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Abstract—The class of low-density parity-check (LDPC) codes
is attractive, since such codes can be decoded using practical mes-
sage-passing algorithms, and their performance is known to ap-
proach the Shannon limits for suitably large block lengths. For the
intermediate block lengths relevant in applications, however, many
LDPC codes exhibit a so-called “error floor,” corresponding to a
significant flattening in the curve that relates signal-to-noise ratio
(SNR) to the bit-error rate (BER) level. Previous work has linked
this behavior to combinatorial substructures within the Tanner
graph associated with an LDPC code, known as (fully) absorbing
sets. These fully absorbing sets correspond to a particular type
of near-codewords or trapping sets that are stable under bit-flip-
ping operations, and exert the dominant effect on the low BER be-
havior of structured LDPC codes. This paper provides a detailed
theoretical analysis of these (fully) absorbing sets for the class of
���� array-based LDPC codes, including the characterization of
all minimal (fully) absorbing sets for the array-based LDPC codes
for � � �� �� �, and moreover, it provides the development of tech-
niques to enumerate them exactly. Theoretical results of this type
provide a foundation for predicting and extrapolating the error
floor behavior of LDPC codes.

Index Terms—Absorbing set, bit-flipping, error floor, low-den-
sity parity-check (LDPC ) codes, message passing decoding, near-
codeword, trapping set.

I. INTRODUCTION

L OW-density parity-check (LDPC) codes are a class of
error-correcting codes based on sparse graphs. Their

chief appeal is their excellent performance under practical
decoding algorithms based on message passing, especially for
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moderate bit-error rates (BER), say and above [6], [26],
[28]. As a consequence, LDPC codes have been adopted into
several recent standards including Ethernet [2], digital video
broadcasting [1], [29], and broadband wireless [3].

However, it has been observed that LDPC codes often exhibit
an error floor, meaning that beyond a certain signal-to-noise
ratio (SNR), there is a significant change in slope in the plot
of BER versus SNR. For suitably designed codes, these error
floors only occur at relatively low BERs (e.g., below ), and
do not pose problems for applications requiring only moder-
ately low BER, such as low-rate wireless communications. For
other applications with low BER requirements, such as mag-
netic disk drives and optical channels, these error floors are ex-
tremely troublesome. An ongoing line of research has shown
that these error floors are closely related to the suboptimality of
practical message-passing decoders. MacKay and Postol [18]
recognized that certain classes of non-codewords, which they
referred to as near-codewords, can cause the decoder to fail; in
particular, an near-codeword is a binary string of weight

whose syndrome has weight . From simulation of a rate
LDPC code with block length based on the Margulis con-
struction, they found that and near-codewords
are the main contributors to the error floor of this code when
used for the transmission over an additive white Gaussian noise
(AWGN) channel. They also postulated that the minimum dis-
tance of this code is significantly higher than the weight of
the observed near-codewords. Di et al. [5] defined a closely re-
lated concept of a stopping set, which governs the performance
limits of iterative decoding for LDPC codes over the binary era-
sure channel (BEC). Subsequent work by Orlitsky et al. [21]
has provided analytical characterization of the stopping set enu-
merator for different ensembles of LDPC codes. Although very
useful for determining the performance over a BEC, stopping
sets cannot be used directly to determine LDPC performance
for other channels, such as AWGN channels, since the nature of
errors in nonerasure channels is more subtle. For more general
channels, pioneering work by Richardson [23] introduced the
operationally defined notion of a trapping set in order to address
the error floor of LDPC codes, and developed a fast numerical
method for estimating the error probability in the low BER re-
gion. Follow-up work by Chilappagari et al. [4] used trapping
sets to study error floors of LDPC codes on a binary symmetric
channel. Other researchers have studied closely related notions
of elementary trapping sets [17], pseudocodewords for iterative
decoding [14], [15], and pseudocodewords for linear-program-
ming decoding [12].

In previous experimental work [32], we designed a hardware
emulator to explore the low BER regime of various classes of

0018-9448/$26.00 © 2009 IEEE
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Fig. 1. Hardware-based BER/FER performance of several array-based LDPC codes with bit degree four.

structured LDPC codes. On the basis of these experiments, we
isolated a set of graphical substructures in the Tanner graph
[27] representation of the parity check matrix, referred to as
absorbing sets, that cause various message-passing decoders to
fail by converging to these non-codeword states. Like stopping
sets, absorbing sets have a purely combinatorial definition in
terms of the parity check matrix of a given LDPC code. They
can be viewed as a special subclass of a near-codeword or a trap-
ping set, in particular one that is guaranteed to be stable under
a bit-flipping decoder. With this property, and in contrast to
previous works, absorbing sets describe the dominant decoding
failures of various message passing algorithms and provide a
new analytical foundation for studying error floors.

We also point out that the insights on the structure of the
absorbing sets as the dominant contributors to the LDPC code
performance in the low BER region are not only useful from
the theoretical viewpoint, but they also play an extremely im-
portant role in the systematic development of an efficient de-
coder design required by practical very-large-scale integration
(VLSI) implementations. The properties of absorbing sets are a
critical factor in the design of a high-throughput hardware em-
ulator that operates in very low BER regions [33], [34]. In ad-
dition, an ongoing work has demonstrated that the absorbing
sets are also a fundamental component in an importance-sam-
pling-based method for estimating error floor probabilities [9];
in the development of explicit theoretical bounds on decoder’s
performance [7]; and for the systematic improvement of prac-
tical decoding algorithms [25], [34].

In order to motivate the theoretical results in this paper, we
present several experimental results obtained on our hardware
emulator [32]. This hardware platform is capable of reaching
remarkable BER levels below for structured finite-length
LDPC codes, decoded using a sum–product algorithm. Fig. 1
shows the performance of several array-based LDPC codes [11],
along with the uncoded transmission curve, for both the bit- and
frame- error rate (FER). The results are for three different

TABLE I
ERROR STATISTICS FOR THE ������ ����� ARRAY-BASED LDPC CODE

(CHECK DEGREE � 	
, BIT DEGREE � �)

TABLE II
ERROR STATISTICS FOR THE ����������� ARRAY-BASED LDPC CODE

(CHECK DEGREE � ��, BIT DEGREE � �)

codeword lengths, and
, with rates and , respectively. These

codes have check degrees and , respectively, and all
three have bit degrees equal to . While the performance re-
ported in Fig. 1 of these three codes is quite similar, it is impor-
tant to notice that the low BER performance of all three codes
is dominated by the (fully) absorbing sets (this object
will be precisely defined in Section II-B), as indicated in Ta-
bles I, II, and III which list the statistics (counts) of the error
events captured at several SNR points. Each row corresponds to
the number of captured decoding errors when the decoder con-
verged to an absorbing set, for different pairs.

While in this paper we focus on describing in detail the ab-
sorbing sets for the family of high-rate array-based LDPC codes,
it is worth reiterating that the absorbing sets are a general prop-
erty of the factor graph describing the parity check matrix of an
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Fig. 2. Hardware-based BER/FER performance of the ������ ����	 Reed–Solomon based LDPC code.

TABLE III
ERROR STATISTICS FOR THE ����
� ����	 ARRAY-BASED LDPC CODE

(CHECK DEGREE � ��, BIT DEGREE � �)

LDPC code, not just of a specific class of codes on which
we focus in depth in the remainder of the paper. As an il-
lustration, Fig. 2 shows the BER/FER versus SNR curve
of another high-performance LDPC code, the
Reed–Solomon LDPC code [6]. While this code also has a very
good performance in the moderate BER region, it also expe-
riences a significant flattening of the BER/FER versus SNR
curve at lower BER levels. For this code, the dominant errors
are the (fully) absorbing sets. In fact, almost all errors
captured in the 5.0–5.5 dB range are fully absorbing sets.

