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S U M M A R Y
We perform analytical and numerical studies of aftershock sequences following abrupt steps of
strain in a rheologically layered model of the lithosphere. The model consists of a weak sedi-
mentary layer, over a seismogenic zone governed by a viscoelastic damage rheology, underlain
by a viscoelastic upper mantle. The damage rheology accounts for fundamental irreversible
aspects of brittle rock deformation and is constrained by laboratory data of fracture and friction
experiments. A 1-D version of the viscoelastic damage rheology leads to an exponential ana-
lytical solution for aftershock rates. The corresponding solution for a 3-D volume is expected
to be sum of exponentials. The exponential solution depends primarily on a material parameter
R given by the ratio of timescale for damage increase to timescale for accumulation of gradual
inelastic deformation, and to a lesser extent on the initial damage and a threshold strain state for
material degradation. The parameter R is also inversely proportional to the degree of seismic
coupling across the fault. Simplifying the governing equations leads to a solution following the
modified Omori power-law decay with an analytical exponent p = 1. In addition, the results
associated with the general exponential expression can be fitted for various values of R with the
modified Omori law. The same holds for the decay rates of aftershocks simulated numerically
using the 3-D layered lithospheric model. The results indicate that low R values (e.g. R ≤ 1)
corresponding to cold brittle material produce long Omori-type aftershock sequences with
high event productivity, while high R values (e.g. R ≥ 5) corresponding to hot viscous material
produce short diffuse response with low event productivity. The frequency-size statistics of
aftershocks simulated in 3-D cases with low R values follow the Gutenberg–Richter power
law relation, while events simulated for high R values are concentrated in a narrow magnitude
range. Increasing thickness of the weak sedimentary cover produces results that are similar to
those associated with higher R values. Increasing the assumed geothermal gradient reduces
the depth extent of the simulated earthquakes. The magnitude of the largest simulated after-
shocks is compatible with the Båth law for a range of values of a dynamic damage-weakening
parameter. The results provide a physical basis for interpreting the main observed features of
aftershock sequences in terms of basic structural and material properties.

Key words: aftershocks, cracked media, damage rheology, earthquake dynamics, fault me-
chanics, lithospheric model.

1 I N T RO D U C T I O N

Large earthquakes are typically followed by a period having an in-
creasing number of earthquakes referred to as aftershocks. The main
observed features of aftershock sequences (e.g. Kisslinger 1996;
Utsu 2002) are as follows. (I) Aftershocks occur in a region around
the main rupture zone that expands with time. (II) Their decay rate
can be described (e.g. Utsu et al. 1995) by the modified Omori law

�N/�t = K (c + t)−p, (1)

where N is the cumulative number of events with magnitude larger
than a prescribed cut-off, t is the time after the main shock, and K,
c and p are empirical constants. Observed values of the exponent
p are clustered around 1. However, aftershock decay rates can also
be fitted (e.g. Gross & Kisslinger 1994; Narteau et al. 2002) with
exponential and other functions. (III) The frequency-size statistics of
aftershocks follow, like other regional earthquakes, the Gutenberg–
Richter relation

log N (M) = a − bM, (2a)
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where N(M) is the number of events with magnitude larger than
M and a, b are constants. Estimated b values of regional seismicity
typically fall in the range 0.7–1.3. Eq. (2a) corresponds to a power-
law probability function of the earthquakes potency values P0

N (P0) ∝ P−β

0 , (2b)

where P0 is the integral of the final slip distribution over the failure
area and β = b/1.5 (Ben-Zion 2003). Similar power-law probability
functions characterize (Utsu 2002) the distribution of seismic mo-
ment (potency multiplied by the rigidity) and energy values of the
events. (IV) The difference �M between the magnitude of the main
shock and its largest aftershock is generally independent of the main
shock magnitude (e.g. Båth 1965). The average �M values of after-
shock sequences in a given region (e.g. southern California) are often
close to 1. This is referred to as the Båth law. (V) The occurrence
and properties of aftershocks exhibit a number of spatio-temporal
variations that are unlikely to be associated with statistical fluctua-
tions. These include the following. The depth extent of aftershocks
is correlated with the geothermal gradient (Magistrale 2002) and
the early parts of aftershock sequences may extend deeper than the
regular ongoing seismicity (Rolandone et al. 2004). Cold continen-
tal regions with low heat flow have high aftershock productively and
long event sequences associated with low effective power-law de-
cay, while hot continental regions and oceanic lithosphere have low
aftershock productively and short event sequences with fast decay
(Kisslinger & Jones 1991; Davis & Frohlich 1991; Utsu et al. 1995;
Kisslinger 1996; Boettcher & Jordan 2004; McGuire et al. 2005).
Geothermal areas and volcanic regions with high fluid (magma, wa-
ter) activity and high heat flow often have swarms of events without a
clear separation between main shocks and aftershocks (Mogi 1967;
Utsu 2002). In addition, observed b values of individual aftershock
sequences can vary from 0.6 to 1.4 (e.g. Wiemer & Katsumata 1999)
and observed values of �M associated with the Båth law can vary
from 0.6 to 1.7 or more (e.g. Kisslinger & Jones 1991; Shcherbakov
& Turcotte 2004).

In this work we attempt to establish a physical basis for under-
standing features (I)–(V), using a regional lithospheric model with
a seismogenic crust governed by a continuum damage rheology that
accounts for key observed features of irreversible rock deformation
(Lyakhovsky et al. 1997a, 2005; Hamiel et al. 2004). A similar dam-
age model was used by Shcherbakov et al. (2005) to derive a scaling
relation for aftershocks that combines the modified Omori law and
Gutenberg–Richter relation with the Båth law. Other physical mod-
els for aftershocks include rate-dependent creep rheology (Benioff
1951), migration of pore fluids (e.g. Nur & Booker 1972), stress
corrosion (Das & Scholz 1981; Yamashita & Knopoff 1987), rate-
and state-dependent friction (Dieterich 1994), and spatial variations
of brittle and creep fault properties (Zöller et al. 2005). However,
none of the existing models provides a unified explanation of prop-
erties (I)–(V), including the observed spatio-temporal variability
of aftershock properties, in terms of basic geological and physical
properties of the lithosphere. This is done in the present work with
analytical and numerical parameter–space studies associated with
our damage rheology framework and realistic model of the litho-
sphere.

In Section 2 of the paper we provide a review of the employed
damage rheology model and lab-based constraints on the governing
rheological parameters. In Section 3 we consider a simplified 1-D
version of the model and derive an analytical solution for damage
evolution during a relaxation process following an abrupt strain step.
The solution provides guidelines for several expected properties of
aftershock sequences. The analytical expression is associated with

an exponential function that depends on a single material parameter
given by the ratio R between the timescale for damage increase in
a fracture process and the timescale for accumulation of gradual
inelastic deformation. Low values of R representing cold material
with high viscosity produce a slow brittle relaxation process with
long aftershock sequences, while high values of R representing hot
low-viscosity material produce rapid relaxation with short after-
shock sequences. The results generated by the analytical solution
can be fitted well for various values of R with the modified Omori
power-law relation.

