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Analysis of Adaptive MIMO Transmit Beamforming
Under Channel Prediction Errors Based on
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Abstract—This paper provides new results for a family of
incomplete Lipschitz–Hankel integrals (ILHIs) which also lead
to the evaluation of certain integrals involving the generalized
Marcum Q function. These mathematical results are then applied
to analyze the bit error rate (BER) of adaptive modulation over
multiple-input–multiple-output (MIMO) fading channels under
imperfect channel state information (CSI). A novel exact closed-
form expression for the average BER of adaptive modulation un-
der MIMO transmit beamforming with maximal ratio combining,
assuming prediction errors at the receiver for the adaptation CSI
required by the transmitter, is obtained. The benefit of this result
with respect to previous analysis is threefold. First, the expression
is an exact closed form. Second, it is applicable to any antenna
configuration, and third, it allows a design improvement of the
cutoff SNR thresholds, which leads to better system performance
in terms of average spectral efficiency at no extra cost.

Index Terms—Adaptive modulation, channel prediction er-
rors, exact bit error rate (BER), multiple-input–multiple-output
(MIMO).

I. INTRODUCTION

INCOMPLETE Lipschitz–Hankel integrals (ILHIs) are a
class of incomplete cylindrical functions [1] that tradition-

ally appear in the analytical solutions of numerous problems
in electromagnetics [2]. Within the communication theory con-
text, Pawula reported on the connection between the Rice
Ie-function [3], which is a special type of ILHI, and the
Marcum Q function [4]–[6], pointing out some advantages
to be gained for performance analysis with a representation
whose genesis lies in the ILHIs. However, in general, the
applications of ILHIs seem to have escaped the notice of most
communications theorists.

In our investigations on adaptive modulation for multiple-
input–multiple-output (MIMO) fading channels with imperfect
channel state information (CSI), we have encountered certain
ILHIs for which, to the best of the authors’ knowledge, there are
no explicit expressions for their solutions in the literature, e.g.,
[7]–[10]. Specifically, we are interested on exact expressions for
the bit error rate (BER) in terms of IHLIs of modified Bessel
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functions and a certain type of incomplete integrals involving
the generalized Marcum Q function. These second types of
integrals are formally equivalent to those solved in [11] and
[12], whose integrands involve powers, exponentials, and the
Marcum Q function with two linear arguments. However, since
integration between finite limits is needed for adaptive modula-
tion, we have to find primitives for the complete integrals solved
in [11] and [12].

First, this paper shows that the incomplete integrals of the
type addressed in [11] and [12] are represented by a finite num-
ber of elementary functions, generalized Marcum Q functions,
and a certain family of ILHIs. Second, we prove that such
ILHIs are reduced to an expression involving a finite number
of modified Bessel and Marcum Q functions.

Next, we apply these results to analyze the BER of MIMO
systems under imperfect CSI that employ adaptive modulation,
transmit beamforming, and maximal ratio combining (MRC).
This problem has been recently addressed by several authors,
assuming a system model where imperfect CSI is incorporated
through different assumptions [14]–[16]. In particular, we are
interested in the system model first proposed in [14], where
imperfect CSI originates from imperfect channel prediction
performed at the receiver to be used by the transmitter for both
adaptive modulation and eigenbeamforming. Interestingly, the
authors obtain in [14] an approximate closed-form expression
for the average BER applicable only to multiple-input–two-
output or two-input–multiple-output systems. In this paper, the
mathematical tools previously developed allow the derivation of
an exact closed-form expression for the average BER analysis
considered in [14] applicable to system configurations with
any number of antennas on each extreme. This expression can
also be used for a more accurate determination of the SNR
thresholds needed for adaptation.

The remainder of this paper is organized as follows. The
mathematical analysis is detailed in Section II, the application
to adaptive MIMO is developed in Section III, and the conclu-
sions are given in Section IV.

II. MATHEMATICAL ANALYSIS

A. Definitions

The general family of ILHIs of first-kind modified Bessel
functions are defined as [13]

Ieμ,ν
(z;α) Δ=

z∫
0

tμe−α,tIν(t)dt (1)

0018-9545/$25.00 © 2009 IEEE

Authorized licensed use limited to: Universidad de Malaga. Downloaded on June 3, 2009 at 03:53 from IEEE Xplore.  Restrictions apply.



2816 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 6, JULY 2009

where α, z, ν, μ ∈ C, and to assure convergence, �{1 + μ +
ν} > 0. In particular, we are interested in the following spe-
cialization of (1).

Definition 1 (ILHI of Modified Bessel Functions):

Iem,n
(x;α) Δ= Ieμ=m,ν=n

(z = x;α) (2)

where α ∈ R, m, n ∈ N; α > 1, and x ∈ [0,∞).
For simplicity, the function Iem,n

(x;α) will be referred to as
the ILHI of the mth degree, the nth order, and parameter α.
Note that Definition 1 includes the complete Lipschitz–Hankel
integrals when x → ∞, whose convergence is assured if α > 1
(e.g., see [10, eq. (6.624-5)]).

We are also interested in the following family of incomplete
integrals involving Marcum Q functions (IIMQ).

Definition 2 (Incomplete Integrals of Marcum Q Functions):

Qem,n
(x;β, a, b) Δ=

x∫
0

tme−βtQn(a
√

t, b
√

t)dt (3)

where β, a, b ∈ R, m, n ∈ N; β, a, b > 0, n ≥ 1, and
x ∈ [0,∞).