It is important to point out that in all of the above examples,
none of the recorded decoding errors in the low BER region
were due to the minimum distance or any other nontransmitted
codewords.

Under maximum-likelihood decoding, it is well known that
the minimum distance and the weight enumerator of a code
are key factors that determine its error-correcting performance.
Given that absorbing sets (as opposed to neighboring code-
words) are the dominant error event for iterative decoders, it
is natural to consider the analogs of minimum distance and
weight enumerator for absorbing sets. With the above moti-
vating examples in mind, we now turn to the in-depth study
of the minimal absorbing sets of high-rate array-based LDPC
codes. This class of codes is an exemplar of a structured LDPC
code with excellent performance in the moderate BER region,
but whose low BER performance is governed by the minimal

absorbing sets. For this class of structured LDPC codes, we
prove the nonexistence of various possible candidate absorbing
sets, and having thereby explicitly constructed minimal ab-
sorbing sets, we characterize their combinatorial structure and
cardinalities.

Compared to the results in [8], in this work we provide the
complete and explicit characterization of all (fully) ab-
sorbing sets (versus pure existence and asymptotic properties),
and a detailed theoretical analysis of all candidate configura-
tions of minimal absorbing sets for column weights of interest.
Additionally, the experimental evidence provided earlier in this
section motivates the usefulness of studying absorbing sets.

The remainder of this paper is organized as follows. We begin
in Section II with a brief overview of the class of array-based
LDPC codes [11], and then formally introduce the definition of
absorbing sets. In Section III, we provide a detailed study of the
absorbing sets for column weights and for the stan-
dard parity check matrices of such codes, and enumerate
all such sets of smallest size. All of the theoretical results are
stated in this section, with some of the more technical proofs
deferred to the Appendix. Section IV concludes the paper.

II. BACKGROUND

We begin with background on array-based LDPC codes, and
then provide a precise definition of absorbing sets.

A. Array-Based LDPC Codes

Array-based LDPC codes [11] are regular LDPC codes pa-
rameterized by a pair of integers , such that , and
is a prime. Given a permutation matrix of the form

...
...

...
...

(1)
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Fig. 3. An example of a ��� �� absorbing set.

we form the parity check matrix

...
...

...
...

(2)

We use to denote the binary linear code defined by this
parity check matrix (2). The rate1 of this code is
[20]. Fan [11] first demonstrated that array-based LDPC codes
have very good performance in the low SNR region, and they
have subsequently been proposed for a number of applications,
including digital subscriber lines [10] and magnetic recording
[30].

B. Absorbing Sets

A convenient representation of an parity check matrix
of a binary linear code is in terms of its factor or Tanner graph

[13], [16], [27]. In particular, let denote a bi-
partite graph, in which the set of vertices is associated with
bits in the code (columns of ), and the set is associated with

checks of the code (rows of ). The edge set is defined by
the structure of : in particular, there exists an edge
if and only if and . Elements of are called “bit
nodes” and elements of are called “check nodes.”

For the array-based LDPC codes defined in Section II-A, the
factor graph associated with does not have any cycles of
length four, and thus the girth is at least six (see [11]). For any
subset of we let denote the subset of check nodes
neighboring the elements of . For any subset of , let
(resp., ) be the set of neighboring vertices of in in the
graph with even (resp., odd) degree with respect to . With
this setup, we have the following.

Definition 1: Given an integer pair , an absorbing
set is a subset of size , with of size and with
the property that each element of has strictly fewer neighbors
in than in . We say that an absorbing set

is an fully absorbing set, if in addition, all bit nodes in
have strictly more neighbors in than in .

An example of a absorbing set is given in Fig. 3,
where dark circles represent bits in the set , dark squares
constitute the set , white squares constitute the set

is given by solid lines, and is given
by dashed lines. Observe that each element in has more
neighbors with even degree than odd degree. All check nodes
not in the picture are denoted by empty squares. For this set
to be a fully absorbing set, every bit node not in the figure

1Note that the parity check matrix � is not full rank, hence the slight
increase in rate over � � ���.

should also have strictly more empty squares than full squares
as neighbors.

Note that is a fully absorbing set if and only if for
all , where de-
notes the symmetric difference between and , is
the Hamming weight of a binary string , and is a binary
string with support .

The name “absorbing set” indicates the absorbing nature of
these combinatorial objects in the sense that they act as local
minimum states for the decoding algorithm: upon entering this
configuration the decoding algorithm is “absorbed” in it. For the
special case of a bit flipping algorithm [24], the configuration
described as a fully absorbing set is stable, since each bit node
receives strictly more messages from the neighboring checks
that reinforce its value than messages that suggest the opposite
bit value. However, as illustrated in the examples in the Intro-
duction (further implementation details and additional examples
are in our concurrent work [34]), absorbing sets also control the
error floor behavior of more sophisticated message-passing de-
coders, such as the sum–product algorithm.

III. THEORETICAL RESULTS

Our goal is to describe minimal absorbing sets and minimal
fully absorbing sets of the factor graph of the parity check
matrix , for , where the minimality refers to the
smallest possible , and where is the smallest possible for the
given .

We use the following notation throughout the paper. Recall
that is a matrix of ’s and ’s. It is convenient
to view as a two-dimensional array of component
submatrices with the rows in the range (also
referred to as row groups) and the columns in the range

(also referred to as column groups). Each column
of is uniquely described by a pair where denotes
the column index of the submatrix this column belongs to, and

, denotes the index of this column within the
submatrix.

Our main results are summarized in Theorems 1 and 2. Let
be the factor graph associated with the parity check matrix
of the array-based LDPC code . The first result char-

acterizes the minimal (fully) absorbing sets.

Theorem 1 (Minimality):
(a) For the family, all minimal absorbing sets are min-

imal fully absorbing sets, and are of size .
(b) For the family, the minimal absorbing sets are of size

, and the minimal fully absorbing sets are of size
.

(c) For the family, and for , the minimal ab-
sorbing sets and the minimal fully absorbing sets are of
size .

Our second result deals with the scaling behavior of the
number of absorbing sets. Recall the standard asymptotic
notation : we say that some positive function grows as

if there exist constants such that
, for sufficiently large.

Theorem 2 (Scaling): Recalling that the block length
of the code corresponds to the number of columns in the
parity check matrix , we have the following.

(a) For , the number of minimal (fully) absorbing sets
in grows as .
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(b) For , the number of minimal absorbing sets as well
as the number of minimal fully absorbing sets grows as

.
(c) For and for all block lengths the number of

minimal absorbing sets as well as the number of minimal
fully absorbing sets grows as .

Although Theorem 2 states the result in terms of the
-scaling behavior, our techniques in fact provide an exact

count of the number of minimal (fully) absorbing sets. Note
that Theorem 1(a) implies that for , the smallest (fully)
absorbing sets are codewords; in fact, for this code, these
absorbing sets are the minimum distance codewords. This
result should be contrasted with the assertions of Theorem 1(b)
and (c), for and , respectively, which establish
the existence of (fully) absorbing sets strictly smaller than
the minimum distance of the code. In particular, for ,
the minimum distance is six [20], [31], whereas for
and , the minimum distance is between eight and ten
[20], [31]. Therefore, for both and , the minimal
absorbing sets and minimal fully absorbing sets are strictly
smaller than the minimum distance of the code.