In Section 4 of the paper we present results of 3-D numerical sim-
ulations in a regional lithospheric model consisting of a sedimentary
layer, over a brittle seismogenic crust governed by the damage rheol-
ogy, underlain by a viscoelastic upper mantle with power-law creep.
The decay rates of aftershock sequences following abrupt loading
steps, simulated with various values of R, are compatible with the
analytical results. The frequency-size statistics of aftershocks sim-
ulated with relatively low R values follow the Gutenberg–Richter
power-law distribution, while the statistics of events simulated with
relatively high R values have a narrow range and cannot be described
by a power-law relation. The largest aftershocks in simulations with
dynamic weakening during brittle failures in a range of values are
compatible with the Båth law. Increasing thickness of the weak sed-
imentary cover reduces the number of events and duration of the
simulated aftershock sequences, similar to what is produced by in-
creasing R value. Increasing temperature gradient reduces the depth
extent of the aftershocks, but has a minor direct effect on the af-
tershocks duration. The maximum depth of aftershocks in a given
model realization is initially high and decreases with time, reflecting
a transient deepening of the brittle–ductile transition depth gener-
ated by the main shock. The implications of the results to aftershock
sequences and other aspects of crustal deformation are discussed in
Section 5.

2 A V I S C O E L A S T I C DA M A G E
R H E O L O G Y M O D E L

The damage rheology we use (Lyakhovsky et al. 1997a; Hamiel et al.
2004) accounts for the following three general aspects of brittle rock
deformation under large irreversible strain.

(1) A mechanical aspect quantifying the dependency of the ef-
fective elastic moduli on the existing density of microcracks.

(2) A kinetic aspect quantifying the evolution of microcrack den-
sity (leading to degradation and recovery of the effective elastic
moduli) with the ongoing deformation.

(3) Dynamical aspects modelling stable and unstable material
failures associated with gradual accumulation of inelastic strain and
brittle instability, respectively.

The theoretical developments are done within a non-linear contin-
uum mechanics framework (e.g. Kachanov 1986; Rabotnov 1988),
where the microcrack density is represented by an intensive damage
state variable α. The results are applicable to volumes with a suf-
ficiently large number of cracks that allow quantitative description
through properties of the crack distribution rather than those of the
individual cracks. Discrete models of damage associated with fibre
bundles or other discrete elements can lead to similar results in the
limit of a large number of elements (e.g. Krajcinovic 1996; Newman
& Phoenix 2001; Turcotte et al. 2003).

Lyakhovsky et al. (1997b) modelled the effects of an existing
crack population (damage) by generalizing the elastic strain energy
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function of a deforming solid to the form

U = 1

ρ

(
λ

2
I 2

1 + μI2 − γ I1

√
I2

)
, (3)

where I 1 = εkk and I 2 = ε i j ε i j are the first and second invariants of
the elastic strain tensor ε i j (summation convention applied), λ and
μ are the Lamé parameters of linear Hookean elasticity, and γ is a
third modulus for a damaged solid. The result was obtained using
the self-consistent formulation of Budiansky & O’Connell (1976)
for non-interacting cracks that dilate and contract in response to
tension and compression. Lyakhovsky et al. (1997b) showed that the
dependency of the elastic potential on the third strain invariant I 3 =
det(ε ij) is very weak and may be neglected. The obtained potential
form is the simplest mathematical expression for the elastic strain
energy that generalizes the classical potential to a non-analytical
second-order function of two strain invariants I 1 and I 2.

The same result can be obtained by considering a general func-
tion for the strain energy having any second-order term of the type
I 2x

1 · I 1−x
2 with 0 < x < 1, and eliminating unphysical values of

the exponents. The limit values x = 0 and x = 1 are associated
with the Hookean first two terms of (3). The relation between the
mean stress (σ kk) and volumetric deformation (I 1) for the assumed
general form is

σkk = ρ
∂U

∂ I1
∼ 2x I 2x−1

1 I 1−x
2 + 2

3
(1 − x)I 2x+1

1 I −x
2 . (4)

The second term in eq. (4) is regular for every 0 < x < 1, while
the first term has a non-physical singularity for 0 < x < 1/2. Only
exponent values in the range x ≥ 1/2 lead (in addition to x = 0)
to a non-singular stress–strain relation. However, for x > 1/2 the
volumetric strain is zero (I 1 = 0) for zero mean stress (σ kk = 0) and
any non-zero shear loading (I 2 �= 0). This is not compatible with
material dilation under shear loading, which is widely observed in
rock deformation experiments (e.g. Jaeger & Cook 1976). Thus the
only exponent (other than the classical 0 and 1 values) associated
with realistic rock deformation is the x = 1/2 value represented by
the third term in eq. (3).

The resulting stress–strain relation associated with the strain en-
ergy function (3) is

σi j = ρ
∂U

∂εi j
=

(
λI1 − γ

√
I2

)
δi j +

(
2μ − γ

I1√
I2

)
εi j . (5)

Eq. (5) reduces to linear Hookean elasticity for an undamaged solid
(γ = 0) and it describes non-linear elasticity for a damaged solid
(γ > 0) with asymmetric response to loading under tension and
compression conditions (Lyakhovsky et al. 1993, 1997b).

The kinetic aspect of the damage rheology model is accounted for
by making the moduli λ, μ and γ functions of an evolving damage
state variable 0 ≤ α ≤ 1 representing the local microcrack density.
Using the balance equations of energy and entropy, and accounting
for irreversible changes related to viscous deformation and material
damage, the equation of damage evolution has the form (Lyakhovsky
et al. 1997a)

dα

dt
= −C

∂U

∂α
, (6)

where the positive constant or function of state variables C produces
non-negative local entropy production related to damage evolution.
Eq. (6) can describe not only damage increase or material degra-
dation, but also the process of material recovery associated with
healing of microcracks. The latter is favoured by high confining
pressure, low shear stress and high temperature.

Agnon & Lyakhovsky (1995) assumed for simplicity that the
moduli μ and γ are linear functions of α and the modulus λ is
constant. Later analysis of laboratory acoustic emission and stress–
strain data (Hamiel et al. 2004) showed that the quality of data fitting
may be improved by assuming power-law relations between α and
the elastic moduli. However, assuming constant λ and using linear
relations of μ and γ to α still provide good approximations for
conditions of the seismogenic zone. Increasing the modulus γ from
0 for a damage-free Hookean solid to its maximum value at critical
damage, amplifies the non-linearity of rock elasticity with damage
accumulation.