Again, for simplicity, the function Qem,n
(x;β, a, b) will be

referred as the IIMQ function of the mth degree, the nth order,
and parameters β, a, and b. Definition 2 also includes the
complete integrals solved in [11] and [12] when x → ∞.

B. Connection Between the IIMQ Functions and ILHIs

We start proving that the IIMQ function can be represented
by an expression involving a finite number of generalized
Marcum Q functions and ILHIs.

Lemma 1: The IIMQ function can be represented as

Qem,n
(x;β, a, b)

=
m!

βm+1

{
1 − e−βxQn(a

√
x, b

√
x)

m∑
r=0

βr

r!
xr +

1
2

m∑
r=0

βr

r!

× bn−r−1

an+r

(
aIer,n

(abx;α) − bIer,n−1(abx;α)
)}
(4)

where α = ((a2 + b2 + 2β)/2ab) > 1.
Proof: See Appendix I. �

Lemma 1 allows us to simplify our analysis, since we only
need to focus on the ILHIs.

C. Connection Between the ILHI and the
Marcum Q Functions

In this section, we will show that the ILHI can be represented
by an expression involving a finite number of Bessel and
Marcum Q functions. This statement is shown in Proposition 1
at the end of this section; however, to achieve this goal, we need
some previous results.

Lemma 2 (Modified Sonine Identity): Let Iν(t) be the νth-
order first-kind modified Bessel function and f(t) be any twice-
differentiable function. Then∫

tν+1

{
−d2f(t)

dt2
− 2ν + 1

t

df(t)
dt

+ f(t)
}

Iν(t)dt

= tν+1

{
−df(t)

dt
Iν(t) + f(t)Iν+1(t)

}
. (5)

Proof: The steps of the proof are analogous to those
followed to obtain the Sonine identity for Jν(t); see [7, pp. 132]
for the details. �

Lemma 3: The ILHIs for low degrees and orders are
given by

(i) Ie0,0(x;α)

= −2ᾱQ1

( √
x

√
α +

√
α2 − 1

,
√

x

√
α +
√

α2 − 1
)

+ ᾱ + ᾱe−αxI0(x)
(ii) Ie1,0(x;α)

= −2αᾱ3Q1

( √
x√

α +
√

α2 − 1
,
√

x

√
α +
√

α2 − 1

)
+ αᾱ3 + αᾱ3e−αxI0(x) − αᾱ2e−αxxI0(x)

− ᾱ2e−αxxI1(x)
(iii) Ie0,1(x;α)

= −2αᾱQ1

( √
x√

α +
√

α2 − 1
,
√

x

√
α +
√

α2 − 1

)
+ αᾱ − 1 + (1 + αᾱ)e−αxI0(x)

(iv) Ie1,1(x;α)

= −2ᾱ3Q1

( √
x√

α +
√

α2 − 1
,
√

x

√
α +
√

α2 − 1

)
+ ᾱ3 + ᾱ3e−αxI0(x) − ᾱ2e−αxxI0(x)

− αᾱ2e−αxxI1(x)

where ᾱ
Δ= 1/

√
α2−1.

Proof: See Appendix II. �
Now, we are in a position to show that the mth-degree nth-

order ILHI fits the pattern exhibited by Ie0,0 , Ie1,0 , Ie0,1 , and
Ie1,1 in Lemma 3.

Proposition 1: The mth-degree nth-order ILHI is repre-
sented by an expression involving a first-order Marcum Q
function and a finite number of Bessel functions, specifically

Iem,n
(x;α) = A0

m,n(α) + e−αx
m∑

i=0

n+1∑
j=0

Bi,j
m,n(α)xiIj(x)

+ A1
m,n(α)Q1

( √
x√

α+
√

α2−1
,
√

x

√
α+
√

α2−1

)
(6)

where the set of coefficients Al
m,n(α),Bi,j

m,n(α) can be recur-
sively obtained.
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Fig. 1. System model for adaptive MIMO transmit beamforming with MRC and prediction errors.

Proof: See Appendix III. �
From Lemma 1 and Proposition 1, we readily obtain a useful

representation of the IIMQ function.
Corollary 1: The mth-degree nth-order IIMQ is represented

by the following expression involving a finite number of
Marcum Q and Bessel functions:

Qem,n
(x;β, a, b)

= − m!
βm+1

e−βxQn(a
√

x, b
√

x)
m∑

r=0

βr

r!
xr

+
m!

βm+1
+

1
2

m!
βm+1

m∑
r=0

βr

r!
bn−r−1

an+r

×
{

aA0
r,n(α) +

(
aA1

r,n(α) − bA1
r,n−1(α)

)
Q1

×
(√

abx

ξ
,
√

abxξ

)
− bA0

r,n−1(α)

+ e−αabx
r∑

i=0

aBi,n+1
r,n (α)(abx)iIn+1(abx)

+
n∑

j=0

(
aBi,j

r,n(α) − bBi,j
r,n−1(α)

)
(abx)iIj(abx)

}
(7)

where α = (a2 + b2 + 2β)/2ab, and ξ =
√

α +
√

α2 − 1.
The finite recursive algorithm to obtain the coefficients of

Proposition 1 and Corollary 1 is found in Appendix III.

III. APPLICATION TO ADAPTIVE MIMO ANALYSIS

The mathematical tools developed in the previous section are
useful to carry out performance analysis of several interesting
adaptive MIMO systems. In this section, we present, as an
application case, an exact closed-form BER analysis of MIMO
transmit beamforming with MRC under imperfect CSI at the
transmitter for systems performing adaptive modulation over
Rayleigh fading channels and with any antenna configuration.