Subsequent sections contain detailed proofs of the above
statements. In particular, the proofs of Theorems 1 and 2 are
presented in the following order.

• In Section III-A, we summarize the principal structural
properties of the parity check matrix , that are referred
to as the bit-, check-, cycle-, and pattern- consistency con-
straints, respectively. These structural properties will be re-
peatedly exploited in establishing the main results.

• Section III-B contains the proof of statements given in The-
orems 1(a) and 2(a). In particular, after having shown that
the number of bits in a minimal absorbing set has to be at
least for the code described by , Lemma 3 provides
an explicit count of (fully) absorbing sets, thus im-
mediately implying Theorem 1(a) and Theorem 2(a).

• Section III-C contains the proof of statements given in The-
orems 1(b) and 2(b). We first show that for the code de-
scribed by , the number of bits in a minimal absorbing
set has to be at least . We then prove that absorbing
sets exist, and that these are not fully absorbing sets. We
then show that absorbing sets are the minimal fully
absorbing sets, thus establishing Theorem 1(b). Lemma 4
provides the explicit counts of absorbing sets, and of

fully absorbing sets, thereby implying the statement
in Theorem 2(b).

• The lengthiest Section III-D deals with proving the state-
ments given in Theorems 1(c) and 2(c). To prove the state-
ments regarding the minimality of (fully) absorbing
sets for the code described by , we proceed with a se-
ries of auxiliary lemmas that establish the nonexistence of
certain smaller candidate absorbing sets, which holds for
sufficiently large code parameter (specifically
will be sufficient for all auxiliary results). The sequence
of the intermediate results consists of: 1) Lemma 5 that
proves that absorbing sets do not exist, 2) Lemma
6 that proves that absorbing sets do not exist, and
3) Lemma 7 that proves that absorbing sets do not
exist. Finally, Lemma 8 provides an in-depth analysis of
the (fully) absorbing sets, where we provide the ex-
plicit enumeration and structural description of these sets.

We begin with elementary structural conditions and lemmas
that play a central role throughout the paper, summarized in
Section III-A.

A. Preliminaries

Let be the factor graph associated with , so bit
nodes and check nodes in represent columns and rows in

, respectively. In the graph , bit nodes have degree
and check nodes have degree . There is a total of bit nodes
and check nodes. Each bit node in receives the unique
label that describes the corresponding column of .
Each check node in receives a label if the corresponding
row of belongs to the row group . Multiple bit nodes can
have the same or label, but not both. Multiple check nodes
can have the same label.

We note that the structure of the parity check matrix imposes
the following conditions on the neighboring bit nodes and check
nodes.

Bit Consistency: For a bit node, all its incident check nodes,
labeled through , must have distinct labels, i.e., these
check nodes are in distinct row groups.

Check Consistency: All bit nodes, say through
, participating in the same check node must have dis-

tinct values, i.e., they are all in distinct column groups.
Both conditions follow from the fact that the parity check ma-

trix of consists of a two-dimensional array of permu-
tation matrices of equal size.

Lemma 1: (Pattern Consistency) The permutation submatrix
has the following properties.
(a) The entry of is if and only if .
(b) Let and be in the same row group of . If

entry of is nonzero, then so is entry of
where .

Proof: Assume that the columns and rows of are indexed
with through . Recall that has “ ” in the topmost row in
the column indexed (last column), and that each subsequent
row has “ ” in a position that is a cyclic shift to the right of
the position of “ ” in the previous row. Multiplying with
cyclically shifts the entries by one position to the left. Thus,
has “ ” in the topmost row in column , and has
“ ” in some row in the column , from
which the statement (a) follows. Thus, has “ ” in row in
the column indexed and has “ ” in
row in the column indexed . Equating
these expressions in terms of , the statement in (b) follows.

We will refer to the constraints of the type described in
Lemma 1 as pattern consistency constraints.

Lemma 2: (Cycle consistency) Consider a cycle in of
length , involving bit nodes, with labels through

and check nodes, with labels through , such that
bit nodes and participate in the check labeled

and participate in the check labeled , and
so on, until check labeled in which and par-
ticipate. Then

(3)
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Fig. 4. (Labeled) candidate ��� �� absorbing set.

Proof: The pattern consistency constraints of Lemma 1(b)
give

... (4)

Expand into

Hence

(5)

By rearranging the terms, relation (3) follows.

Constraints of the type (3) will subsequently be referred to
as cycle consistency constraints. Note that the cycle consis-
tency constraints are a consequence of the pattern consistency
constraints.

B. Proof of Theorems 1(a) and 2(a)

We start by proving Theorem 1(a). The code has uniform
bit degree two, and is thus a cycle code. Even though such codes
are known to be poor [22], we include the analysis for the sake
of completeness.

Let denote the factor graph of . Let
be an absorbing set in . Each bit node in has

degree in and is required to have strictly more neighbors
in than in . This implies that is empty. The
absorbing set is of type . It is thus a fully absorbing set,
and is in fact a codeword.

Since the matrix has the top row consisting of identity
matrices, the codewords of are of even weight. Moreover,
since the bottom row of consists of distinct component
submatrices, no two columns of sum to zero. Therefore,

and even and there are no cycles of length in this code.
We now consider . Let and

be the bit nodes participating in a candidate ab-
sorbing set. These nodes must necessarily be arranged as in
Fig. 4.

The following result proves Theorem 1(a).

Lemma 3: There is a total of (fully) ab-
sorbing sets in the code described by .

Proof: The bit consistency conditions are automatically
satisfied by the numbering of the row groups in Fig. 4. The check
consistency constraints give

and (6)

whereas the pattern consistency constraints of Lemma 1(b) give

(7)

There are ways of choosing , which also determines .
Since , we must have , so we have ways
of choosing , which also determines . We then have ways
of choosing , which also determines . Since , we
have ways of choosing , which also determines . To
verify that every one of these choices satisfies all the equations
it only remains to verify that . This holds because

(8)

Now, for any choice of row group labels for the checks, and
column labels for the bits that satisfy the bit and check con-
sistency constraints and the pattern consistency constraints of
Lemma 1(b), there is a unique way to choose the row index in
the individual row groups so that the pattern consistency con-
straint of Lemma 1 are satisfied. This completes the proof of
Lemma 3.

From Lemma 3 (and recalling that the block length ),
we conclude that the number of (fully) absorbing sets for
the code described by is , thereby establishing The-
orem 2(a).

C. Proof of Theorems 1(b) and 2(b)

In our preceding analysis with , note that ab-
sorbing sets are actually codewords, so the performance of the
cycle code under iterative decoding is dominated by low weight
codewords. We now turn to the case , which leads to more
interesting results. In particular, our proof of Theorem 1(b) es-
tablishes the existence of minimal absorbing sets and minimal
fully absorbing sets, for which the number of bit nodes is
strictly smaller than the minimum distance of the code.

Let denote the factor graph of . Let
be an absorbing set in . Each bit node in has

degree in and is required to have strictly more neighbors
in than in .

Suppose . In the graph , an even number of edges
from terminates in . Thus, either or corre-
sponding to the situations in Fig. 5. In either case, there would
be a cycle of length in , which cannot hold [11], implying
that .

Suppose . In the graph , an even number of edges
from terminates in . Thus, either or .
Suppose . This must correspond to the first form in Fig. 6,
or the second form in Fig. 6, which again involves a cycle of
length in , a contradiction [11].

Still with , the remaining case to consider is .
In this case, each bit node in would then connect to exactly
one check node in implying the unlabeled form of Fig. 7.
Note that there is a cycle of length . Suppose that these three
bit nodes are indexed as and , respec-
tively, where and are distinct (by the check consistency)
and . Without loss of generality, as-
sume that and share a check in the row group
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Fig. 5. Candidate ��� �� absorbing sets. (a) � � �. (b) � � �.