Substituting the elastic strain energy (3) into (6), the equation for
the kinetics of damage evolution is (Lyakhovsky et al. 1997a)

dα

dt
=

{
Cd I2(ξ − ξ0), for ξ ≥ ξ0

C1 · exp
( α

C2

)
I2(ξ − ξ0), for ξ < ξ0

, (7)

where ξ = I1/
√

I2 is referred to as the strain invariants ratio.
The parameter ξ 0 separates states of deformation involving mate-
rial degradation and healing, associated with positive and negative
damage evolution, respectively. Agnon & Lyakhovsky (1995) and
Lyakhovsky et al. (1997a) related this parameter to the angle of
internal friction by considering the critical shear stress for Mohr-
Coulomb sliding. They obtained ξ 0 = −0.8 for typical ratios of
elastic moduli for damage-free material λ/μ ≈ 1 (Poisson’s ratio of
about 0.25) and internal friction angle ≈40◦ (Eq. 37 and Fig. 3 of
Lyakhovsky et al. 1997a). This value varies only slightly for rocks
with Poisson ratios between 0.2 and 0.3 and is used in the numerical
simulations of Section 4. The parameter Cd is a damage-rate con-
stant for material degradation and it defines the timescale for the
occurrence of a macroscopic brittle failure following the onset of
positive damage evolution at ξ = ξ 0.

The initiation of brittle instability leading to macroscopic fail-
ure is associated in the model with loss of convexity of the strain
energy function at a critical level αc of the damage state variable
(Lyakhovsky et al. 1997a). The critical level of damage for prop-
agation of the instability is lower than the initiation level by a dy-
namic weakening factor discussed in the appendix. These conditions
were used by Ben-Zion et al. (1999), Lyakhovsky et al. (2001a) and
Ben-Zion & Lyakhovsky (2002) to calculate the initiation and prop-
agation of seismic events in numerical simulations, and are also
used in Section 4. Lyakhovsky et al. (1997a) suggested that Cd

is a material constant and estimated its value to vary from 0.5 to
5 s−1 for different rocks tested at relatively high confining pressures
and room temperature. However, Lyakhovsky et al. (2005) showed
that the damage model with a constant Cd significantly overesti-
mates the strength of Westerly granite at low confining pressures,
and suggested a pressure-dependent Cd that varies exponentially
with a characteristic scale of 50 MPa. The obtained Cd is approxi-
mately constant for pressures above 50–100 MPa, indicating that for
simulations of fracture processes at depth larger than about 3–5 km,
where the bulk of seismic slip occurs, Cd may be taken as a constant.
Lyakhovsky et al. (2005) also showed that the employed viscoelastic
damage model, with the exponential healing in the kinetic eq. (7),
reproduces the key observed features of rate- and state-dependent
friction. A comparison of model calculations with observed values
of the parameters a and b of the rate- and state-dependent friction
allowed Lyakhovsky et al. (2005) to constrain the damage healing
parameters C 1, C 2 of eq. (7).

Detailed analysis of laboratory data (Hamiel et al. 2004) showed
that with the onset of acoustic emissions and positive damage evo-
lution, a gradual irreversible (inelastic) strain accumulates before
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the final macroscopic failure. In a Maxwell element the strains are
additive, so the total strain is the sum of the elastic and inelastic
components. Hamiel et al. (2004) suggested the rate of accumula-
tion of gradual inelastic strain components eij is proportional to the
rate of positive damage evolution dα/dt > 0,

ei j = Cv

dα

dt
τi j , (8)

where C v · dα/dt is an effective damage-related ductile compli-
ance, or the inverse of an effective damage-related viscosity, and
τ i j is the deviatoric stress tensor. The value of the effective viscos-
ity increases with decreasing damage rate and becomes infinitely
large (i.e. associated with zero viscous deformation) when the pos-
itive damage evolution approaches zero at the transition to healing.
The physical unit of the coefficient C v is inverse stress and does
not introduce a new timescale to the viscoelastic damage rheology
model. The timescale of all processes related to the positive damage
evolution is controlled by the damage rate parameter Cd . Hamiel
et al. (2004) presented 3-D numerical simulations based on the gen-
eralized version of the viscoelastic damage model with eq. (8). The
results fitted well both the observed stress–strain curves and acous-
tic emission data of laboratory experiments with Westerly granite
and Berea sandstone. The generalized version of the viscoelastic
damage model with eqs (5), (7) and (8) is used in the sections below
for analysis of aftershocks.

3 A N A LY T I C A L R E S U LT S F O R
A F T E R S H O C K D E C AY R AT E S

The 3-D model formulation is simplified significantly for a 1-D ver-
sion corresponding to uniform deformation, not accounting for the
tensorial nature of deformation and spatial variations of properties
or processes. In this section we consider such a case and derive ana-
lytical results that provide general expectations for aftershock decay
rates.

While the general stress–strain relations (5) based on the elas-
tic potential (3) are non-linear, the corresponding 1-D stress–strain
relation has the linear form

σ = 2μ0(1 − α)ε, (9)

where μ0(1 − α) is the effective elastic modulus of a 1-D damaged
material with μ0 being the initial rigidity of the undamaged solid.
The 1-D version of the kinetic eq. (7) for damage evolution is

α̇ = Cd (ε2 − ε2
0), (10)

where ε0 is a threshold value separating states of strain associated
with material degradation and healing. Shcherbakov et al. (2005)
used a 1-D damage model similar to that associated with eqs (9) and
(10), along with an assumed power-law dependency of Cd on the
stress above a yielding stress level, to obtain a power-law scaling for
aftershock rates. As discussed in Section 2, comparisons of model
predictions with observed strength of Westerly granite indicate that
Cd is approximately constant for conditions corresponding to depths
larger than about 3–5 km (Lyakhovsky et al. 2005). Since the seis-
mically active portion of the crust is generally below 3–5 km (e.g.
Scholz 2002), we use here a constant Cd .

For positive damage evolution (ε > ε0), the damage-related in-
elastic strain rate before the final macroscopic failure is given by

e = Cvα̇σ. (11)

The set of eqs (9)–(11) governs the 1-D behaviour of the (spatially
uniform) system. A similar set of equations with constant viscosity
was analysed by Lyakhovsky et al. (1997a) to describe a stick-slip
motion under a constant rate of applied deformation. Ben-Zion &

Lyakhovsky (2002) showed analytically that eqs (9) and (10) lead
under constant stress, in a system without gradual inelastic strain
accumulation and a constant Cd , to a power-law time-to-failure rela-
tion consistent with observed seismic activation before some large
earthquakes. A similar derivation was obtained by Turcotte et al.
(2003). The analytical result was confirmed by numerical simu-
lations in a rheologically layered model with a seismogenic crust
governed by the damage rheology (Ben-Zion & Lyakhovsky 2002).
The assumed constant stress loading in those works provides an ap-
propriate boundary condition for evolutionary deformation leading
to a system-size event. Here we analyse the behaviour of a more
general system, having both brittle and gradual inelastic compo-
nents of deformation, subjected to a constant total strain boundary
condition. Such a condition is appropriate for a relaxation process
in a region following the occurrence of a large event.

