
 Open access  Book Chapter  DOI:10.1007/978-3-642-30782-9_3

Analysis of a two-class FCFS queueing system with interclass correlation
— Source link 

Herwig Bruneel, Tom Maertens, Bart Steyaert, Dieter Claeys ...+2 more authors

Institutions: Ghent University

Published on: 04 Jun 2012 - Analytical and Stochastic Modeling Techniques and Applications

Topics: Interclass correlation, Queueing theory, Probability-generating function and Random variable

Related papers:

 Analysis of a two-class single-server discrete-time FCFS queue: the effect of interclass correlation

 Class clustering destroys delay differentiation in priority queues

 A two-class discrete-time queueing model with two dedicated servers and global FCFS service discipline

 Waiting time distributions in an M/G/1 retrial queue with two classes of customers

 A two-class global FCFS discrete-time queueing model with arbitrary-length constant service times

Share this paper:    

View more about this paper here: https://typeset.io/papers/analysis-of-a-two-class-fcfs-queueing-system-with-interclass-
2jf6ur4bnj

https://typeset.io/
https://www.doi.org/10.1007/978-3-642-30782-9_3
https://typeset.io/papers/analysis-of-a-two-class-fcfs-queueing-system-with-interclass-2jf6ur4bnj
https://typeset.io/authors/herwig-bruneel-3wbcgpv1rs
https://typeset.io/authors/tom-maertens-1uee0va3q8
https://typeset.io/authors/bart-steyaert-1ewdhqhczq
https://typeset.io/authors/dieter-claeys-49q0zywjcf
https://typeset.io/institutions/ghent-university-14limu0t
https://typeset.io/conferences/analytical-and-stochastic-modeling-techniques-and-1k6emi7l
https://typeset.io/topics/interclass-correlation-35cceo7o
https://typeset.io/topics/queueing-theory-33lgyn8z
https://typeset.io/topics/probability-generating-function-12kcv0th
https://typeset.io/topics/random-variable-153xod20
https://typeset.io/papers/analysis-of-a-two-class-single-server-discrete-time-fcfs-4o4kg9d3ju
https://typeset.io/papers/class-clustering-destroys-delay-differentiation-in-priority-1eeliwwayv
https://typeset.io/papers/a-two-class-discrete-time-queueing-model-with-two-dedicated-3whd85p6zz
https://typeset.io/papers/waiting-time-distributions-in-an-m-g-1-retrial-queue-with-399xg5dr0l
https://typeset.io/papers/a-two-class-global-fcfs-discrete-time-queueing-model-with-47uq9f3bp0
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/analysis-of-a-two-class-fcfs-queueing-system-with-interclass-2jf6ur4bnj
https://twitter.com/intent/tweet?text=Analysis%20of%20a%20two-class%20FCFS%20queueing%20system%20with%20interclass%20correlation&url=https://typeset.io/papers/analysis-of-a-two-class-fcfs-queueing-system-with-interclass-2jf6ur4bnj
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/analysis-of-a-two-class-fcfs-queueing-system-with-interclass-2jf6ur4bnj
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/analysis-of-a-two-class-fcfs-queueing-system-with-interclass-2jf6ur4bnj
https://typeset.io/papers/analysis-of-a-two-class-fcfs-queueing-system-with-interclass-2jf6ur4bnj


Analysis of a two-class FCFS queueing system

with interclass correlation

Herwig Bruneel, Tom Maertens, Bart Steyaert, Dieter Claeys, Dieter Fiems,
and Joris Walraevens