A. System Model

The system model for adaptive MIMO transmit beamforming
with MRC is depicted in Fig. 1. A detailed description of the
adopted system model can be found in [14].

In short, we consider NT transmit antennas and NR receive
antennas, and the channel gain is modeled by an NR × NT

complex matrix H so that each entry Hi,j is the channel
coefficient between the jth transmit and the ith receive antenna.
These channel coefficients exhibit frequency-flat slowly time-
varying fading. The entries Hi,j are assumed to be independent
identically distributed (i.i.d.) complex circularly symmetric
normal random variables (RVs), with zero mean and unity
variance, i.e., Hi,j ∼ CN (0, 1), where the symbol ∼ means
statistically distributed as. Noise is modeled by an additive
NR-dimensional vector n, whose entries nk are i.i.d. complex
circularly symmetric normal RVs ∼ CN (0, σ2

n). The received
signal can be expressed as

y = Hx + n (8)

where y is the received NR-dimensional complex vector, and x
is the transmitted NT -dimensional complex vector.

At the receiver, the channel matrix H is predicted τ s ahead
to perform adaptive modulation and eigenbeamforming at the
transmitter. The channel prediction Ĥ can be expressed as
follows:

Ĥ=H−Ξ̂, with

{
Ĥi,j , i.i.d. RVs ∼ CN(0, 1−χ)
Ξ̂i,j , i.i.d. RVs ∼ CN(0, χ)

(9)

where Ξ̂ is the prediction error matrix in which entries and their
corresponding ones in Ĥ are mutually orthogonal. Finally, χ
represents the prediction minimum mean square error.

To maximize the received SNR, the beam-steering vector v̂
employed at the transmitter is chosen as the NT -dimensional
eigenvector corresponding to the largest eigenvalue λ̂ of matrix
ĤHĤ, which is given by λ̂ = v̂HĤHĤv̂. In each frame, the
receiver feeds the vector v̂ back to the transmitter to perform
beamforming so that the transmitted vector becomes x = v̂z,
where z is the complex transmitted symbol. The effective chan-

nel vector is NR-dimensional and is defined as h Δ= Hv̂, and
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the predicted effective channel vector is the vector ĥ Δ= Ĥv̂,
whose square Euclidean norm is ‖ĥ‖2 = λ̂. The effective chan-

nel vector can also be expressed as h Δ= Hv̂ = (Ĥ + Ξ̂)v̂ =
ĥ + Ψ, where Ψ is a complex normal NR-dimensional vector
whose entries Ψk, assuming that v̂ is a unitary vector, are i.i.d.
RVs ∼ CN (0, χ) [18, pp. 26].

The receiver must estimate the current effective channel
vector h to perform MRC. Assuming perfect estimation of h at
the receiver (as in [14]), the symbol r that results from applying
MRC to received vector y is given by

r
Δ=

hHy
‖h‖2

= z +
hHn
‖h‖2

= z +
(ĥ + Ψ)Hn

‖ĥ + Ψ‖2
= z + ζ (10)

where ζ is the resultant noise after MRC.
Finally, the largest eigenvalue λ̂ is employed to perform

adaptive modulation. Consistently with the single-input–single-
output case, we define the predicted instantaneous SNR as

γ̂
Δ= λ̂γ, where γ

Δ= (S̄T /σ2
n) is the average SNR, and S̄T is the

average transmit power. We assume a generalized adaptation
policy that employs a set of NF prefixed rates {Ri}NF −1

i=0 and
powers per constellation {Si}NF −1

i=0 (including R0 = S0 = 0
as NOTX), i.e., this scheme considers NF fading regions.
Within the ith fading region that spans from the lower SNR
switching threshold γ̂i−1 to the upper threshold γ̂i, the rate Ri

is employed using BPSK or square 2Ri-quadratic-amplitude-
modulation (QAM) constellations with power Si. For notation

simplicity, we assume that γ̂−1
Δ= 0 and γ̂NF −1

Δ= ∞. Note
that constant-power policies [19] are also included in our
generalized adaptation policy, assuming that above the cutoff
threshold γ̂0, transmission is carried out using constant power,
i.e., Si = S1,∀i = 1, . . . , NF − 1.

B. BER Analysis

The exact expression for the BER is

BER =
1
R̄

NF −1∑
i=1

Ri

γ̂i∫
γ̂i−1

CBER(γ̂;Ri, Si)pγ̂(γ̂)dγ̂ (11)

with

R̄
Δ=

NF −1∑
i=1

Ri

γ̂i∫
γ̂i−1

pγ̂(γ̂)dγ̂

where pγ̂(γ̂) is the probability density function (pdf) of γ̂,
CBER(γ̂;Ri, Si) is the BER conditioned to γ̂, and R̄ is the
average data rate (in bits per complex symbol).

The pdf of the largest eigenvalue of complex Wishart matri-
ces can be expressed as a sum of elementary Gamma pdfs [17].
Thus, the pdf of the predicted instantaneous SNR is given by

pγ̂(γ̂)=Bm,n

m∑
k=1

(n+m−2k)k∑
l=n−m

Ak,lγ̂
l

((1 − χ)γ̄)l+1
exp
(
− kγ̂

(1 − χ)γ̄

)
(12)

where m
.= min{NT , NR}, n

.= max{NT , NR}, Bm,n =
(
∏m

i=1 (m − i)!
∏m

i=1 (n − i)!)−1, and the coefficients Ak,l are
determined by the algorithm proposed in [17].