The constant total strain condition implies that the rate of elastic
strain relaxation is equal to the viscous strain rate, that is, 2· ε̇ = −e.
The factor 2 stems from the common definitions of the strain and
strain-rate tensors, ε i j = (∂ui/∂xj + ∂uj/∂xi)/2, eij = (∂vi/∂xj +
∂vj/∂xi), where ui and vi are displacement and velocity components,
respectively. Substituting this condition in (11) and then in (9) gives

dε

dt
= −Cvμ0(1 − α) · ε

dα

dt
. (12)

Integrating (12) we get

ε = A · exp

[
1

2
R (1 − α)2

]
, (13)

where A = εs ·exp[− 1
2 R(1 − αs)2] is an integration constant with α

= α s and ε = εs for t = 0, and R = μ0 · C v is a material parameter.
As demonstrated below analytically and numerically, the parameter
R plays a dominant role in the aftershock behaviour. Recalling that
the damage-related viscosity is η = 1/Cvα̇, it is easy to show that
R characterizes the ratio between a brittle damage timescale τ d =
1/[Cd(ε2 − ε2

0)] and a Maxwell viscous timescale τ M = η/μ. Sub-
stituting eq. (13) into eq. (10) leads to damage evolution following
an exponential function

dα

dt
= Cd · {

ε2
s exp

[
R(1 − α)2 − R(1 − αs)2

] − ε2
0

}
. (14)

To convert the evolution of the damage state variable α to evolu-
tion of aftershocks number N , we assume that α increases linearly
with N ,

α = αs + φN . (15)

We thus get

φ
d N

dt
= Cd · {

ε2
s exp

[
R(1 − αs − φN )2 − R(1 − αs)2

] − ε2
0

}
.

(16a)

The corresponding solution for a 3-D volume with many interacting
elements is expected to be associated with a sum of exponentials
similar to eq. (16a). We note that the solution of Dieterich (1994)
for brittle deformation rate following a stress step, based on rate-
and state-dependent friction, is also associated with an exponential
function, and that Narteau et al. (2002) fitted observed aftershock
sequences with sums of exponentials. For the limiting case with ε0

= 0, eq. (16a) has a solution in the form

erf [
√

R(1 − αs − φN )] = erf [
√

R(1 − αs)]

− exp[−R(1 − αs)2]
√

RCdε
2
s

2√
π

· t. (16b)
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Figure 1. (a) Analytical results based on eq. (16a) for aftershock decay
rates in a 1-D version of the damage model for different R values (lines
with different colours). The dotted line is least-squares fit to the exponential
analytical solution with the modified Omori power law (eq. 1). See text for
additional parameters and explanations. (b) Additional cases of analytical
exponential results and least-squares fits based on the modified Omori law.
See text for parameters and explanations.

Fig. 1(a) shows the evolution of the number of aftershocks N per
day based on eq. (16a) for several values of R (solid lines), using
Cd = 1 s−1, φ = 1.3 × 10−4, εs = 5.0 × 10−4, and the simplifying
limit values α s = 0 and ε0 = 0. (Below we consider results associ-
ated with non-zero α s and ε0.) Seismological observations indicate
that the average change of seismic velocity in a region during an
aftershock sequence is on the order of 1 per cent or less, depend-
ing on the region being considered (e.g. Poupinet et al. 1984; Peng
& Ben-Zion 2006). Thus, the scaling parameter φ governing the
change of the average damage variable α during the occurrence of
N aftershocks (eq. 15) should be very small. For example, with φ =
1.3 × 10−4 the number of events in Fig. 1(a) during 100 days for
R values of 10, 1 and 0.1 are about 1500, 6500 and 13 500, re-
spectively. The corresponding relative changes to the shear wave
velocity �β/β are about 10, 60 and more than 100 per cent, re-
spectively. These changes are unrealistically high, except perhaps
in some highly localized space–time regions.

As seen in Fig. 1(a), small R values, corresponding to highly
brittle cases with little viscous relaxation, produce long aftershock
sequences with slow decay and high aftershock productivity (e.g.
∼104 events in 100 days for the case R = 0.1). In contrast, high R
values, corresponding to relatively viscous cases, produce short af-
tershock sequences with fast decay and low aftershock productivity
(∼103 events for R = 10). While the aftershock rates in Fig. 1(a) are
generated using the exponential eq. (16a), the results can be fitted
well by the modified Omori power-law relation K (c + t)−p . This is
illustrated for the case R = 1 with a line fit based on the modified
Omori law (dotted black line) with K = 1470, c = 14 day and p =
0.8. Changing the power-law parameters we can produce reasonable
fits to all three solid lines. We note that it is possible to obtain good
fits to the results with several different sets of parameters [see, e.g.
eq. (18c) for a relation between the c and K values for an analytical
power-law version of our model], and that the examples shown only
intend to illustrate general effects. More realistic cases of simulated
aftershock sequences, and fitting values of the modified Omori law
parameters, are given in Section 4 where we perform numerical
simulations in a spatially heterogeneous 3-D volume having many
interacting elements.

Fig. 1(b) gives the number of aftershocks per day for various cases
of R (solid lines), using eq. (16a) with Cd = 1 s−1, φ = 6.6 × 10−6,
εs = 6 × 10−4, α s = 0.2 and ε0 = 5 × 10−4. Here the aftershock
sequences during 100 days are associated with N ≈ 11 800 and
�β/β ≈ 60 per cent for R = 0.1, N ≈ 7600 and �β/β ≈ 35 per cent
for R = 0.3, N ≈ 2900 and �β/β ≈ 12 per cent for R = 1, and
N ≈ 300 and �β/β ≈ 1 per cent for R = 10. With the employed
parameters, the results of Fig. 1(b) can be fitted well for the case
R = 0.3 over the examined 100 days (dotted black line) using the
modified Omori law with K = 1800, c = 15 day and p = 0.8
Obtaining good fits with the modified Omori law for cases with
larger R values requires that we change the power-law parameters
with time. For example, the case R = 1 is fitted (dotted black lines)
with K = 1120, c = 5.3 day and p = 1 for the first 40 days, and K =
800, c = 3 day and p = 1.1 for the following 60 days. We note that
analyses of observed aftershock sequences also indicate, at least in
some cases, decay rates (or p values) that increase with time (e.g.
Davis & Frohlich 1991; Narteau et al. 2002; Peng et al. 2006).