Ghent University,
Department of Telecommunications and Information Processing,

SMACS Research Group,
Sint-Pietersnieuwstraat 41,
B-9000 Ghent, Belgium

{hb,tmaerten,bs,dclaeys,df,jw}@telin.UGent.be

Abstract. This paper considers a discrete-time queueing system with
one server and two classes of customers. All arriving customers are ac-
commodated in one queue, and are served in a First-Come-First-Served
order, regardless of their classes. The total numbers of arrivals during
consecutive time slots are i.i.d. random variables with arbitrary distri-
bution. The classes of consecutively arriving customers, however, are
correlated in a Markovian way, i.e., the probability that a customer be-
longs to a class depends on the class of the previously arrived customer.
Service-time distributions are assumed to be general but class-dependent.
We use probability generating functions to study the system analytically.
The major aim of the paper is to estimate the impact of the interclass

correlation in the arrival stream on the queueing performance of the sys-
tem, in terms of the (average) number of customers in the system and
the (average) customer delay and customer waiting time.

1 Introduction

Various types of scheduling disciplines have been investigated within the context
of multi-class queueing systems. We mention, among others, priority scheduling
(see, e.g., [4, 8, 11, 13, 15]), weighted fair queueing (WFQ) (see, e.g., [14, 17]),
random order of service (ROS) (see, e.g., [1, 3, 10]), and generalized processor
sharing (GPS) (see, e.g., [9,12,16]). Strangely enough, only few results have been
derived for multi-class First-Come-First-Served (FCFS) systems, i.e., queueing
systems in which the customers of different classes are accommodated in one
queue and served in their order of arrival, irrespective of the classes they belong
to (a recent paper is [5]). The present paper presents the analysis of a discrete-
time model that fits in this category.

In classical multi-class queueing models, furthermore, it is generally assumed
that the different classes occur randomly and independently in the arrival stream
of customers (this is also the case in [5]). In this paper, however, we explicitly
wish to examine the effect of so-called interclass correlation (or class clustering)
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in the arrival process. Specifically, we are interested to know whether the degree
to which customers of the same class have the tendency to arrive (and be served)
closely together (i.e., back-to-back), or, conversely, the degree to which such
customers have the tendency to be spread in time and mixed with customers
of the other class, has a substantial impact on the performance of a two-class

FCFS queueing system. In order to do so, we superimpose a two-state Markovian
interclass correlation model (with arbitrary transition probabilities) on top of a
regular general independent arrival process model for the aggregated customer
stream. Service-time distributions are class-dependent but completely general. It
is clear that the interclass correlation between consecutive customers can also be
viewed as a form of non-independence between service times. One application
of this queueing model is obvious: the two customers classes can model, for
example, voice and data packets in a heterogeneous telecommunication system.
It is common knowledge that data packets are significantly larger than voice
packets. Then it is easy to see that if data packets have the tendency to arrive in
clusters, the performance of the system may be degraded severely (with respect
to voice packets). In this paper, we measure this degradation.

We first derive the probability generating function (pgf) of the total number
of customers in the system at customer departure times. From this result, we
can easily obtain the corresponding pgf valid at arbitrary slot boundaries. Var-
ious performance measures of practical use, such as the mean system content,
the mean customer delay and the mean customer waiting time, can be easily
derived from these pgf’s by applying the moment-generating property of pgf’s
and by using Little’s law. The resulting formulas and a number of numerical
examples reveal that the system under study can exhibit two types of stochas-
tic equilibrium, depending on the values of the system parameters: a “strong”
equilibrium in which both customer classes individually generate less work than
the system can handle (during periods where only such customers arrive), and a
“compensated” type of equilibrium whereby one customer class creates overload
situations which are compensated by strong under-load periods generated by the
other customer class. In the latter case, our results clearly demonstrate the cru-
cial importance of the amount of interclass correlation on the usual performance
parameters of the system.

The outline of this paper is as follows. In Section 2, we describe the math-
ematical model. Section 3 first presents an analysis of the total number of cus-
tomers in the system at customer departure times; next, the pgf of the system
content at random slot boundaries is derived from this result. We discuss the
results, both conceptually and quantitatively, in Section 4. Some conclusions are
drawn in Section 5.