From the pdf of the predicted instantaneous SNR, the average
data rate is exactly computed, yielding [15]

R̄ =
NF −1∑
i=1

Ri

m∑
k=1

(n+m−2k)k∑
l=n−m

l∑
w=0

l!Ak,lBm,n

w!kl+1

×
[(

kγ̂i−1

(1−χ)γ̄

)w

e−
kγ̂i−1
(1−χ)γ̄ −

(
kγ̂i

(1−χ)γ̄

)w

e−
kγ̂i

(1−χ)γ̄

]
. (13)

Our goal is to obtain an exact closed-form expression for (11)
in terms of standard special functions. For this task, a closed-
form expression for the conditional BER (CBER) is required,
and incomplete integration must be performed.

Next, Section III-B1 summarizes the results obtained in
[14] concerning (11), where the closed-form expression for
the CBER is obtained by exponential-type approximations,
and an expression involving incomplete Gamma functions is
achieved by incomplete integration. Section III-B2 shows that
starting from exact closed-form expressions for the CBER in
terms of Bessel and Marcum Q functions, an exact closed-
form expression for (11) involving ILHIs and IIMQs can be
obtained.

1) Approximate BER Expressions: Obtaining an exact
closed-form expression for the incomplete integrals involving
the CBER that appear in (11) is cumbersome. Consequently, to
analyze the BER, the following approximation for the CBER
was obtained in [14, eq. (38)] (up to notation):

CBER(γ̂;R,S) ≈ 1
5ΦNR

exp
(
−3
2

1
Φ

S

S̄T

γ̂

2R − 1

)
(14)

where

Φ Δ= 1 +
8
5

S

S̄T

χγ̄

2R − 1
. (15)

Integrating (14) with the pdf (12) is carried out by incomplete
Gamma functions; thus, an approximate expression in closed
form for the system BER is obtained [14, eq. (46)].

2) Exact BER Expressions: With the mathematical tools
summarized in Proposition 1 and Corollary 1 in hand, we are
now in a position to obtain an exact closed-form expression of
the system BER.

To achieve this goal, we have to start from exact closed-
form expressions for the CBER of BPSK and square M -QAM
under prediction errors. For these signaling formats, we define
the error probability conditioned on a predicted channel state
(CCEP) as

I(p; γ̂) Δ= Pr {�{ζ} > (2p − 1)d|γ̂} (16)

which represents the probability that the real projection of
the noise after MRC, i.e., ζ, surpasses the symbol-to-decision-
boundary distance (2p−1)d, where p is a positive integer, and
2d is the minimum distance between constellation symbols. The
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CBER under prediction errors when the usual Gray mapping is
adopted can be exactly computed by

CBER(γ̂;R,S) = C
L−1∑
p=1

ω(p)I(p; γ̂) (17)

where C = (1/RL), and L = 2R/2 for square 2R-QAM, C =
1/2 and L = 2 for BPSK, and ω(p) are certain integers’ co-
efficients. For BPSK, ω(p) = 2, whereas for M -QAM, these
coefficients can be computed explicitly using [20].

The CCEP terms in (17) can be exactly calculated in closed
form using the quadratic-form-based method proposed by
Proakis [21, App. B] (see [22] for details)

I(p; γ̂)=Q1

(
a(θp)

√
γ̂

χγ̄
, b(θp)

√
γ̂

χγ̄

)
+

NR−1∑
q=0

Dq (η(θp);NR)

× Iq

(
a(θp)b(θp)

γ̂

χγ̄

)
exp
(
−a2(θp) + b2(θp)

2
γ̂

χγ̄

)
(18)

where Q1 is the Marcum Q function, Iq is the qth-order modi-

fied Bessel function of the first kind, θp
Δ= (3(2p − 1)2/2(2R −

1))γ̄χS/S̄ for M -QAM, and θp
Δ= (2p − 1)2γ̄χS/S̄ for BPSK;

the functions η(·), a(·), and b(·) are defined for any nonnegative
real as

η(x) Δ= 1 + 2x + 2
√

x(1 + x)

a(x) Δ=
√

2
1

1 + η(x)

b(x) Δ=
√

2
η(x)

1 + η(x)
(19)

whereas the function Dq(x;NR) is defined for any nonnegative
real as follows:

Dq(x;NR) Δ= −1+
1

(1 + η(x))2NR−1

NR−1∑
k=0

(
2NR − 1

k

)
η(x)k

for q = 0, and

Dq(x;NR) Δ=
1

(1 + η(x))2NR−1

NR−1−q∑
k=0

(
2NR − 1

k

)
×
[
η(x)k+q − η(x)2NR−1−k−q

]
(20)

for 0 < q � NR − 1.
At this point, the natural question that arises is the connec-

tion between the well-known simple exponential approxima-
tion (14) and the more complicated exact expression given in
(17)–(20). Note that (14) is derived from [19, eq. (9.7)], which
is only a tight bound under certain conditions; specifically, it is
quite inaccurate for low instantaneous SNR γ̂. Despite being
complicated, the expression derived above is exact and can
provide insight into the system performance when a concrete
scenario is considered, e.g., using asymptotic analysis as in
[23]. In particular, let us consider M -QAM under χγ̄ � 1,

Fig. 2. CBER for χγ̄ = 0.1, R = 2, S = ST , and NR = 2 using different
expressions.

which corresponds to a good but not perfect CSI. Then, it is
shown in Appendix IV that

CBER(γ̂;R,S) ∼ 1
R2R/2

L−1∑
p=1

ω(p)
1√

ΔS(p)

× Q

(√
ΔS(p)

√
3(2p − 1)2

(2r − 1)
S

S̄
γ̂

)
(21)

as γ̂ → ∞, where ΔS(p) = (1 + (3(2p − 1)2/(2R −
1))χγ̄(S/S̄))−1, and Q is the Gaussian Q-function. When
ΔS(p) = 0, (21) provides the CBER for perfect CSI [22]; thus,
ΔS(p) represents the limiting power penalty due to imperfect
CSI. As shown in Fig. 2 for χγ̄ = 0.1, R = 2, S = ST , and
NR = 2, the asymptotic expression (21) is quite close to
the exact expression, while the exponential approximation
(14) exhibits an irreducible gap, even for an arbitrarily high
instantaneous SNR.