The obtained good fits to the curves of Figs 1(a) and (b) with
lines based on the modified Omori law suggest that the leading term
of eq. (16a) is associated with a power law. This can be derived
explicitly by making the following two simplifications. Assuming
that φN is sufficiently small so that the (φN )2 term in (16a) can be
neglected, gives

φ
d N

dt
= Cd · {

ε2
s exp [−2φN R(1 − αs)] − ε2

0

}
. (17)

As discussed above, the assumption of very small φN is gener-
ally appropriate for a 1-D analysis of average changes associated
with aftershock sequences. If we assume further that the initial
strain εs induced by the main shock is large enough so that ε2

0 �
ε2

s exp [−2φNR(1 − α s)], we get

N = 1

2φR(1 − αs)
ln

[
2R(1 − αs)Cdε

2
s t + 1

]
. (18a)

Eq. (18a) corresponds to the modified Omori law. This can be seen
more clearly by rewriting the result as

d N

dt
= Ṅ 0

2φR(1 − αs)Ṅ 0t + 1

= Ṅ 0

2φR(1 − αs)Ṅ 0

· 1

t + 1/2φR (1 − αs) Ṅ 0

, (18b)
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where Ṅ 0 = Cdε
2
s /φ is the initial aftershocks rate. Eq. (18b) pro-

vides a mapping between parameters of the modified Omori law
and parameters of our damage rheology model (in a 1-D analysis of
uniform deformation),

k = 1

2φR(1 − αs)
,

c = 1

2φR(1 − αs)Ṅ 0

= k

Ṅ 0

,

p = 1. (18c)

We recall that the logarithmic solution (18a) and power-law decay
rate (18b) were obtained using the two assumptions (a) φN � 1
and (b) ε2

0 � ε2
s exp [ − 2φNR(1 − α s) ]. These assumptions can

not generally be satisfied simultaneously for a long period of time.
The solution (18a) is compatible with condition (a) only for time
intervals t � 1/Cd ε2

s , and the right side of condition (b) decreases
with increasing N (and hence increasing t). These conditions are
compatible with the statement that the power-law version of our more
general exponential function is the first term in a Taylor-Maclaurin
expansion, and they explain why the modified Omori law can fit well
only short intervals for the fast decaying cases in Fig. 1(b). If we
drop condition (b), so that the results account for a finite ε0 value,
and proceed from eq. (17), the solution is

ln

{
ε2

s exp[−2φN R(1 − αs)] − ε2
0

ε2
s − ε2

0

}

−2φN R(1 − αs) = Cdε
2
02R(1 − αs) · t. (19)

In this case, the total number of events NT from eq. (17) is NT = ln
(εs/ε0)/(φR), and the value φN can remain small throughout the
entire aftershock sequence for a ratio εs/ε0 close to 1.

Figure 2. A schematic diagram of the 3-D lithospheric structure used in the numerical simulations along with a given temperature gradient. The thickness of
the upper sedimentary cover varies from 1 to 7 km in different model realizations. The imposed main shock damage zone extends from the free surface to a
depth of 15 km. See text for additional explanations.

4 N U M E R I C A L R E S U LT S O N
A F T E R S H O C K P RO P E RT I E S

To establish the conditions for which the analytical results are valid,
and study additional properties of aftershock sequences, we perform
3-D numerical simulations in a rheologically layered model with a
seismogenic layer governed by the viscoelastic damage rheology.
The numerical simulations employ the Fast Lagrangian Analysis of
Continua algorithm (Cundall & Board 1988; Cundall 1989; Poliakov
et al. 1993). The 3-D numerical algorithm for the damage rheology
model of Lyakhovsky et al. (2001b) was modified here to account
for the accumulation of inelastic damage-related strain components
and ductile flow discussed in the next section. The simulations are
done with tetrahedral elements of variable sizes that increase gradu-
ally from about 500 m in the seismogenic zone to about 5 km in the
ductile region. The mesh was generated with the TetGen code (by
Hang Si from Research Group of Numerical Mathematics and Sci-
entific Computing, Weierstrass Institute for Applied Analysis and
Stochastic <http://tetgen.berlios.de>).

4.1 Model set-up

The 3-D numerical model consists of a rheologically layered struc-
ture with the three main units of a continental lithosphere (Fig. 2).
The upper layer represents a top cover of weak sediments with a
thickness of 1–7 km in different model realizations. Cases with a
relatively thick top cover correspond to regions with deep sedimen-
tary basins, such as in the Los Angeles, Ventura and Dead Sea areas.
The second and third layers represent the crystalline crust and up-
per mantle, respectively. The interface between these layers is at a
depth of 35 km, which is a typical Moho depth for continental crust.
In the simulations below, the mass density, initial shear modulus
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Figure 3. Regional tectonic stress fields versus depth for a constant strain
rate of 10−15 s−1 and different temperature gradients indicated in the legend.
The small step in the uppermost part of the curve corresponds to the interface
between the weak sedimentary cover and the underlying crystalline crust.

and initial Poisson’s ratio of the top sedimentary layer are ρSED =
2400 kg m−3, μSED

0 = 2 × 1010 Pa and νSED
0 = 0.2. The corre-

sponding parameters for the crust and upper mantle layers are ρC =
2800 kg m−3, μC

0 = 6 × 1010 Pa, νC
0 = 0.2; ρUM = 3200 kg m−3,

μUM
0 = 12 × 1010 Pa, νUM

0 = 0.2.
The total strain tensor εt

i j in each layer is written as a sum of three
strain components associated with different deformation mecha-
nisms

εt
i j = εe

i j + εi
i j + εd

i j , (20)

where εe
i j is elastic strain related to the stress tensor through (5),

εi
i j denotes the damage-related inelastic strain with accumulation

rate eij = dεi
i j/dt calculated using eq. (8), and εd

i j represents ductile
strain. As discussed below, the latter may be generated by a vari-
ety of mechanisms including dislocation creep, solid state diffusion,
and solution–diffusion–precipitation processes (e.g. Kohlstedt et al.
1995). The superposition in eq. (20) of strain tensors associated with
different deformation mechanisms is an expansion of the classical
Maxwell viscoelastic model. A similar superposition was used re-
cently by Regenauer-Lieb & Yuen (2003) to model the rheology of
the crust and upper mantle.