2 Mathematical model

We consider a discrete-time queueing system with infinite waiting room, one
server, and two classes of customers, named A and B. As in all discrete-time
models, the time axis is divided into fixed-length intervals referred to as slots in
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the sequel. New customers may enter the system at any given (continuous) point
on the time axis, but services are synchronized to (i.e., can only start and end
at) slot boundaries. Customers are served in their order of arrival, regardless of
the class they belong to. We call this service discipline “global FCFS”.

1−α

β

1−β

α A B

Fig. 1. Two-state Markov chain of the customer classes

The arrival process of new customers in the system is characterized in two
steps. First, we model the total (aggregated) arrival stream of new customers by
means of a sequence of i.i.d. non-negative discrete random variables (denoting
the numbers of arrivals in consecutive slots) with common probability generating
function (pgf) E(z). The (total) mean number of arrivals per slot, in the sequel
referred to as the (total) mean arrival rate, is given by λ , E′(1). Next, we
describe the occurrence of the two classes in the sequence of the consecutively
arriving customers. In this study, we assume that both classes of customers ac-
count for part of the total load of the system, i.e., both customer classes are
“mixed” in the arrival stream, but there may be some degree of “class cluster-
ing” in the arrival process, i.e., customers of any given class may (or may not)
have a tendency to “arrive back-to-back”. Mathematically, this means that the
classes of two consecutive customers may be non-independent. Specifically, we
assume a first-order Markovian type of correlation between the classes of two
consecutively arriving customers, which basically means that the probability
that the next customer belongs to a given class depends on the class of the pre-
viously arrived customer. Let tk denote the class of customer k. The transition
probabilities of the Markov chain that determines the class of the consecutively
arriving customers are then defined as (see Fig. 1)

Prob[tk+1 = A | tk = A] , α , (1)

Prob[tk+1 = B | tk = A] , 1− α , (2)

Prob[tk+1 = A | tk = B] , 1− β , (3)

Prob[tk+1 = B | tk = B] , β . (4)

It is well known that for a two-state Markov chain of this type, the steady-state
probabilities tA and tB of finding the chain in state A and B are given by

tA , lim
k→∞

Prob[tk = A] =
1− β

2− α− β
(5)
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and

tB , lim
k→∞

Prob[tk = B] =
1− α

2− α− β
, (6)

respectively (see, e.g., [2]). The quantities tA and tB can be interpreted as the
fractions of class A and class B customers in the arrival stream. The (steady-
state) correlation coefficient of the Markov chain, i.e., the amount of correlation
between the classes of two consecutively arriving customers (in the steady state),
is given by

γ , lim
k→∞

E[tktk+1]− E[tk]E[tk+1]
√

var[tk] var[tk+1]
= α+ β − 1 . (7)

We will indicate the parameter γ (−1 ≤ γ ≤ +1) as the interclass correlation in
the sequel. Positive values of γ correspond to a situation whereby the customers
of any given class have a tendency to cluster, while negative values of γ refer
to arrival streams in which the customers of classes A and B have a tendency
to alternate, i.e., be mixed more strongly. The case where γ = 0, of course,
corresponds to the classical assumption that classes of subsequent customers are
independent.

The service process of the system is characterized by attaching to each cus-
tomer a corresponding service time, which indicates the number of time slots
required to give complete service to the customer at hand. The service times of
customers are class-dependent and are modelled as a sequence of independent
positive discrete random variables with pgf’s A(z) and B(z). The corresponding
mean values are given by µA , A′(1) and µB , B′(1) for customers of class A
and B, respectively.

3 System analysis

3.1 System equations at customer departure times

Let uk denote the total system content, i.e., the total number of customers
present in the system just after the service completion of the k-th customer,
and, as before, let tk indicate the class customer k belongs to. Then, as a con-
sequence of all the model assumptions in Section 2, the couple (tk, uk) forms a
Markovian state description of the system (at customer departure times).