The BER is derived as follows. Introducing (18) in (17) and
the result in (11), we obtain

BER=
1
R̄

NF −1∑
i=1

Ri

γ̂i∫
γ̂i−1

CBER(γ̂;Ri, Si)pγ̂(γ̂)dγ̂

=
1
R̄

NF −1∑
i=1

m∑
k=1

(n+m−2k)k∑
l=n−m

L−1∑
p=1

RiAk,lBm,nCiωi(p)

((1 − χ)γ̄)l+1

×

⎧⎪⎨⎪⎩
γ̂i∫

γ̂i−1

γ̂l exp
(
− k

(1 − χ)
γ̂

γ̄

)

× Q1

(
a(θp,i)

√
γ̂

χγ̄
, b(θp,i)

√
γ̂

χγ̄

)
dγ̂

+
NR−1∑
q=0

Dq(θp,i;NR)

γ̂i∫
γ̂i−1

γ̂lIq

(
a(θp,i)b(θp,i)

γ̂

χγ̄

)

× exp
(
−
[

kχ

(1−χ)
+

a2(θp,i)+b2(θp,i)
2

]
γ̂

γ̄χ

)
dγ̂

⎫⎪⎬⎪⎭
(22)
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where Li, Ci, ωi(p), and θp,i represent the values of L, C,
ω(p), and θp, respectively, within the ith fading region where
the rate Ri and power Si are employed. In (22), we find two
types of integrals that resemble those analyzed in the first part
of the paper. It is straightforward to check that both types of
integrals fit our definitions. Concretely, with the simple change
of variable t = a(θp,i)b(θp,i)(γ̂/χγ̄) in the second integral and
after some algebra, we can reach

BER =
1
R̄

NF −1∑
i=1

Ri

γ̂i∫
γ̂i−1

CBER(γ̂;Ri, Si)pγ̂(γ̂)dγ̂

=
1
R̄

NF −1∑
i=1

m∑
k=1

(n+m−2k)k∑
l=n−m

L−1∑
p=1

RiAk,lBm,nCiωi(p)

((1 − χ)γ̄)l+1

×
{

Qel,1

(
γ̂i;

k

(1 − χ)γ̄
,
a(θp,i)√

χγ̄
,
b(θp,i)√

χγ̄

)
− Qel,1

(
γ̂i−1;

k

(1 − χ)γ̄
,
a(θp,i)√

χγ̄
,
b(θp,i)√

χγ̄

)
+

NR−1∑
q=0

Dq(θp,i;NR)
(

χγ̄

a(θp,i)b(θp,i)

)l+1

×
[
Iel,q

(
t+p,i;αp,i,k

)
− Iel,q

(
t−p,i;αp,i,k

)]}
(23)

where⎧⎪⎪⎨⎪⎪⎩
t+p,i

Δ= a(θp,i)b(θp,i) γ̂i

χγ̄

t−p,i
Δ= a(θp,i)b(θp,i)

γ̂i−1
χγ̄

αp,i,k
Δ= kχ

(1−χ)a(θp,i)b(θp,i)
+ a2(θp,i)+b2(θp,i)

2a(θp,i)b(θp,i)
.

(24)

Note that (23) is a compact expression of the system BER
in terms of the ILHI and IIMQ analyzed in the first part of
the paper. Using Proposition 1 and Corollary 1, the expression
(23) of the BER can be directly expanded and reexpressed in
terms of a finite number of Marcum Q, Modified Bessel, and
algebraic functions. Expression (23) has two basic advantages
with respect to the approximate BER expression obtained in
[14, eq. (46)]: 1) (23) is an exact closed-form expression for
the same system model, and 2) it is valid for any antenna con-
figuration, whereas in [14, eq. (46)], only multiple-input–two-
output or two-input–multiple-output systems are addressed.
Moreover, (23) allows for a more accurate calculation of the
SNR switching thresholds used in the adaptation, which turns
into a better spectral efficiency, as is shown below.

C. Adaptation Policy

The detailed design of adaptation policies is out of the scope
of this paper. A nonexhaustive list of references on this topic is
[19], [24]–[32], where [29]–[32] specifically address the design
under imperfect CSI.

To confirm the potential of our analytical results, we con-
sider a particular adaptation policy that employs constant
power {Si = S̄T }NF −1

i=1 and the usual set of rates {Ri}NF −1
i=1 =

1, 2, 4, 6, . . ., which correspond to BPSK or square 2Ri-QAM
constellations. The SNR switching thresholds are set to fol-
low the relation γ̂i = (2Ri − 1)γ̂0 for i = 1, . . . , NF − 2 [24],
where the value of the SNR cutoff threshold γ̂0 will be calcu-
lated to meet the BER constraint.

Introducing this particularization in the exact expression for
the BER in (11) results in

BER(γ̂0)=

NF −1∑
i=1

Ri

∫ (2Ri−1)γ̂0

(2Ri−1−1)γ̂0
CBER(γ̂;Ri, Si)pγ̂(γ̂)dγ̂

NF −1∑
i=1

Ri

∫ (2Ri−1)γ̂0

(2Ri−1−1)γ̂0
pγ̂(γ̂)dγ̂

.