The rate of the ductile strain accumulation in the sedimentary
layer is calculated using Newtonian viscosity

ε̇d
i j = 1

η
τi j , (21)

with a relatively low viscosity η = 1020 Pa s. The ductile flow in the
crystalline crust and upper mantle can be described by empirical
constitutive relations that express the rate of ductile strain accu-
mulation as a function of stress and temperature for the dominant
lithologies of continental lithosphere (e.g. Goetze 1978; Brace &
Kohlstedt 1980; Kirby 1983; Kohlstedt et al. 1995; Ranalli 1995).
The common lithologies of the continental lithosphere are quartz–

diorite (upper crust), diabase (lower crust) and dunite/olivine (man-
tle). Most of the experimental constitutive relations are established
for minerals, assuming that the weakest dominant minerals control
the flow rate of the rock (e.g. Brace & Kohlstedt 1980). Direct ob-
servations of ductile shear zones and indirect analyses of seismic
anisotropy in mantle rocks demonstrate that dislocation creep dom-
inates at stresses above 10 MPa (e.g. Karato 1989). A power-law
rheology is widely accepted for expressing the strain rate of the
dislocation flow (e.g. Weertman 1978)

ε̇d
i j = Aσ n−1 exp

(
− Q + PV ∗

Rg · T

)
τi j , (22)

where A and n are empirical constants, τ i j is the deviatoric stress
component, σ is the amplitude of τ i j , Q is activation energy, V ∗ is
activation volume, P is pressure, T is temperature, and the gas con-
stant Rg = 8.314 J mol−1 ◦K. The material constants for the creep
law of the diabase, which controls the ductile flow of the lower con-
tinental crust, are A = 6.31 × 10−20 Pa−n s−1, n = 3.05, and Q =
276 kJ mol−1 (Carter & Tsenn 1987). The ductile flow in the man-
tle is controlled by the olivine/dunite with material constants A =
7 × 10−14 Pa−n s−1, n = 3, and Q = 520 kJ mol−1 (Kirby & Kro-
nenberg 1987). The differences in reported activation volume V ∗ =
5 × 10−6 to 27 × 10−6 m3 mol−1 (Hirth & Kohlstedt 2003) multi-
plied by pressure values corresponding to depths of several hundred
kilometres produce an uncertainty of several orders of magnitude for
the viscosity. However, for relatively low pressures corresponding
to depths less than 100 km, the PV ∗ term in (22) is negligible.

The initial stress field in the 3-D model is given by the sum of
a depth-dependent regional stress and a co-seismic stress distribu-
tion corresponding to an imposed strong earthquake. The co-seismic
stress components are calculated using the Okada (1992) code. The
regional stress follows a yielding stress envelope given by the in-
tersection of brittle and ductile regimes (Fig. 3) for a strain rate of
10−15 s−1 and temperature gradients of 20, 30 and 40◦C km−1 in
different model realizations. The transition depth from brittle defor-
mation to ductile flow in the crust occurs at a temperature of about
300◦C (Brace & Kohlstedt 1980; Tsenn & Carter 1987). The initial
stress in the brittle seismogenic zone is calculated using an internal
friction angle of 35◦, corresponding to ξ 0 = −0.8 in (7).

The superposition of the above regional and co-seismic stress
fields in a model configuration with fixed boundaries is followed by
internal stress relaxation, during a process associated with damage
increase and gradual inelastic strain in the seismogenic zone, and
ductile flow in the underlying substrate. When the damage reaches
a critical value αc associated with loss of the convexity of the strain
energy function (3), the quasi-static solution for damage accumula-
tion becomes unstable and dynamic stress drop occurs. The dynamic
stress drop (not analysed in detail here) produces a reduction of the
elastic strain in a rapid process during which the shear modulus
remains very low. The brittle failure leads to an abrupt increase of
plastic deformation that corresponds to slip in simpler models with
planar faults. Similarly to our previous works on coupled evolution
of earthquakes and faults (Ben-Zion et al. 1999; Lyakhovsky et al.
2001a; Ben-Zion & Lyakhovsky 2002), we assume that during brit-
tle failure the deviatoric stress drops locally to zero leaving only
the volumetric component. After the failure, the local stress condi-
tions favour healing according to eq. (7) and the depth-dependent
lithostatic pressure. The elastic stress can then increase due to stress
transfers until it reaches again the critical level for brittle instability.

A brittle failure at any fault location may lead to rupture propaga-
tion. This is simulated with a quasi-dynamic procedure (Lyakhovsky
et al. 2001a) using iterative stress transfer calculations and
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incorporation of dynamic weakening. As discussed in the appendix,
the latter is associated with a reduction of the critical value of the
damage variable at all elements of the model during the rupture
process to a dynamic level αd given by

αd = αc −
√

τr
dα

dt
, (23)

where τ r is a material property controlling the weakening during
the rupture propagation. When the rupture stops propagating, the
damage failure threshold reverts everywhere to the static value αc.
The increments of co-seismic plastic strain ε

p
i j in the elements that

failed during the rupture process are integrated to calculate the seis-
mic potency tensor (Ben-Zion 2003) of the event, Pi j = ∫

V ε
p
i j dV .

The corresponding earthquake magnitude M is calculated from the
empirical potency-magnitude scaling relation of Ben-Zion & Zhu
(2002)

log10 P0 = 0.06M2 + 0.98M − 4.87, (24)

where P0 = √
2Pi j Pi j is in km2 cm.

4.2 Aftershock statistics in 3-D numerical simulations

We first consider cases designed to study the decay rates, frequency-
size statistics and depth extent of aftershock sequences. The mini-
mum and maximum sizes of the simulated events are governed by
the size of the numerical elements, the large scale dimensions of
the seismogenic zone and other lithospheric layers, the size of the
imposed main shock, and rheological parameters. To have a reason-
able range of event sizes during a practical computation time, we
use together with the large scale dimensions discussed in Section
4.1, numerical elements in the seismogenic zone with size of about
500 m and an imposed main shock that extends in the y-direction
beyond the model configuration of Fig. 2. All cases below start with
an imposed main shock having a 5 m of slip over a fault zone centred
at x = 50 km and extending over the range 50 ≤ y ≤ 150 km, 0 ≤ z
≤ 15 km. The magnitude of the imposed main shock is M = 7.3 and
each run produces seismic activity for one year following the main
shock. The key rheological parameter that affects the maximum size
of the simulated events is the dynamic weakening timescale τ r of
(23), while the key parameter that affects the other properties of the
aftershock sequences is the ratio R. In this section we use a fixed τ r

= 300 s and analyse the dependency of the results on the parameter
R, as well as the lithospheric structure and thermal regime. In the
next section we consider results associated with different values of
τ r . In all simulations we use the following lab-based damage param-
eters: ξ 0 = −0.8, Cd = 10 s−1, C 1 = 10−5 s−1 and C 2 = 0.05. The
parameter C v varies among cases to produce in the crystalline crust
different values of the material parameter R = μ0 · C v with μ0 =
6 × 1010 Pa.