Fig. 6. Candidate ��� �� absorbing sets. (a) First candidate. (b) Second
candidate.

Fig. 7. (Labeled) candidate ����� absorbing set.

and share a check in the row group , and that
and share a check in the row group , where

and are distinct by the bit consistency con-
dition. We may assume without loss of generality that

and . Note that the bit consistency constraints
force the values of and to be as given in Fig. 7.

In the remainder of the discussion, we first prove the exis-
tence of a absorbing set. We then show that these
absorbing sets are not fully absorbing sets. This result will in
turn imply the existence of fully absorbing sets, which
are thus minimal fully absorbing sets for .

The bit consistency constraints are automatically satisfied by
our labeling of the row groups in Fig. 7. The check consistency
constraints reduce to the distinctness of and . The pat-
tern consistency constraints of Lemma 1(b) give

(9)

(10)

(11)

The existence of a solution and hence of a absorbing set is
given in the proof of Lemma 4 below, which counts the number
of such sets.

Fig. 8. Candidate ����� absorbing set (solid circles), with an adjacent bit node
(empty circle).

Even though a fully absorbing set seems plausible, care
must be taken with respect to bit nodes outside a candidate fully
absorbing set, that also participate in the unsatisfied checks. As
we now show, a fully absorbing set cannot exist, though
the existence of a absorbing set implies a fully ab-
sorbing set.

Suppose first that a fully absorbing set were to exist.
Since , it is then necessary that no bit node outside of the
absorbing set participates in more than one unsatisfied check
adjacent to a absorbing set. Since and
share a check, . Consider the bit node labeled
that connects to , as in Fig. 8. Since , it follows from
Lemma 1(b) that . Equations (9)–(11) imply that

so that bit node
also connects to the check labeled , as shown in Fig. 8. This
eliminates the possibility of a fully absorbing set.

A absorbing set (i.e., a codeword of weight ) cannot
exist since the minimum distance of the code is [31]. The
next candidate size for the smallest fully absorbing set is .
Each of the unsatisfied checks in any such configuration would
necessarily connect to only one of the bit nodes, else we would
have a cycle of length , a contradiction [11]. Given this, no
satisfied check node can connect to all four bit nodes, else we
would have a cycle of length , a contradiction [11]. Since there
are ten edges from the bit nodes that go to satisfied checks we
now see that there must be five satisfied checks in any candidate

fully absorbing set. The two bit nodes that each have all
their three edges going to satisfied check nodes must then share
exactly one satisfied check (they have to share at least one, and
cannot share more than one [11]). We have therefore concluded
that any candidate fully absorbing set must look like (an
unlabeled version of) Fig. 8. The existence of such fully
absorbing sets is proved in Lemma 4, which also counts the
number of such sets.

Lemma 4: The total number of absorbing sets and
fully absorbing sets in the factor graph is ,

and , respectively.
Proof: Referring to Fig. 7, the bit consistency and the

check consistency constraints are satisfied for the given labels
of row groups and since and are distinct. Then and

can each be chosen in ways, and then can be chosen
in ways. This fixes by (9), by (10), and then
by (11). There is then a unique way to choose the row indices
in the individual row groups so that the pattern consistency
conditions of Lemma 1 are satisfied. Thus, the total number of

absorbing sets is .
Turning to counting fully absorbing sets, every such

set must look like an unlabeled version of Fig. 8, and so it con-
tains exactly two distinct absorbing sets (corresponding,



188 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 1, JANUARY 2010

Fig. 9. Depiction of the candidate ��� �� absorbing set.

respectively, to removing one of the bit nodes that connects
to an unsatisfied check). From Fig. 7 one can see that every

absorbing set is contained in three distinct fully ab-
sorbing sets (for each pair of unsatisfied checks in Fig. 7 one
can find a bit node that these checks connect to, which when ap-
pended to the absorbing set gives a fully absorbing
set). The total number of fully absorbing sets is therefore

.

Observe that Lemma 4 immediately implies Theorem 1(b).

D. Proof of Theorems 1(c) and 2(c)

In order to establish that (fully) absorbing sets are min-
imal for and , we will first show that ab-
sorbing sets for do not exist. This section contains the
following auxiliary results on the nonexistence of certain can-
didate absorbing sets, which hold for sufficiently large code pa-
rameter (specifically will be sufficient for all auxiliary
results). In particular:

— Lemma 5 proves that absorbing sets do not exist;
— Lemma 6 proves that absorbing sets do not exist, and
— Lemma 7 proves that absorbing sets do not exist.

Finally, Lemma 8 provides an in-depth analysis of the
absorbing sets.

Let denote an absorbing set in ,
the factor graph of . If (respectively, ) then at least
six (respectively, nine) edges from in terminate in ,
which implies the existence of a cycle of length in , which
is false [11]. Thus, .

Suppose and note that must be even. We cannot have
, since this would imply the existence of a codeword of

weight , which is false [31]. If , one can conclude that
there must be a cycle of length in the code (whether the number
of edges going into unsatisfied checks is two or four), and this is
false, [11]. Thus, we must have and, since each bit node
must have at least three edges going to satisfied checks, the im-
possibility of a cycle of length [11] implies that the absorbing
set can be described as in Fig. 9. In this figure, each vertex rep-
resents a distinct bit node of the candidate absorbing set
and each edge represents a satisfied check node that connects
to the bit nodes in the absorbing set, that correspond to its end-
points in the figure. The following lemma establishes that such
sets do not exist if the prime is large enough.

Lemma 5: For , the factor graph family does not
contain any absorbing sets.

Proof: Without loss of generality, we may let
and , where and dis-

tinct by the bit consistency conditions. Then, by propagating
the bit consistency conditions at each remaining vertex, and ex-
ploiting the symmetry, it suffices to consider
either or where

and are distinct.
For the case , we es-

tablish the following cycle consistency conditions based on the
cycles within the graph in Fig. 9:

and

(12)

By adding and subtracting the conditions in (12), it follows that

and

(13)

Since are distinct, relation (13) implies that ’s would
have to be all the same, which contradicts the check consistency
constraint.

For the case , again
based on the cycle structure in Fig. 9, we obtain the cycle con-
sistency conditions

(14)

We let and . By the
check consistency condition, all of and are nonzero.
Substituting and in (14) and then expressing and

in terms of , one arrives at the condition

(15)

It can be verified that this condition cannot hold for any choice
of , where and are distinct
for . There are ways of assigning numerical
values to . Substituting each numerical assignment

yields possible choices of prime for which the ex-
pression in (15) becomes zero . The condition (15) holds
for . Therefore, for does not contain

absorbing sets.

We next show that absorbing sets do not exist for the pa-
rameter large enough. In particular we establish a congruential
constraint involving the labels of the edges emanating from the
bits in the absorbing set that cannot hold for large enough.

Lemma 6: For , the factor graph family does not
contain any absorbing sets.