The state transitions of the quantities {tk} are governed by the Eqs. (1)-(4),
whereas for the quantities {uk}, the following recursive system equations can be
established (see Figs. 2 and 3):

uk+1 =

{

uk − 1 + gk+1 if uk > 0
fk+1 + gk+1 if uk = 0

. (8)

Here, the quantity gk+1 is defined as the number of arrivals in the system during
the service time of customer k+1, while fk+1 indicates the number of customers
arriving after customer k + 1 in its arrival slot.
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Fig. 2. Relationship between uk and uk+1 when uk > 0

time

u
k

u
k+1

{ g
k+1departure of

customer k

departure of

customer k+1

arrival of

customer k+1

= 0

{

f
k+1

Fig. 3. Relationship between uk and uk+1 when uk = 0

It is easily seen that the pgf of fk+1 is given by the pgf of the number of
additional arrivals in a slot with at least one arrival, i.e.,

F (z) , E[zfk+1 ] =
E(z)− E(0)

z[1− E(0)]
, (9)

regardless of the class of customer k + 1. The distribution of the quantity gk+1,
however, does depend on the class of customer k + 1. We have

GA(z) , E[zgk+1 | tk+1 = A] = A(E(z)) , (10)

GB(z) , E[zgk+1 | tk+1 = B] = B(E(z)) . (11)

3.2 System content at customer departure times

Let us assume that the queueing system at hand is stable, i.e., that the stability
condition is fulfilled. Intuitively, it is not difficult to see that the system is stable
if and only if the average amount of work entering the system per slot is strictly
less than 1, i.e., if and only if λE[c] < 1, with E[c] the average service time of
an arbitrary customer. Expressed in the basic parameters of our system, this is
equivalent to the condition

λ(tAµA + tBµB) < 1 , (12)

where the quantities tA and tB are the steady-state probabilities of the arrival
Markov chain (see Eqs. (5) and (6)). Assuming this condition fulfilled, we define
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the joint steady-state probabilities of the Markov chain {(tk, uk)} as

pA(i) , lim
k→∞

Prob[tk = A, uk = i] (13)

and

pB(i) , lim
k→∞

Prob[tk = B, uk = i] , (14)

for all i ≥ 0. The corresponding partial pgf’s are defined as PA(z) and PB(z).
Then the steady-state pgf P (z) of the total system content at customer departure
times is equal to PA(z) + PB(z).

We now establish two linear equations for PA(z) and PB(z). We depart from
the balance equations of the Markov chain {(tk, uk)} for class A:

pA(j) =

∞
∑

i=0

pA(i)α lim
k→∞

Prob[uk+1 = j | tk+1 = A, uk = i]

+

∞
∑

i=0

pB(i)(1 − β) lim
k→∞

Prob[uk+1 = j | tk+1 = A, uk = i] . (15)

Next, we introduce pgf’s into this equation:

PA(z) =α

∞
∑

i=0

pA(i) lim
k→∞

E[zuk+1 | tk+1 = A, uk = i]

+ (1 − β)

∞
∑

i=0

pB(i) lim
k→∞

E[zuk+1 | tk+1 = A, uk = i] . (16)

The expected values in (16) can be further developed by using the system equa-
tions (see Eq. 8):

lim
k→∞

E[zuk+1 | tk+1 = A, uk = i] = lim
k→∞

E[zi−1+gk+1 | tk+1 = A]

= zi−1GA(z) , (17)

for i ≥ 1, and

lim
k→∞

E[zuk+1 | tk+1 = A, uk = 0] = lim
k→∞

E[zfk+1+gk+1 | tk+1 = A]

=F (z)GA(z) . (18)

Putting everything together, we then obtain

PA(z) =α
GA(z)

z
[PA(z)− PA(0)] + αPA(0)F (z)GA(z)

+ (1− β)
GA(z)

z
[PB(z)− PB(0)] + (1− β)PB(0)F (z)GA(z) . (19)
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Using Eqs. (9)-(11), we finally obtain a first linear equation between PA(z) and
PB(z):

[z − αA(E(z))]PA(z)− (1− β)A(E(z))PB(z)

=
E(z)− 1

1− E(0)
[αPA(0) + (1− β)PB(0)]A(E(z)) .