(25)

Given a target BER, hereinafter referred to as BERT , the
SNR cutoff threshold γ̂0 (and from it, the rest of the thresholds)
is obtained by solving the equation BER(γ̂0) = BERT .

D. Results

In this section, optimal Wiener finite-impulse response (FIR)
filtering for channel prediction is assumed, using the MIMO
extension of classical pilot-symbol-assisted-modulation; see
[14] for details. Channel time variation is assumed to follow
the well-known Jake’s model. It is also assumed that the data
stream is parsed into frames of duration of PTS s, where TS

is the symbol interval, and P is the frame length. A known
pilot symbol is inserted within each frame along NT symbol
intervals; thus, the average spectral efficiency (ASE) ν̄ has

a (P − NT )/P penalty factor, i.e., ν̄
Δ= (P − NT /P )R̄. The

general system parameters used to obtain the results shown
in the subsequent figures are 1) carrier frequency of 3 GHz;
2) symbol frequency 1/TS = 100 kHz; 3) pilot insertion inter-
val P = 64; 4) adaptation delay τ = 2 TS P ; 5) pilot symbol
SNR γ̄P = γ̄; 6) the number of taps of the prediction FIR filter
F = 8; 7) the number of fading regions NF = 5; and 8) target
BER BERT = 10−3. From this set of system parameters, the
prediction error χ is obtained as indicated in [14].

The next three sections are aimed to show the performance
of the exact closed-form expression for the BER in (23).
In Section III-D1, the BER of a certain MIMO system is
calculated with our exact expression (23) and with the ap-
proximate formula in [14, eq. (46)]. Simulation results show
the accuracy of our BER expression. Section III-D2 shows
the improvement in the determination of the set of SNR
thresholds that can be achieved if (23) is used. Finally, in
Section III-D3, the applicability of (23) to analyze systems
beyond merely the two-input–multiple-output or multiple-
input–two-output antenna configuration is demonstrated.

1) Evaluation of the BER: Fig. 3 shows the BER in terms
of the average SNR γ̄ for an adaptive MIMO transmit-
beamforming 2 × 2 system with MRC. The cutoff SNR
threshold is fixed according to the well-known expression
γ̂0 = −(2/3) log(5BERT ) [24], [25]. Three scenarios em-
ploying different mobile speeds v are considered. Note that
the BER is significantly different for the approximation
[14, eq. (46)] and for the exact expression (23). The plot for
the BER approximation [14, eq. (46)] is clearly above that of the
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Fig. 3. Exact, approximate, and simulated BERs. Adaptive 2 × 2 MIMO
transmit beamforming with MRC, NF = 5, and BERT = 10−3.

exact BER, as it is based on exponential upper bounds for the
error probability in Gaussian channels [24]. Also superimposed
in the figure are given simulation results, which serve as a check
for our analytical results.

2) Improvement in the Design of the SNR Thresholds: Con-
sider two sets of SNR thresholds obtained by solving the
equation for the BER constraint

BER(γ̂0) = BERT . (26)

The first set, which is denoted by {γ̂∇
i }, corresponds to

the solution of (26) when the exponential-approximation-based
CBER expression (14) is substituted in the numerator of (25).
The second set, which is denoted as {γ̂Δ

i }, corresponds to the
solution of (26) when the exact CBER expressions (17) and (18)
are used in the numerator of (25).

Fig. 4 shows the ASE and the BER in terms of the average
SNR γ̄ for an adaptive MIMO transmit-beamforming 2 × 2
system with MRC, mobile speed v = 36 Km/h, and two sets of
thresholds. As can be seen, a significant performance improve-
ment is achieved when the set of SNR thresholds {γ̂Δ

i } (based
on the exact CBER expression) is employed instead of the set
{γ̂∇

i } (based on the approximate CBER expression). Note in
Fig. 4(a) that using {γ̂Δ

i }, the BER meets BERT (except for
high SNR values where the adaptability saturates) and that the
ASE is up to 10% higher in Fig. 4(b), whereas in the case
of using {γ̂∇

i }, the BER is unnecessarily lower than required
(due again to the exponential upper bound employed), and
hence, a lower ASE is achieved. We can see that this more
precise analysis of the system behavior implies a zero-cost
improvement in terms of complexity for the receiver, as the
SNR thresholds can be calculated offline in the design stage of
the system and their values can be subsequently stored for use
during transmission.

3) Application to Systems With Any Antenna Configuration:
In this section, we exploit the exact BER expression (23) to
analyze systems with different antenna configurations. Fig. 5
shows the ASE for adaptive MIMO transmit beamforming with
MRC, mobile speed v = 36 Km/h, and the set of SNR thresh-
olds {γ̂Δ

i }. As shown in the figure, antenna configurations of,
e.g., 3 × 3 or 4 × 4 can be analyzed with our exact closed-form
expression in (23).

Fig. 4. (a) ASE and (b) BER for adaptive 2 × 2 MIMO transmit beamforming
with MRC, v = 36 Km/h, NF = 5, and BERT = 10−3 using thresholds
obtained with exact and approximate BER expressions.

Fig. 5. ASE for different antenna configurations. Adaptive MIMO transmit
beamforming with MRC, v = 36 Km/h, NF = 5, and BERT = 10−3. SNR
thresholds obtained with an exact BER expression.