Proof: Since each bit node in the absorbing set has at most
one neighboring unsatisfied check node, it follows that .
By counting the number of edges emanating from the bit nodes
in the candidate absorbing set (some of which have three sat-
isfied and one unsatisfied check, and the rest having all four
checks satisfied) and ending at satisfied checks, it follows that
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Fig. 10. Depiction of the candidate ��� �� absorbing set.

the number of bit nodes with three satisfied and one unsatisfied
check nodes is even, and thus is even.2 First by the min-
imum distance, of the code, [31]. If , since we
have at most five edges going to unsatisfied checks, there are
two cases: (a) either three of them go to one unsatisfied check
and one to another, or (b) one edge goes to each of the two un-
satisfied checks. In case (a), because the girth of the factor graph
is bigger than [11], none of the three bit nodes that share an
unsatisfied check can share a satisfied check. Further, no two
bit nodes can share a satisfied check for the same reason. By
counting, this eliminates case (a). In case (b), if we drop one
of the bit nodes that has an unsatisfied check we would have a

absorbing set which we have argued in Lemma 5 does not
exist for .

Thus, for we are left with considering the case
since at most five edges go into unsatisfied checks. This means
the candidate absorbing set contains one bit node with all checks
satisfied and four bit nodes each with three satisfied and one
unsatisfied check. The only way that such an absorbing set could
exist is if one has the configuration shown in Fig. 10, where the
vertices represent bit nodes and edges represent their satisfied
check nodes.

Since and are all distinct elements of the set
, by the bit consistency condition, and by the sym-

metry of the candidate configuration in Fig. 10, we may assume

2There are five bit nodes in a candidate ��� �� absorbing set, some having
three neighboring satisfied checks and one neighboring unsatisfied check, and
some having four neighboring satisfied checks and zero neighboring unsatisfied
checks. The number of former is then � and the number of latter is ��� ��. The
number of edges emanating from the bits in this absorbing set and ending at
satisfied checks is even (since these checks are satisfied). Thus, ��� ���� ��
is even. That is, ���� �� is even and � itself is even.

that . We let and , where
and distinct. By propagating possible values

of the labels for remaining edges, while maintaining bit con-
sistency conditions, it follows that is
either or .

For , and
for each edge and its endpoints in Fig. 10, we write the pattern
consistency constraints of Lemma 1(b), in terms of and

(16a)

(16b)

(16c)

(16d)

(16e)

(16f)

and (16g)

(16h)

A simplification of the last system leads

(17a)

(17b)

(17c)

We let and
. Note that by the check consistency condition, all

of and are nonzero.
We then obtain (18) at the bottom of the page.This last system

can be rewritten as

(19)

Therefore, the determinant of the matrix multiplying the
(nonzero) vector in (19) is itself zero, which
simplifies to

(20)

Since and distinct, we consider all
assignments for , and for each we evaluate the left-hand
side expression in (20). Note that for distinct ,
this expression is at most in absolute value, and therefore the
constraint in (20) does not have a solution for for distinct

. (Solutions exist for and , which
can be verified by direct numerical substitution).

(from (17a))

(from (17a))

(from (17b))

(from

and by substituting from (17c), (17b), and (17a), respectively). (18)
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For we
likewise establish the constraints as in (16) and (17). We
again let and

and obtain

(21)

Since the entries in are all nonzero, it follows
that the determinant of the matrix in (21) is zero. Simplifying
the expression for the determinant yields again the condition in
(20). Therefore, for , absorbing sets do not exist.

We can now proceed with the analysis of absorbing
sets. Since the number of bit nodes with three satisfied and one
unsatisfied check node is even, is even. First, is not
possible since [31]. The following lemma addresses
the case of .

Lemma 7: For , the factor graph family does not
contain any absorbing sets.

Proof: We first claim that there is no check node of degree
at least with respect to the bit nodes in the absorbing set. Let
us first suppose that there exists one such check node and that it
has an even degree with respect to the bit nodes in the absorbing
set. Since we are considering an absorbing set with six bit nodes,
such a check node would have degree either or with respect
to the bit nodes in the absorbing set. If this satisfied check is of
degree , there would exist two bit nodes in the absorbing set
which would share an additional satisfied check. This situation
would imply the existence of a cycle of length , which is im-
possible by the girth condition [11].

Suppose now that this satisfied check has degree . Each bit
node that participates in this check has at least two more neigh-
boring satisfied checks, which it then necessarily must share
with the remaining two bit nodes in the absorbing set that them-
selves do not participate in this degree- check by the girth con-
dition [11]. If there exists a bit node that participates in this de-
gree- check and has all checks satisfied, it then shares its re-
maining neighboring check with one of the bit nodes with which
it already shares a check. This situation violates the girth con-
straint [11]. If all bit nodes in the absorbing set that participate
in this degree- check have three satisfied and one unsatisfied
check, three of them would have to participate in the same un-
satisfied check to make the total number of unsatisfied checks
be two. This again violates the girth condition [11].

Therefore, all satisfied checks with respect to the bit nodes in
the absorbing set have degree . Suppose there exists a check
node that is unsatisfied with respect to the bits in the absorbing
set and that has degree bigger than . If such a check node has
degree , there would necessarily exist two bit nodes in the ab-
sorbing set that share this degree- check and another satisfied
check, which is impossible by the girth condition [11].

Suppose that there exist two degree- checks incident to the
bit nodes in the absorbing set. First, these degree- checks do
not have any neighboring bit nodes in common since we require
that each bit node has at most one unsatisfied check. We can
then group the bit nodes in the absorbing set into two disjoint
groups, each of size , such that the bits in the same group share
the same degree- check. Consider a bit node in, say, the first
group. It shares its remaining three (satisfied) checks with each

one of the bit nodes in the second group. The same is true with
the other two bit nodes in the first group, namely they too share
their remaining three (satisfied) checks with the bit nodes in
the second group, and these satisfied checks connect to two bit
nodes in the absorbing set. Therefore, there exist two bit nodes
in the first group and two bit nodes in the second group such that
any two share a distinct check. This configuration is not possible
by Lemma 5 for .

Suppose now that there exists one unsatisfied check of de-
gree with respect to the bit nodes in the absorbing set. The
remaining unsatisfied check then has degree with respect to
the bit nodes in the absorbing set, and the neighboring bit nodes
in the absorbing set of these two unsatisfied checks are different.
There are two bit nodes in the absorbing set that have all checks
satisfied. Partition the bit nodes in the absorbing set into three
groups: the first group contains the three bit nodes that share a
degree- unsatisfied check, the second group contains the one
bit node that has one unsatisfied check, and the third group con-
tains the two bit nodes that have all four checks satisfied. Each
of the three bit nodes in the first group has one unsatisfied and
three satisfied checks and thus it shares a satisfied check with
each of the bit nodes in the second and third group since it cannot
share a satisfied check with another bit node in the first group
by the girth condition [11]. The bit node in the second group
also has one unsatisfied and three satisfied checks, and the latter
are shared then with the bit nodes in the first group. The two
bit nodes in the third group have all four checks satisfied, the
three of which they each share with each of the bit nodes in the
first group. Since all three satisfied checks of the bit node in
the second group are used up with the checks it shares with the
bit nodes in the first group, the two bit nodes in the third group
share a satisfied check with each other. Therefore, there exist
two bit nodes in the first group and two bit nodes in the third
group such that any two share a distinct check. This configura-
tion is not possible by Lemma 5 for .

We conclude that no check incident to the bit nodes in the
absorbing set has degree larger than , namely that all neigh-
boring satisfied (respectively, unsatisfied) checks have degree
(respectively, ). By requiring that each vertex corresponding to
a bit node in the absorbing set has either three or four outgoing
edges, and that there are no parallel edges, it follows that there
are two possible configurations, as shown in Fig. 11, that relate
bit nodes in the absorbing set (vertices) and their shared satis-
fied checks (edges).