Figs 4(a)–(e) show the number of model aftershocks for R val-
ues varying from 0.1 to 10, a thickness of the weak sedimen-
tary cover of 1 km, and a temperature gradient of 20◦C km−1.
In each case, the daily seismicity rate during 100 days after the
main shock was fitted with the least-squares method to the mod-
ified Omori law (eq. 1). In agreement with the 1-D analytical re-
sults of Section 3, the duration and event productivity of the sim-
ulated aftershock sequences decrease with increasing R values. If
R is small, the damage-related inelastic strain is very small and the
parameters of the aftershock statistics depend only weakly on the
R value. Thus the simulated sequences with R = 0.1 and R = 1
(Figs 4a and b) can be fitted by the modified Omori law with p
values that change only from 0.8 to 0.9. A further increase of R
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Figure 4. (a) Daily rates of aftershocks in a 3-D numerical simulation
with model realization having R = 0.1, sedimentary cover of 1 km, and
temperature gradient of 20◦C km−1. The line gives least-squares fit to the
data points based on the modified Omori law with parameters given in the
legend. (b) Same as (a) for R = 1.0. (c) Same as (a) for R = 2.0. (d) Same
as (a) for R = 3.0. (e) Same as (a) for R = 10.0.
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Figure 4. (Continued.)

above 1, however, affects significantly the aftershock sequence. For
R = 2 and R = 3, the simulated sequences (Figs 4c and d) are fitted
with p values that are equal to 1.2 and 1.4, respectively. In addi-
tion, the number of simulated earthquakes decreases significantly
with increasing R value, leading to lower quality of the fitting pa-
rameters. For R = 10, only a few tens of earthquakes occur in the
first week following the main shock, and after 2 weeks the activity
becomes negligibly small. This sequence can also be fitted by the
modified Omori law (with p = 1.6), but the quality of the fitting is
poor.

The cumulative frequency-size statistics of aftershocks generated
by model realizations with R = 0.1 and R = 1 follow the Gutenberg–
Richter relation (2a) over about 3 orders of magnitudes with b values
of about 0.7 (Fig. 5). Model realizations with higher values of R pro-
duce aftershocks over a magnitude range that becomes increasingly
narrower with increasing R and cannot be described by power-law
statistics. The shortening of aftershock sequences with increasing R
values (Fig. 4), accompanied by the narrowing range of event sizes
and changes in the frequency-size statistics (Fig. 5), suggest that
model simulations with R > 5 of evolving seismicity with multiple
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Figure 5. Cumulative frequency-size statistics of aftershocks in 3-D sim-
ulations with different R values. The thickness of the sedimentary layer is
1 km and the temperature gradient is 20◦C km−1.

main shocks would produce a swarm-type activity rather than clear
main shock and aftershock sequences.

Figs 6 and 7 illustrate the sensitivity of the aftershocks decay rate
to the lithospheric structure and thermal regime. The events num-
ber and duration of the aftershock sequences decrease significantly
with increasing thickness of the weak sedimentary cover, from 1 km
(Fig. 4b) to 4 km (Fig. 6a) and to 7 km (Fig. 6b). All model parame-
ters in those three cases other than the thickness of the sedimentary
layer are the same. The fitted p values increase with increasing thick-
ness of sediments, in agreement with the decreasing duration and
productivity of the aftershock sequences. The direct effect of the
temperature gradient on temporal properties of the aftershocks is
relatively weak. Fig. 7 shows results of simulations with initial re-
gional stress distributions calculated using yielding stress envelopes
(Fig. 3) for a strain rate of 10−15 1/s and temperature gradients of
30 and 40◦C km−1. The other model parameters are the same as in
Fig. 4b, which is generated with corresponding initial stress asso-
ciated with 20◦C km−1. The number of aftershocks decreases with
increasing temperature gradient, but the duration of the aftershock
sequences remains about the same and the corresponding p value
increases only slightly (compare Fig. 4b with Figs 7a and b).

On the other hand, the temperature gradient affects strongly, along
with the employed R value, the depth distribution of the aftershock
hypocentres (i.e. the thickness of the seismogenic zone). The depth
of the brittle–ductile transition in the crystalline crust, or the bottom
boundary of the seismogenic zone, is controlled by the temperature
gradient and the strain rate. In a model with R = 0.1 and tem-
perature gradient of 20◦C km−1, the hypocentres of the simulated
aftershocks are concentrated in the top 15 km (Fig. 8a). The max-
imum hypocentre depth decreases with time from the main shock
and the depth of the early hypocentres extends below 35 km. The
temporal evolution of the maximum hypocentre depth reflects a
transient deepening of the brittle–ductile transition depth, which is
generated by the high strain rates produced by the main shock. A
similar temporal evolution is produced in milder forms by a model
realization with R = 1.0 and temperature gradient of 20◦C km−1

(Fig. 8b), and a model with R = 1.0 and temperature gradient of
30◦C km−1 (Fig. 8c). In these cases, most simulated hypocentres are
concentrated in the top 5–10 km of the crust.
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Figure 6. (a) Daily rates of aftershocks in a 3-D model realization having
a weak sedimentary cover of 4 km, R = 1.0, and temperature gradient of
20◦C km−1. The line gives least-squares fit to the data points based on the
modified Omori law with parameters given in the legend. (b) Same as (a)
with a weak sedimentary cover of 7 km.

4.3 Largest aftershocks in 3-D numerical simulations

As mentioned in the previous section, the maximum size of the
simulated events depends (in addition to geometrical parameters)
on the dynamic weakening timescale τ r of (23). In this section
we examine the magnitudes of the largest simulated aftershocks in
cases with various imposed source sizes and various values of τ r . We
consider a set of simulations with the imposed M = 7.3 main shock
of the previous section, and additional two sets with imposed main
shock magnitudes of M = 6.8 and M = 6.5. The latter two cases have
the same source dimensions as in the previous section, but imposed
slip values of 0.5 and 0.1 m. These correspond to a reduction of the
potency value from that associated with the M = 7.3 main shock by
factors of 10 and 50, respectively. In each set of simulations with a
given imposed main shock size, the dynamic weakening timescale
is varied by several orders of magnitudes. All the other parameters
are kept fixed. The thickness of the weak sedimentary cover is 1 km,
the thermal gradient is 20◦C km−1, and the R value is 1.
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Figure 7. (a) Daily rates of aftershocks in a 3-D model realization having a
temperature gradient of 30◦C km−1, R = 1.0, and weak sedimentary cover
of 1 km. The line gives least-squares fit to the data points based on the
modified Omori law with parameters given in the legend. (b) Same as (a)
with a temperature gradient of 40◦C km−1.