IV. CONCLUSION

In this paper, we have addressed a wide family of integrals
involving Marcum Q functions and modified Bessel functions
that are of interest for performance analysis of adaptive MIMO
systems. Then, we have applied our analytical results to obtain
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an exact closed-form BER expression that improves previous
analysis of adaptive MIMO transmit beamforming with MRC
and prediction errors.

Regarding the analytical results, we have first shown that
the incomplete integrals of the type addressed in [11] and [12]
are represented by a finite number of elementary functions,
generalized Marcum Q functions, and ILHIs. Second, we have
proven that the ILHIs are reduced to an expression involving
a finite number of modified Bessel and Marcum Q functions.
Finally, we have applied these results to obtain an exact closed-
form expression for the BER of MIMO systems under imperfect
CSI that employ adaptive modulation, transmit beamforming,
and MRC. As a result, we have obtained an exact closed-form
BER expression valid for arbitrary antenna configurations that
can be also employed to improve the adaptation policy design
at no extra complexity cost.

APPENDIX I
PROOF OF LEMMA 1

As in [11], we perform integration by parts in (3) with⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u = Qn(a

√
t, b

√
t)

du = b
2

(
b
a

)n−1
e−

a2+b2

2 t (a In(abt) − b In−1(abt)) dt

v = {[10, eq.2.231 − 2]} = −e−βt

(
m!

βm+1

m∑
r=0

(βt)r

r!

)
dv = tme−βtdt.

Then, after some algebra, we obtain (4). �

APPENDIX II
PROOF OF LEMMA 3

Note that Ie0,0(x;α) = (1/α)Ie((1/α), αx), where Ie is the
Rice Ie-function. Then, using the connection between the Rice
Ie-function and the Marcum Q function [3] and after some
algebra, we obtain (i). To show (ii), we first apply Lemma 2
with ν = 0 and f(t) = exp(−αt), followed by the substitu-
tion of Ie0,0 by (i). Expression (iii) is obtained using integra-
tion by parts with u = exp(−αt), du = −α exp(−αt)dt, v =
I0(t), and dv = I1(t)dt and applying (i). Finally, integrating
by parts Ie1,1 with u = t exp(−αt), du = (−αt exp(−αt) +
exp(−αt))dt, v = I0(t), and dv = I1(t)dt yields

Ie1,1(x; a) = xe−αxI0(x) − Ie0,0(x; a) + aIe1,0(x; a). (27)

Substituting (i) and (ii) in (27), (iv) holds, and the proof is
complete. �

APPENDIX III
PROOF OF PROPOSITION 1

Let us consider the following recursive Luke’s formulas for
the ILHI of Bessel type [8, pp. 120]:

(α2 − 1)Iem,n
(x;α)

= α(2m − 1)Iem−1,n
(x;α)

+ (m − n − 1)e−αxxm−1In(x) − αe−αxxmIn(x)
+
(
n2−(m−1)2

)
Iem−2,n

(x;α)−e−αxxmIn+1(x) (28)

− (n − 1)Ie1,n+1(x;α) = −2ne−αxxIn(x)
− 2nαIe1,n

(x;α) + (n + 1)Ie1,n−1(x;α) (29)

− nIe0,n+1(x;α) = −2ne−αxIn(x)
− 2nαIe0,n

(x;α) + (n + 1)Ie0,n−1(x;α). (30)

First, we show that Ie0,n
(x;α) is represented by (6). Such

statement for n = 0 and n = 1 is obviously true by direct
inspection of Lemma 3, where the corresponding coefficients
are explicitly given. Let us fix m = 0 and perform strong
induction over n for n � 2. Applying Lemma 3 to (30) and
identifying with (6), the following coefficients are obtained for
Ie0,2(x;α):⎧⎪⎨⎪⎩

Al
0,2(α) = 2αAl

0,1(α) −Al
0,0(α), l = 0, 1

B0,0
0,2(α) = 2αB0,0

0,1(α) − B0,0
0,0(α)

B0,1
0,2(α) = 2

(31)

where unspecified coefficients are assumed to be zero. For n �
2, applying the induction hypothesis to (30) and identifying
with (6) leads to the following coefficients for Ie0,n

(x;α):⎧⎪⎨⎪⎩
Al

0,n(α) = 2αAl
0,n−1(α) −Al

0,n−2(α), l = 0, 1
B0,j

0,n(α) = 2αB0,j
0,n−1(α) − B0,j

0,n−2(α), 0 � j � n − 2
B0,n−1

0,n (α) = 2αB0,n−1
0,n−1(α) + 2.

(32)

Therefore, Ie0,n
(x;α) is represented by (6) for n � 0, and

the corresponding coefficients are recursively obtained using
Proposition 3, (31), and (32). Second, we prove that Ie1,n

(x;α)
is represented by (6). Again, such statement for n = 0 and n =
1 is obviously true by direct inspection of Lemma 3. Applying
[10, eq. (8.486-1)] to the definition of Ie1,2(x;α), we obtain

Ie1,2(x;α) = Ie1,0(x;α) − 2Ie0,1(x;α).

Then, using again Lemma 3, the nonzero coefficients for m = 1
and n = 2 are⎧⎪⎪⎪⎨⎪⎪⎪⎩

Al
1,2(α) = Al

1,0(α) − 2Al
0,1(α), l = 0, 1

B0,0
1,2(α) = B0,0

1,0 − 2B0,0
0,1(α)

B1,0
1,2(α) = B1,0

1,0(α)
B1,1

1,2(α) = B1,1
1,0(α).