(20)

Starting from the balance equations for class B, we can derive a second, similar
equation:

[z − βB(E(z))]PB(z)− (1 − α)B(E(z))PA(z)

=
E(z)− 1

1− E(0)
[βPB(0) + (1− α)PA(0)]B(E(z)) .

(21)

Eqs. (20) and (21) form a set of two linear equations for the two unknown partial
pgf’s PA(z) and PB(z). Expressions for these pgf’s can be found by solving the
set. Then adding up PA(z) and PB(z) leads to the following expression for the
pgf P (z):

P (z) =
P (0)(E(z)− 1)

1− E(0)

×
z[pAA(E(z)) + pBB(E(z))] + (1 − α− β)A(E(z))B(E(z))

z2 − z[αA(E(z)) + βB(E(z))] − (1− α− β)A(E(z))B(E(z))
, (22)

where the quantities pA and pB are defined as

pA ,
αPA(0) + (1− β)PB(0)

P (0)
(23)

and

pB ,
(1− α)PA(0) + βPB(0)

P (0)
, (24)

respectively. It is not difficult to see that pA and pB denote the conditional prob-
abilities that a customer entering an empty system (in the steady state) belongs
to class A or B: pX , limk→∞ Prob[tk+1 = X |uk = 0], with X ∈ {A,B}.

The probability P (0) can be derived explicitly from the normalization con-
dition of the pgf P (z), i.e., the condition P (1) = 1. The result is given by

P (0) =
1− E(0)

λ
[1− λ(tAµA + tBµB)] =

1− E(0)

λ
{1− λE[c]} , (25)

where, as before, the quantities tA and tB are the steady-state probabilities of the
arrival Markov chain, defined in Eqs. (5) and (6), and E[c] denotes the average
service time of an arbitrary customer. It then remains for us to calculate the
two unknown probabilities pA and pB, of which we know from (23) and (24)
that pA+pB = 1. The unknowns can be determined, in general, by invoking the
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well-known property that pgf’s such as P (z) are bounded inside the closed unit
disk {z : |z| ≤ 1} of the complex z-plane, at least when the stability condition
(12) of the queueing system is met (only in such a case our analysis was justified
and P (z) can be viewed as a legitimate pgf). Now, it can be shown by means of
Rouché’s theorem from complex analysis [2,7] that the denominator of Eq. (22)
has exactly two zeroes inside the closed unit disk of the complex z-plane, one
of which is equal to 1, as soon as the stability condition (12) is fulfilled. It is
clear that these two zeroes should also be zeroes of the numerator of Eq. (22), as
P (z) must remain bounded in those points. For the zero z = 1, this condition is
fulfilled regardless of the values of the unknowns pA and pB, since the numerator
of (22) contains a factor E(z)− 1. However, for the second zero, say z = ẑ, the
requirement that the numerator should vanish yields a linear equation for the
two unknowns. A second linear equation is given by pA + pB = 1. In general,
i.e., when the pgf’s A(z) and B(z) are different, the two unknown probabilities
pA and pB can be found as the solutions of the two established linear equations.
We obtain

pA =
αA(E(ẑ))− (1− β)B(E(ẑ))− ẑ

A(E(ẑ))−B(E(ẑ))
(26)

and

pB =
βB(E(ẑ))− (1− α)A(E(ẑ))− ẑ

B(E(ẑ))−A(E(ẑ))
. (27)

Once the zero ẑ has been computed (numerically), pA and pB can be derived
from (26) and (27). Substitution of the obtained values and of Eq. (25) in (22)
then leads to a fully determined expression of the steady-state pgf P (z) of the
total system content at customer departure times.

