> d8 A dQ'>. 

Let T = S(O, 1) n H 1(a) n H 2(b) n H3(c) where a, b, c > 0. Thus C(a, b, c) = ffl(T) and 

u- 1(T) = {(8,Q'>): cos8cosQ'> ~a, sin8cosQ'>;;?: b, sinQ'>;;?: c} 

= (8, Q'> ): sm . 1 ~ 8 ~ cos 1 , [ . -i[ b J -i[ a J 
v(l-c2) v(l-c2) 

sin - 1 c ~ Q'> ~ cos- 1 
[ max ( c~ 8, si~ 8) J J 

where henceforth 0 < 8, Q'> < 7r/2. We have 

C(a, b, c) = ffl(T) 

cos-l{a/.J(t -c2>} cos-l{max(a/cos e, blsin 8)} 

1 i cos Q'> dct> dO 

sm-l{b/.J(l-c2)} sin-le 

= 

= 

[ • 1 [ b J 1 [ a ]] + c sm- - cos-
v(l-c2) v(l-c2) 

(36) 

where the range of the inverse tangent is (- r/2, 11"/2) and 

for 0 < A < 1, 0 < t < sin - 1(1 -A 2)112• Substituting equation (32) we finally obtain 
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C(a, b, c) = tan-1 [ (1- a:~ c2)112] + tan-1 [ (1 - b:~ c2)112] +tan -1 [ (1- a:~ b2)112] 

- -1[(l-a2-c2)112] -1[ b } -1[(1-b2-c2)112] 
atan b +atan 2 2 112 -btan 

a (1-a-b) c 

-I [ b ] + ctan (1- a2-b2)112 - 7r (37) 

whena2 + b 2 + c2 < 1, and C(a, b, c) = Ootherwise. Here the values oftheinversetangentlie 
in (0, 7r/2). As a check, one can verify the boundary conditions 

C(u, 0, 0) = C(O, u, 0) = C(O, 0, u) = 7r(l - u)/2, 

C(l/.../3, 1/.../3, 1/.../3) = 0. 

Thus equations (35) and (37) specify an algorithm for computing the surface area A(x, r) 
and the edge-effect correction factor 

w(x, r) = A(x, r)l47rr2 • 

0Ne thank Dr C. C. Taylor, University of Leeds, for the suggestion leading to equations 
(30)-(32).) 
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