Observe that the configuration in Fig. 11(b) contains a
absorbing set which consists of and

. By Lemma 5, such configuration is not possible for
. The analysis of the configuration in Fig. 11(a) is con-

siderably more involved and its technical details are deferred to
Appendix I-A, in which we derive a congruency constraint that
cannot hold for prime under all possible configuration
labelings. With that result, the proof of Lemma 7 is complete.

Having eliminated smaller candidate absorbing sets, we now
prove the following result.

Lemma 8: For all , the factor graph family has
(fully) absorbing sets. These sets are completely charac-

terized by the solutions given in Tables IV, V, VI, and VII.
Proof: We will first show that all satisfied checks neigh-

boring bit nodes in one such absorbing set must have degree .
Note that there cannot be a degree- check with respect to the
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TABLE IV
SEVERAL SOLUTIONS FOR A ��� �� FULLY ABSORBING SET EXPRESSED IN TERMS OF THREE INDEPENDENT PARAMETERS, �� �� AND �.

CONFIGURATION IS SHOWN IN FIG. 12. PARAMETERS �� �� AND � DETERMINE EDGE LABELING, SEE TEXT FOR MORE DETAILS

TABLE V
SEVERAL SOLUTIONS FOR A ����� FULLY ABSORBING SET EXPRESSED IN TERMS OF THREE INDEPENDENT

PARAMETERS, �� �� AND �. CONFIGURATION IS SHOWN IN FIG. 12. PARAMETERS �� �� AND �

DETERMINE EDGE LABELING, SEE TEXT FOR MORE DETAILS

Fig. 11. Depiction of the candidate ����� absorbing sets. (a) First candidate
configuration. (b) Second candidate configuration.

bits in the absorbing set as then some of these bits would have to
share another satisfied check which is not possible by the girth

condition [11]. Suppose that there exists a check node of de-
gree with respect to a absorbing set. Let be
the bit nodes in the absorbing set participating in this degree-
check node, and let and be the remaining two bit nodes in
the absorbing set. By the girth condition there can be at most
one degree- check incident to the bit nodes in the absorbing
set. If at least one of had all check nodes satisfied, it
would be necessary that such a bit node shares another distinct
check node with some other bit node participating in the de-
gree- check node, which is impossible by the girth constraint
[11]. Thus, all of are each connected to three satis-
fied and one unsatisfied check nodes, and all unsatisfied checks
are distinct. Then and are each connected to four satisfied
check nodes each of degree with respect to the bit nodes in
the absorbing set. Since through have three satisfied neigh-
boring checks (one of which is a degree- check by assumption),
they each share a check with and with . Therefore, and

do not share a check. Let for be the labels of the
four check nodes connecting and . By the bit consistency
condition at , they are all different. By the bit consistency con-
dition at each of for , the label of their shared de-
gree- check node must be different from all for ,
which is impossible as there are only four distinct labels avail-
able. Therefore, all satisfied check nodes neighboring bit nodes
in the absorbing set have degree .

We first consider the case where there exists an unsatisfied
check of degree with respect to the bit nodes in the absorbing
set (an unsatisfied check of degree larger than is not possible
by the girth condition). Consider a candidate absorbing set
in which three bit nodes, call them connect to the same
unsatisfied check, and the remaining three bit nodes, call them

, each have a distinct unsatisfied check. Since there are
no cycles of length , each of the shares a distinct sat-
isfied check with each of . Appendix I-B contains the
proof that in fact for prime , where , such a configura-
tion is not possible.

We now continue with the analysis of the candidate configu-
rations in which each satisfied check has degree with respect
to the bit nodes in the absorbing set, and each unsatisfied check
has degree with respect to the bits in the absorbing set.
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TABLE VI
A SOLUTION FOR A ��� �� ABSORBING SET EXPRESSED IN TERMS OF THREE INDEPENDENT PARAMETERS, �� �� AND �. CONFIGURATION IS SHOWN IN FIG. 13.

PARAMETERS �� �� AND � DETERMINE EDGE LABELING, SEE TEXT FOR MORE DETAILS

TABLE VII
A SOLUTION FOR A ����� ABSORBING SET EXPRESSED IN TERMS OF THREE INDEPENDENT PARAMETERS, �� �� AND �. CONFIGURATION IS SHOWN IN FIG. 13.

PARAMETERS �� �� AND � DETERMINE EDGE LABELING, SEE TEXT FOR MORE DETAILS

Fig. 12. Depiction of the first candidate ����� absorbing set.

Fig. 13. Depiction of the second candidate ����� absorbing set.

By separately considering the cases when the two bit nodes
that have all neighboring checks satisfied also have a satisfied
check in common, and the cases when they do not, one can show
that there are three possible nonisomorphic configurations, as
shown in Fig. 12, 13, and 14. By ensuring the bit consistency,
it further follows that for each configuration there are eight dis-
tinct edge labelings (as we show below). Let us consider the
configuration in Fig. 12 first. The other two configurations are
analyzed subsequently.

(a) First candidate configuration— Fig. 12.
We first determine all possible edge labelings. For con-

venience, we assign , where
and distinct by the bit consistency

condition at . Then, by imposing the bit consistency

Fig. 14. Depiction of the third candidate ����� absorbing set.

conditions at remaining vertices, the possible assignments for
the remaining edge labels are as follows:

(22)

We first observe that the assignments

and

are in fact symmetric (exchange and ) and it is thus
sufficient to analyze only one of them. Likewise, by ap-
pealing to symmetry and after appropriate renaming, the
remaining six assignments also represent the same labeled
configuration. In particular, the third and sixth assignments
in (22) are symmetric, as are fourth and seventh, and as
are fifth and eighth assignments. Fourth assignment fol-
lows from the third by exchanging the labels and , and
the fifth assignment follows from the third by exchanging
the labels and . It is thus sufficient to consider only

or .
I. Consider the labeling

.
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By applying the pattern consistency for each edge and its end
points in Fig. 12 we obtain

(23)

Using the cycle consistency conditions for each of five cycles
that span the cycle space of the graph in Fig. 12 we also write

(24)
We will use the relationships in (24) to express through

in terms of and , and then in turn use (23) to express
through in terms of and .
By symmetry of the configuration (see Fig. 12), for the cur-

rent labeling it is sufficient to consider and . Specif-
ically, letting or reduces to the case.

We let
and . Note that in particular by the check consistency
constraint, .

1. Case :
The system in (24) reduces to

(25)

Using (25) we express and in terms of . In particular,
it can be shown that the last constraint in (25) is redundant as it
follows from the previous four.

Therefore, for and , all of the remaining
values of follow for each of the choices of

.
From (23), we have that as well

as and .
We can thus express through in terms of
and . The results for all choices of are summarized
in Table IV, where the indices are taken .

Furthermore, under the current configuration, the bit nodes in
one such absorbing set that have three satisfied and one
unsatisfied checks, all have unsatisfied checks in the row group
labeled . By the bit consistency condition, no bit node can con-
nect to more than one such check. Therefore, this configuration
is in fact a fully absorbing set. In particular, the solution
set in row 1 holds for all and a multiple of .

We complete the analysis of this label assignment by consid-
ering .

2. Case :
In this case, the system in (24) reduces to

(26)

Note that the last relation follows from the previous four. We
again express and in terms of , so that by setting

and , all of through follow as a function of
and . Then, by letting , the remaining through

follow from and from (24). The solution set for various
numerical assignments of is given in Table V, where
the indices are taken .

As in the case, the unsatisfied checks all belong in
the row group labeled . By the bit consistency condition, no
bit node can connect to more than one such check. Therefore,
this configuration is also in fact a fully absorbing set. In
particular, the solution set in row 1 of Table V holds for all
and even.

We now consider the remaining labeled configuration of
Fig. 12.