3.3 System content at random slot boundaries

It has been shown in [2] that in any discrete-time queueing system with one single
server and independent arrivals from slot to slot (with pgf E(z)), regardless of
the precise characteristics of the service process and the intra-slot details of the
arrival process (the position of the arrival instants within the slot, single arrivals
or batch arrivals, etc.), the following simple relationship is valid between the pgf
S(z) of the system content at random slot boundaries and the pgf P (z) valid at
customer departure times:

P (z) =
E(z)− 1

λ(z − 1)
S(z) . (28)

In the previous subsection, we have found an expression for the pgf P (z). Hence,
it is easy to obtain an expression for S(z). From S(z), various performance
measures of practical importance can be derived. For instance, the mean system
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content at random slot marks can be found as E[s] = S′(1). After long and
tedious calculations, this results in

E[s] = ρ+
λ2C′′(1) + E′′(1)C′(1)

2(1− ρ)
+

γtAtBλ
2(µA − µB)

2

(1− γ)(1− ρ)

+
λ(pA − tA)(µA − µB)

1− γ
, (29)

where tA and tB are expressed in Eqs. (5) and (6), γ is the interclass correlation
defined in (7), C′(1) and C′′(1) are derivatives of the pgf C(z) of the service time
of an arbitrary customer (i.e., C(z) , tAA(z) + tBB(z)), ρ (= λC′(1)) is the
total load of the queueing system, and pA and pB are the unknown probabilities
defined in (23) and (24) and calculated as (26) and (27) (as soon as the zero ẑ
has been determined numerically). The first term (ρ) in Eq. (29) corresponds
to the mean number of customers in service, the other three terms account for
the mean queue content, i.e., the mean number of customers that are actually
waiting to be served.

Higher-order moments of the system-content distribution can be obtained by
computing higher-order derivatives of the pgf S(z). By applying (the discrete-
time version of) Little’s law (see, e.g., [6]), the mean delay (system time) of an
arbitrary customer can be obtained as E[d] = E[s]/λ. The mean waiting time of
an arbitrary customer can be derived from this as E[w] = E[d]− E[c]:

E[w] =
λ2C′′(1) + E′′(1)C′(1)

2λ(1− ρ)
+

γtAtBλ(µA − µB)
2

(1− γ)(1− ρ)
+

(pA − tA)(µA − µB)

1− γ
.

(30)

4 Discussion of results and numerical examples

In this section, we discuss the results, both from a qualitative perspective and
by means of some numerical examples. The first interesting result obtained is

the form of the stability condition λ <
1

E[c]
=

1

tAµA + tBµB

, which shows that

the maximum achievable throughput of this system, expressed in customers per
slot, is completely determined by the mean service time of an arbitrary customer,
regardless of the possible interclass correlation.

Next, we focus on the mean system content at random slot marks (see
Eq. (29)). This result explicitly and very clearly shows the influence of the vari-
ous system parameters on the performance of the system. As could be expected
intuitively, the mean system content depends on the first two moments of the
arrival process (as represented by the quantities λ and E′′(1), and to some ex-
tent ρ = λC′(1)) and the first two moments of the service times (contained in
the quantities C′(1), C′′(1), µA, µB, and also ρ = λC′(1)). It is not surprising
that E[s] goes to infinity as ρ approaches its limiting value 1, dictated by the
stability condition of the system. However, it is striking that E[s] also seems to
increase without bound if the interclass correlation γ = α + β − 1 approaches
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the value +1, even when the stability condition ρ < 1 is met. Positive interclass
correlation appears to be very detrimental for the performance of the system,
whereas negative interclass correlation has a very moderate positive effect on
the performance.