(33)

Let us fix m = 1 and perform strong induction over n for
n � 3. Applying the induction hypothesis to (29) and identi-
fying with (6) leads to the following nonzero coefficients for
Ie1,n(x;α):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Al
1,n(α) = 2αn−1

n−2Al
1,n−1(α)

− n
n−2Al

1,n−2(α), l = 0, 1
Bi,j

1,n(α) = 2αn−1
n−2B

i,j
1,n−1(α)

− n
n−2B

i,j
1,n−2(α), for

{
i = 0, 1
0 � j � n − 2

B0,n−1
1,n (α) = 2αn−1

n−2B
0,n−1
1,n−1(α)

B1,n−1
1,n (α) = 2αn−1

n−2B
1,n−1
1,n−1(α) + 2n−1

n−2 .
(34)
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Al
2,n(α) = 3α

α2−1Al
1,n(α) + n2−1

α2−1Al
0,n(α), l = 0, 1

B0,j
2,n(α) = 3α

α2−1B
0,j
1,n(α) + n2−1

α2−1B
0,j
0,n(α), 0 � j � n + 1

B1,j
2,n(α) = 3α

α2−1B
1,j
1,n(α) + n+1

α2−1δ[j − n], 0 � j � n + 1

B2,j
2,n(α) =

{
n = 0 ⇒ − α

α2−1δ[j] − 1
α2−1δ[j − 1], 0 � j � n + 1

n > 0 ⇒ − α
α2−1δ[j − n] − 1

α2−1δ [j − (n − 1)] , 0 � j � n

(36)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Al
m,n(α) = α(2m−1)

α2−1 Al
m−1,n(α) + n2−(m−1)2

α2−1 Al
m−2,n(α), l = 0, 1

Bi,j
m,n(α) = α(2m−1)

α2−1 Bi,j
m−1,n(α) + n2−(m−1)2

α2−1 Bi,j
m−2,n(α), for

{
0 � i � m − 2
0 � j � n + 1

Bm−1,j
m,n (α) = α(2m−1)

α2−1 Bm−1,j
m−1,n(α) + m+n−1

α2−1 δ[j − n], 0 � j � n + 1

Bm,j
m,n(α) =

{
n = 0 ⇒ − α

α2−1δ[j] − 1
α2−1δ[j − 1], 0 � j � n + 1

n > 0 ⇒ − α
α2−1δ[j − n] − 1

α2−1δ [j − (n − 1)] , 0 � j � n

(37)

Therefore, Ie1,n
(x;α) is represented by (6) for n � 0, and

the corresponding coefficients are recursively obtained using
Lemma 3, (33), and (34).

Finally, we are in a position to show that Iem,n
(x;α) is

represented by (6), by fixing n and performing strong in-
duction over m for m � 2. We have proven that such state-
ment is true for Ie0,n

(x;α) and Ie1,n
(x;α). For m � 2, using

[10, eq. (8.486-1)], (28) can be rearranged as follows:

Iem,n
(x;α) = − 1

α2 − 1
e−αxxmIn−1(x)

+
m + n − 1

α2 − 1
e−αxxm−1In(x)

− α

α2 − 1
e−αxxmIn(x)

+
α(2m − 1)

α2 − 1
Iem−1,n

(x;α)

+
n2 − (m − 1)2

α2 − 1
Iem−2,n

(x;α). (35)

For Ie2,n
(x;α), (35) allows obtaining the representation (6)

with the coefficients given in (36), shown at the top of the
page, where δ[·] is the Kronecker’s delta. For m � 2, the
application of the induction hypothesis to (35) and identifi-
cation with (6) leads to the coefficients in (37), shown at
the top of the page, for Iem,n

(x;α). Therefore, Iem,n
(x;α)

is represented by (6) for m � 0 and n � 0, and the corre-
sponding coefficients are obtained using Lemma 3, (31)–(34),
(36), and (37). �

APPENDIX IV
PROOF OF THE ASYMPTOTIC EXPRESSION (21)

When χγ̄ → 0, then θp → 0, and η(θp) → 1. Since coeffi-
cients D(·) only depend on η, it is straightforward to check that
Dq(η(θp);NR) → −(1/2)δ[q], where δ[·] is Kronecker’s delta.

Taking these observations into account, if we use the asymptotic
relations

Q1(α, β) ∼
√

β

α
Q(β − α) when β → ∞

I0(αx) ∼ exp(αx)√
2παx

when α → ∞ (38)

then we observe that b(x) − a(x) =
√

2((η(x) − 1)/
(η(x) + 1)), a(x)b(x) = (2η(x)/(1 + η(x))2), and (a(x)2 +
b(x)2/2) = ((1 + η(x)2)/(1 + η(x)2)), and finally substitute
in the CCEP (18), the following expression can be obtained:

I(p; γ̂) ∼
√

η(θp)Q

⎛⎝√2

√(
η(θp) − 1
η(θp) + 1

)2
γ̂

χγ̄

⎞⎠

− 1
2

exp
(
−
(

η(θp)−1
η(θp)+1

)2
γ̂

χγ̄

)
√

2π
2η(θp)

(1+η(θp))2
γ̂

χγ̄

. (39)

Using now the asymptotic relation for the Gaussian Q-function
Q(x) ∼ (exp(−x2/2)/

√
2πx) as x → ∞ in (39), we get the

following after some algebra:

I(p; γ̂) ∼ 1√
4π

1+θp

exp
(
− θp

1+θp

γ̂
χγ̄

)
√

θp

1+θp

γ̂
χγ̄

. (40)

Finally, reversing the asymptotic relation for the Gaussian
Q-function in (40) and substituting in (17), the asymptotic
expression (21) is obtained. �
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