II. Consider the labeling
.

We again let
and . Note that in particular by the

check consistency constraint, .
Based on the cycle consistency condition for the five cycles

in Fig. 12 we establish

(27)

By expressing and in terms of , from this system we
obtain

(28)

and

(29)

where and are distinct. For all
distinct ways of assigning numerical values to

and , the system (28)–(29) produces the unique solution
provided that . Since by the edge

consistency condition, we conclude that this configuration is
not possible.
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We now analyze possible solutions for the next candidate
configuration, for which we show that there exist

absorbing sets which are not fully absorbing sets.
(b) Second candidate configuration— Fig. 13.
We first determine all possible edge labelings. For conve-

nience, let , where
and are distinct by the bit consistency condition at

. Then, by imposing the bit consistency conditions at re-
maining vertices, the assignments for the remaining edge labels
are given by the following set:

(30)

Out of these eight possible labeled configurations by appealing
to symmetry and label renaming it is sufficient to consider only
two of these as we now show. Note that the eighth labeling is
the same as the first labeling after we exchange and

and , and labels with and with .
Likewise, the second labeling is the same as the seventh labeling
after we exchange and and ,
and labels with and with . The sixth labeling is the same
as the fourth labeling after we exchange labels with with

, and nodes with with , and
with , and take the mirror image of the resulting

configuration. The fifth labeling is the same as the third after
we exchange labels with and with and take the mirror
image of the whole configuration. The fourth (respectively, first)
labeling is the same as the second (respectively, third) after we
exchange and and labels and .

It is thus sufficient to consider only two different labelings,
namely

(third labeling) and

(seventh labeling). The analysis utilizes the same tools as the
ones developed for the previous candidate configuration, and its
technical details are deferred to Appendix I-C. The outcome of
the analysis gives the solution sets listed in Tables VI and VII,
again the entries are taken , which are absorbing but not
fully absorbing sets, as further argued in Appendix I-C.

Finally, we consider the third and final unlabeled candidate
absorbing set, for which we show that in fact does not

yield absorbing sets for the prime large enough.
(c) Third candidate configuration— Fig. 14.
We first determine all possible edge labelings. As before, we

let , where
and distinct by the bit consistency condition at . Then, by
propagating bit consistency conditions for remaining vertices,
the assignments for the remaining edge labels are given by the
following set:

(31)

By exploiting the symmetry, one can show that after renaming
the labeling

and

reduce to the same case (by exchanging and ). We are thus
left with analyzing the remaining seven cases. As before, we let

and
. Note that in particular by the check consistency

constraint, .
Consider the labeling

. We apply the cycle consistency
conditions to five cycles spanning the cycle space of the graph
in Fig. 14 and obtain

(32)

By expressing and in terms of , and substituting in
the bottom two constraints of (32) we obtain

(33)

and

(34)

where and are distinct. For all
distinct ways of assigning numerical values to

and , the system (33)–(34) produces the unique solution
provided that . Since by the check

consistency condition, we conclude that this configuration is
not possible.

One can likewise establish the constraints of the (32) type
for the remaining six cases, from which the two equations (as
in (33) and (34)) relating and will follow. In all five cases,
the unique solution for large enough is . In
particular, is sufficient for all cases considered.

Having exhaustively considered all possible configurations of
a absorbing sets, the proof of the lemma is complete.

Using these results the proof of Theorem 1(c) now follows.
We complete our analysis of by proving the claim in
Theorem 2: The number of (fully) absorbing sets scales
as , where is the codeword length.

Proof: Recall that for the configuration in Fig. 12 we iden-
tified two sets of labelings given in Tables IV and V that deter-
mine fully absorbing sets. For each such assignment there
are three parameters that determine all of ’s and ’s, and each
parameter is chosen independently in at most ways (to en-
sure the all ’s and ’s have integer values), yielding an upper
bound which grows as . A lower bound on the cardinality
of the fully absorbing sets is given by one solution set in
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Table IV, which also grows as . Note that the number of
solutions of absorbing sets in Tables VI and Table VII grows as

as well. 3 Since , the result follows.

We have thus proven Theorem 2 for .

IV. CONCLUSION

Absorbing sets are a substructure of the factor graphs defining
LDPC codes that cause error floors in iterative decoding. The
main contribution of this paper was to develop algebraic tech-
niques for analyzing and enumerating minimal fully absorbing
sets for the class of array-based LDPC codes. Starting with the
motivating experimental results that suggest the importance of
understanding relevant absorbing sets in the error-floor region,
we provided an explicit description of minimal (fully) absorbing
sets and showed the nonexistence of certain candidate configu-
rations. We also enumerated minimal (fully) absorbing sets and
showed how their number scales with the codeword length, thus
providing a theoretical foundation for the starting experimental
findings. Finally, while the focus of this work has been on a de-
tailed study of (fully) absorbing sets for a class of structured
LDPC codes, it would be worthwhile to investigate the asymp-
totic average distributions of absorbing sets for various LDPC
ensembles. Part of future work involves suitably applying the
techniques developed in [19] to study such configurations.

APPENDIX I

A. Nonexistence of Absorbing Sets

By ensuring the bit consistency, it follows that the configura-
tion in Fig. 11(a) has two distinct edge labelings. In particular,
by the bit consistency at we may let

and , where and dis-
tinct. By propagating the labels while making sure that the bit
consistency constraints are satisfied we conclude that either

•
or

•

where throughout are distinct and belong to the set
.

I. Consider the labeling

Using the pattern consistency constraint (see Lemma 1(b))
for each edge in Fig. 11 for the current labeling we obtain

(35a)

(35b)

(35c)

(35d)

(35e)

(35f)

(35g)

(35h)

(35i)

3For � � ��, Remarks 1 and 2 in Appendix I-C also show that the number
of additional solution sets also scales as �� .

(35j)

(35k)

We now separately consider and .
1. For , the set of constraints (35a)–(35k) reduces to

from (35 a)

from (35 e)

from (35 h)

from (35b); (35a) and (35g); and

(35h), (35a), and (35j), respectively

from (35d); (35h) and (35f); and

(35e), (35h), and (35i), respectively

from (35 c), (35e), and (35a); and

(35e) and (35k), respectively. (36)

Since and by the check consistency
conditions, we have that and .

Since and is prime, we may let

and

(37)

for some integers and which are themselves nonzero.
From

, and
, respectively, it follows that

and

(38)

From (38), by equating the expressions for and , it fol-
lows that

and

(39)

The last set of constraints implies , which is a
contradiction.

2. For the set of constraints (35a)–(35k) reduces to

(40)
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Note that and by the check
consistency conditions, so that and

. Since , we may let

and

(41)

for some integers and , which are themselves nonzero.
The identities

and ,
respectively, yield the following constraints:

and

(42)

Eliminating from the top two constraints in (42) implies
, which combined with the

bottom constraint in (42) yields

(43)

Since , this cannot hold for .
3. For we obtain

(44)

As before, some algebra yields , a contradiction.
4. For we obtain

(45)

After some algebra, we obtain the following condition:

(46)

which, because , has no solution for
.

II. For the labeling
we separately consider

and , and proceed along the lines of the
previous case. For , respectively, , it follows after
some algebra that , respectively, ,
a contradiction in each case. For , respectively, , it
follows similarly that ,
respectively, , neither
of which can hold for .

This completes the proof of Lemma 7.

B. Nonexistence of Absorbing Sets With an Unsatisfied
Check of Degree

Recall that we are considering the case where there exists
an unsatisfied check of degree with respect to the bit nodes
in a candidate absorbing set. In this absorbing set, bit
nodes connect to the same unsatisfied check, and the
remaining three bit nodes, , each have a distinct unsatis-
fied check. Since there are no cycles of length , each of
shares a distinct satisfied check with each of .