The first two terms in Eq. (29) correspond to the classical result that would
be obtained in a system without interclass correlation and with service-time pgf
C(z) (see, e.g., [2]). This means that the third and fourth term in (29) can be
fully attributed to the presence of interclass correlation in the arrival process.
We note, indeed, that the third term vanishes when γ = 0; in the fourth term,
both tA and pA reduce to the same value α when γ = 0 (see Eqs. (5) and (26),
with ẑ = 0), which implies that the fourth term is equal to zero as well in that
case. It is easy to see that the third and fourth term also disappear when all
customers have the same service-time distribution, i.e., when A(z) = B(z) and,
hence, µA = µB, and, finally, when there is only one class of customers in the
system, i.e., when either α = 1 (and, hence, pA = tA = 1 and tB = 0) or β = 1
(and, therefore, pA = tA = 0).

Let us now consider some numerical results. In a first example, we assume
Poisson arrivals (i.e., E(z) = eλ(z−1)), equal fractions of both classes of customers
in the arrival stream (i.e., tA = tB = 0.5), geometrically distributed service times
for both classes, i.e.,

X(z) =
z

µX + (1− µX)z
, (31)

with X ∈ {A,B}, and with µA = 8 and µB = 2. The stability condition is then
given by ρ = λ[tAµA + tBµB] = 5λ < 1 (i.e., λ < 0.2).

 0
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Fig. 4. Mean system content E[s] versus load ρ for various values of the interclass
correlation γ
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Fig. 4 shows the mean system content E[s] as a function of the load ρ, for
various values of the interclass correlation γ. The figure confirms that, for given
values of ρ < 1, the parameter γ has a major impact on the results when it is pos-
itive and only a minor influence when it is negative. An intuitive explanation of
this phenomenon lies in the observation that the numbers of consecutive class-A
and class-B customers in the arrival stream both increase dramatically as γ ap-
proaches the value +1. Indeed, the mean number of class-A (class-B) customers

between two consecutive class-B (class-A) customers is given by
1

1− α
=

2

1− γ

(
1

1− β
=

2

1− γ
). For negative values of γ, this implies that customers of both

classes alternate strongly; for positive values of γ, there may be very long se-
quences of customers of the same class. During such periods, the momentary
load is either given by ρA , λµA = 8λ or by ρB , λµB = 2λ. It is easily seen
that the stability condition ρ < 1, or λ < 0.2, guarantees that ρB < 1, but
not necessarily that ρA < 1. It is clear that if λ or ρ are small enough (more
specifically, λ < 0.125 or ρ < 0.625), ρA < 1 and ρB < 1, i.e., the system is
locally stable both during A- and B-sequences (and, hence, also globally stable
- we call this the “strong” equilibrium), while if 0.125 ≤ λ < 0.2, or, equiva-
lently, 0.625 ≤ ρ < 1, ρB < 1 but ρA > 1, i.e., the system is locally stable during
B-sequences but not during A-sequences. In the latter case, labelled as the “com-
pensated” equilibrium, (global) stability is assured because although the queue
size builds up during A-sequences (because, on average, more work arrives than
the server can perform), it decreases again during B-sequences (when much less
work enters than the server can execute). In other words, the overload periods
created by the A-customers are compensated by the underload periods of the
B-customers. When the interclass correlation approaches +1, however, the am-
plitude of these queue size variations goes to infinity, implying that the mean
system content does the same.

The same behavior can be observed in Fig. 5, where we have plotted E[s] as
a function of γ for various values of ρ. The figure illustrates very clearly that
the system content grows without bound as γ → +1 when ρ is higher than its
critical value 0.625. When ρ is less than this critical value, on the other hand,
the mean system content remains finite for all values of γ. Although we have
explained this behaviour intuitively in the previous paragraph, it is somewhat
unexpected in view of Eq. (29). Indeed, Eq. (29) seems to say that E[s] should
become unbounded as γ → +1, regardless of the other system parameters. The
third and fourth term in (29) both approach infinity for γ → 1; however, when
ρ is less than its critical value, the terms cancel each other causing their sum to
remain finite.

A second example is treated in Figs. 6 and 7. Again, we assume Poisson
arrivals and geometrically distributed service times for both classes. Here, how-
ever, µA = 100 and µB = 10. The interclass correlation γ is kept constant at 0.8.
This implies that α = 0.8+ 0.2tA, β = 1− 0.2tA, and ρ = 10λ(1+ 9tA). We now
investigate the impact of the parameter tA, i.e., the fraction of class-A customers
in the arrival stream, on the mean system content and the mean waiting times of
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the customers. Fig. 6 shows the mean system content E[s] versus tA, for various
values of ρ, whereas Fig. 7 illustrates the corresponding results for the mean
waiting time E[w] of the customers. Fig. 6 reveals that, for any given value of
the total load ρ, the mean system content increases as a function of tA for “low”
values of tA (more or less in the interval 0 ≤ tA ≤ 0.1), then reaches a maximum
value for tA somewhere around 0.1, and, finally decreases monotonically in the
interval 0.1 ≤ tA ≤ 1. An intuitive explanation might be as follows. For tA = 0,
all customers belong to class B (with a short service time of 10 slots); as soon
as tA becomes positive, say 0 ≤ tA ≤ 0.1, class-A customers (with a long service
time of 100 slots) arrive sporadically and (when in service) somehow block the
regular processing of class-B customers, which causes the system content to in-
crease. If, however, tA increases further (while the total load ρ remains constant),
the system receives considerably less customers (for the same amount of work),
which explains the decreasing system content in the interval 0.1 ≤ tA ≤ 1.

The behaviour of the mean waiting time (see Fig. 7) is qualitatively a bit
similar as for the mean system content. More specifically, it can be observed that
the mean waiting times also increase for “low” values of tA to reach a maximum
value and then decrease for “higher” values of tA. However, the maximum value
of the waiting time is attained for tA around 0.25, whereas the highest mean
system content occurs for tA in the vicinity of 0.1. Also, the rates at which the
mean waiting times increase and decrease seem relatively slower than for the
mean system content. Intuitively, this can be attributed to the fact that the
waiting time reflects the unfinished work in the system (at the arrival instant of
a customer), while the system content indicates the number of customers in the
system, whereby all customers contribute identically, irrespective of their service
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time, i.e., irrespective of the amount of work they represent. The fact that the
mean waiting time (and, hence, the unfinished work in the system) for tA = 0 is
substantially smaller than for all other values of tA can be explained by the higher
burstiness of the arrival process of work units if class-B customers (bringing small
amounts of work) are alternated with class-A customers (bringing large batches
of work at the same time), which happens as soon as tA gets positive.

5 Conclusions

In this paper, we have studied a discrete-time queueing system with one server
and two classes of customers, and operating under the global FCFS service dis-
cipline. We have assumed independent (aggregated) arrivals from slot to slot
combined with a general first-order Markovian interclass correlation model, and
general but class-dependent service-time distributions. We have been able to de-
rive the main performance measures of the system in semi-analytical form, i.e.,
we have obtained explicit expressions for such quantities as the mean system con-
tent and the mean customer waiting time in terms of the basic parameters of the
model and one parameter which is only implicitly known through a non-linear
equation that it satisfies.

The results reveal that the interclass correlation does not have any effect on
the stability condition of the system, but it may have a very direct and great
influence on the main performance measures of the system. More specifically,
when the system is (globally) stable, we have observed that two different kinds
of global equilibrium are possible, depending on the exact value of the load. For
“low” values of the load, the system exhibits a “strong” equilibrium, whereas
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for higher loads, the system reaches a “compensated” type of equilibrium. Es-
pecially in the latter case, the impact of strong positive interclass correlation
may be devastating for the queueing performance. We therefore believe that the
phenomenon of class clustering in the context of multi-class queueing systems de-
serves more attention than it traditionally has received in the classical queueing
literature.
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