Let the check incident to and have label , where
. Using the bit consistency condition, we let

be the label of the satisfied check incident to and
be the label of the satisfied check incident to and , and
be the label of the satisfied check incident to and , where

are distinct and are different from .
By propagating the remaining edge labels while ensuring that

the bit consistency is satisfied, we obtain that the labels of the
checks connecting with and , respectively, are
and and the labels of the checks connecting with and

, respectively, are and .
Let for be the labels of the bit nodes .

Using the pattern consistency (see Lemma 1(b)) we write one
equation for each pair of the bit nodes in the absorbing set that
share a satisfied check as follows:

(47)

In addition, we may also write

(48)

since the bit nodes and , all participate
in the same (unsatisfied) check with label .

Since and are distinct we now con-
sider different numerical assignments of these labels. In partic-
ular, it is sufficient to consider and , since by the
symmetry of the configuration both and reduce to
the case.

1. Case :
Equation (48) reduces to which combined with

(47) gives

(49)

Since do not have any nontrivial factors and by
the check consistency conditions, we may let

and
for some nonzero integers and .

Using the identity
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we obtain (using
, and so on)

(50)

The last expression implies

(51)

Likewise, expression (50) implies

(52)

and

(53)

Since , expressions (51), (52), and (53)
hold only for prime .

2. Case :
In this case, (47) implies and .

Combined with (48), we further obtain

(54)

We let and
, for some nonzero integers and .

From , we have

(55)

Substituting and in (54) and using the identities
and

, respectively, we obtain

(56)

and (57)

(58)

respectively. From (55) and (56) by equating the expressions for
we obtain

(59)

Likewise, from (55) and (57) by equating the expressions for
we obtain

(60)

and from (55) and (58) by equating the expressions for we
obtain

(61)

From (59), (60), and (61), it follows that

and

(62)

Since the constraints in (62) also only hold for we
conclude that for prime this candidate configuration
does not exist.

C. Analysis of the Candidate Absorbing Sets Given in
Fig. 13

Recall that it is sufficient to consider only two different label-
ings, namely

and

For the first case, by symmetry, it is sufficient to consider
and as and reduce to the and
case, respectively. Likewise, for the second case it is sufficient
to consider and , as and each reduce
to the and cases, respectively.

I. Consider

We start with the analysis.
1. Case :
From Fig. 13 and under the current edge label assignment

using the pattern consistency constraints of Lemma 1(b) we
write

(63)

Let and
. Using the cycle constraint for four cycles spanning

the cycle space of the configuration in Fig. 13 and under the
current edge labeling we have

and

(64)
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From the systems (63) and (64) we write

and

(65)

Using the identity , and (65)
we obtain

(66)

There are six possible assignments for , as permuta-
tions of the set . In the remainder we will show that in
fact only gives rise to absorbing sets. In all
other cases, we will reach a contradiction.

From (64) we have

and

(67)

We also have

and

(68)

where the top expression in (68) follows from substituting top
expression in (67) into the second expression of (64) and some
algebra, and the bottom expression in (68) follows from sub-
stituting bottom expression in (67) into the fourth expression
of (64).

For , the bottom expression in (68) gives
, which then implies , by the top

expression in (68). Since , and and
share a check, must be nonzero, implying a contradiction.

For we ex-
press in terms of using (67) and (68) and obtain the
following:

— for :
;

— for :
;

— for :
; and

— for :
.

In all four cases, when and are substituted in (66) it
follows that (we get

and ,
respectively). Since is a multiple of in all four cases, if

, then as well. Since and
nodes and share a check, must be nonzero,
thus implying a contradiction.

For we obtain
. When

and are substituted in (66), we obtain the identity
. Since , we have that and

since , we have that . Note that neither
of these two conditions on ’s violates the check consistency
constraint since the respective bit nodes do not share a check in
Fig. 13. Let and . Then
and . Since , and and

, we have that . Since
as well. Likewise, since , and

and , we have that . We
have thus expressed all of through in terms of and . Now
the system (63) reduces to

(69)

Thus, with and using (69) we can express all of
through in terms of and . This solution set for through

and through is listed in Table VI, where the entries are
taken .

Note that the result in Table VI establishes the existence of
a absorbing set. Even though and ,
the check consistency constraints are not violated as
and do not share an edge, and neither do and

, see Fig. 13.
We now discuss whether this set is also a fully ab-

sorbing set. Suppose there exists a bit node outside this
absorbing set that is incident to some of the unsatisfied checks.
By the bit consistency constraint, both and each
have a neighboring unsatisfied check whose label is . These
two checks must be distinct by the girth condition [11]. Like-
wise, both and each have a neighboring unsat-
isfied check whose label is , and these are also distinct by the
girth condition. By the bit consistency condition, the bit node

can then share at most two of these checks with the
bit nodes through . Suppose that the bit node

shares a check labeled with and a check la-
beled with . From the cycles relating bit nodes

and , we obtain

and

For of present interest, we obtain
that using the result in Table VI. Since we
further have

and

it follows that . Therefore, by the existence
of this bit node , the current absorbing set is not a

fully absorbing set.
2. Case :
As before, using the pattern consistency constraints we

establish

(70)
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Let
and . Using the cycle constraints for four cycles
spanning the cycle space of the configuration in Fig. 13 we may
also write

and

(71)

There are six possible assignments for as permuta-
tions of the set . Using the same technique as in the
previous case, one can show that the only possible assignment
is , whereas a contradiction is reached in all
other cases. In particular, for this remaining assignment we ob-
tain the solution set listed in Table VII. From Fig. 13 and under
the current labeling, note that the bit nodes and
both have an unsatisfied check whose label is , and that like-
wise the bit nodes and both have an unsatisfied
check whose label is . Therefore there could exist a bit node
that connects to two satisfied and two unsatisfied check nodes.
Consider a bit node that shares a check labeled with

and a check labeled with . By the parity check
constraint

and

for , it follows that
and . Thus, the existence of

this bit node for a multiple of , makes the candidate
configuration be a absorbing set but not a fully ab-
sorbing set. We will now show that in fact the remaining labeling
is not possible for large enough.

II. Consider the labeling

Applying the cycle consistency condition to the four cycles in
Fig. 13 for
and we obtain

(72)

Using the pattern consistency conditions we may also write

(73)

Recall that it is sufficient to only consider and .
1. Case :

With , (73) yields and
so that

(74)

From (72) we then have

(75)

From (74) and (75) it follows that for all
numerical assignments of and , for
and consequently, . Since and
share an edge in Fig. 13, the condition violates the
check consistency constraint for all but a small finite number of
values of .

Remark 1: Since Theorem 2(c) is concerned with counting
absorbing sets for , note that for and

the assignment either or , from
the (74) and (75) we may express and in terms of
(itself nonzero). Combined with (73), we may then express all
of indices of bits in this absorbing set in
terms of three independent parameters:
and .

2. Case :
We now have and

and

(76)

which follows from and .
From (72) we also have

(77)

Combining (76) and (77) it again follows that
for all numerical assignments of and for

. This in turn implies that , which
violates the check consistency condition.

Remark 2: Since Theorem 2(c) is concerned with counting
absorbing sets for , note that for and

the assignment either or , from
the (76) and (77) we may express and in terms of
(itself nonzero). Combined with (73), we may then express all
of indices of bits in this absorbing set in
terms of three independent parameters:
and .
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