As indicated by eq. (23) for the dynamic weakening, the criti-
cal damage value decreases proportionally to the square root of τ r .
The number of elements involved in a seismic event, and hence
the potency value P0 of the event, should increase with the same
scaling. Since the magnitude is approximately proportional to log
(P 0) for a narrow magnitude range, the strongest simulated mag-
nitudes should be proportional to log (τ r ). This is seen in Fig. 9,
where we plot the largest simulated magnitudes versus τ r in a log
scale for all three simulation sets. The aftershock magnitudes of the
second set with the imposed M = 6.8 main shock follow closely
the expected log-linear relation (solid line in Fig. 9) for the entire
range of employed τ r values. The dashed line associated with the
imposed M = 7.3 main shock is shifted up by 0.5 magnitude units
from the solid line, and the dotted line associated with the imposed
M = 6.5 main shock is shifted down by 0.3 units. In the set with
main shock magnitude M = 7.3, the largest simulated aftershocks
are close to the expected log-linear line for τ r ≤ 300, and fall below
it for larger values of τ r . The latter is a finite size effect associated
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Figure 8. (a) Depth of aftershock hypocentres in a 3-D model realization
having R = 0.1, sedimentary cover of 1 km, and temperature gradient of
20◦C km−1. (b) Same as (a) with R = 1.0. (c) Same as (b) with temperature
gradient of 30◦C km−1.

with the fact that for high τ r values the size of the largest simulated
aftershock approaches the model dimension. The results of the sim-
ulation set with main shock magnitude M = 6.5 fit well (as the set
with M = 6.8) the expected log-linear relation over the entire range
of the employed τ r values. The line fits of Fig. 9 indicate that val-
ues of the dynamic weakening timescale τ r in the range 3 × 102 −
3 × 104 s produce typical observed �M values of the Båth law.
For example, a value of �M = 1.2 is associated with τ r of about
1000 s.
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Figure 9. Magnitudes of the largest aftershocks in 3-D model simulations
with different imposed main shock size (indicated in the legend) as a function
of the dynamic weakening timescale. See text for additional explanations.

5 D I S C U S S I O N

We used a 1-D version of a continuum-based damage rheology
model (Lyakhovsky et al. 1997a; Hamiel et al. 2004) to derive an-
alytical results for aftershock decay rates under a constant strain
boundary condition. The general analytical solution (eq. 16a) is an
exponential function that depends on the material parameter R =
μ0 · C v , associated with the ratio of timescale for brittle damage
accumulation to timescale for viscous relaxation, and on the initial
damage and a threshold strain level for material degradation. For
some simplifying conditions, we obtain a solution in the form of the
modified Omori power law with an analytical exponent p = 1. The
assumed constant strain boundary condition is appropriate for a rel-
atively short time interval (e.g. one year) following the occurrence
of large earthquakes, which produce abrupt strain steps leading to a
relaxation process in the surrounding medium. In contrast, the time
interval leading to the occurrence of large seismic events should
be modelled with a constant stress boundary condition, which pro-
duces an unstable process leading to a system size event. Ben-Zion
& Lyakhovsky (2002) showed that a simplified version of the dam-
age rheology model (without inelastic viscous deformation prior to
brittle instabilities) leads under constant stress boundary condition
to accelerated seismic release culminated by a system size event (see
also Turcotte et al. 2003). The analytical results were augmented by
3-D numerical simulations for various cases of R, thickness of a
weak sedimentary cover, temperature gradient, and dynamic weak-
ening value.

The material parameter R is the major factor controlling the decay
rate, duration and frequency-size statistics of aftershocks, as well
as the partition of the stored elastic strain energy between seismic
and aseismic components of deformation. The fraction χ of the en-
ergy released in brittle deformation is referred to as the degree of
seismic coupling. (We note that this should not be confused with
the ‘seismic efficiency’ denoting (e.g. Ben-Zion 2003) the ratio be-
tween the radiated seismic energy and the total strain energy release
during an earthquake rupture.) The parameter χ is inversely propor-
tional to the material parameter R. This can be shown analytically
for the 1-D version of our damage rheology (Section 3) representing
uniform deformation. In this case, the seismic deformation in a pro-
cess associated with evolution of the damage state variable α from
0 to 1 can be estimated from the reduction of the elastic modulus
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(see eq. 9) as

2μ0εseismic = σ. (25)

The rate of aseismic deformation can be estimated from the rate of
inelastic strain accumulation (see eq. 11) as

dεi/dt = α̇Cvσ/2. (26a)

Integrating (26a) over time, the aseismic strain during a deformation
cycle is given by

εaseismic = Cvσ/2. (26b)

From eqs (25) and (26b), the ratio of the aseismic to seismic com-
ponents of deformation is

εaseismic/εseismic = μ0 · Cv ≡ R. (27)

The fraction of elastic strain released during a seismic cycle as brittle
deformation can be estimated from eq. (27) as

χ = εseismic/(εaseismic + εseismic) = 1/(1 + R). (28)

It is thus seen that the values R = 0.1, 1 and 10 that were used in
Sections 3 and 4 correspond, respectively, to χ = 0.9, 0.5 and 0.09.
The above results open the possibility of estimating the ratio between
seismic and aseismic components of deformation in a region from
analysis of the R value that best characterizes observed properties
(decay rate, duration, productivity and frequency-size statistics) of
aftershock sequences in the region.

The general analytical solution (16a) for aftershock rates is asso-
ciated with an exponential function. However, the analytical results
and numerical simulations for various values of R can be fitted
well by the modified Omori power-law relation. This illustrates the
difficulty of deriving reliable information on functional forms and
parameter values from aftershock data. Vere-Jones et al. (2001) and
Ben-Zion & Lyakhovsky (2002) made a similar point in relation
to fitting data associated with accelerated seismic release before
large earthquakes. The non-uniqueness of fitting earthquake obser-
vations has been discussed in many other theoretical and obser-
vational works. Gross & Kisslinger (1994) and Kisslinger (1996)
demonstrated with several aftershock sequences that expressions
associated with a stretched exponential function can fit aftershock
decay rates as well as the modified Omori law. Narteau et al. (2002)
showed the same using sums of exponentials. Scholz (1968) and
Hirata (1987) used exponential functions to fit acoustic emission
data in rock fracture experiments. Benioff (1951) derived a solution
with logarithmic and exponential functions for strain energy release,
based on creep rheology, and used it to fit (cumulative Benioff strain)
data of several California aftershock sequences.

Our analytical and numerical results indicate that the primary con-
trolling factor on several properties of aftershock sequences is the
value of the material parameter R, which is inversely proportional to
the degree of seismic coupling across a fault. R values of about one or
lower, corresponding to high-viscosity material, produce clear after-
shock sequences with decay rates that can be fitted by the modified
Omori law with p ∼ 1. The frequency-size statistics of such after-
shock sequences follow the Gutenberg–Richter power-law relation
with b values of about 0.7, compatible with the b = 0.75 global av-
erage for shallow strike slip earthquakes (Frohlich & Davis 1993).
On the other hand, R values of about three or larger, correspond-
ing to low-viscosity material, produce diffuse aftershock sequences
with higher effective p values, shorter duration and smaller num-
ber of events. The frequency-size statistics of these sequences are
peaked and cannot be described by the Gutenberg–Richter relation.
Simulations with multiple main shocks and R > 5 are expected to

produce a swarm-like behaviour. The results provide a simple expla-
nation for the fact that regions with high heat flow and/or high fluid
activity (like volcanic domains and oceanic transform faults) have
swarms and diffuse earthquake patterns, while continental regions
with low heat flow have clear long aftershock sequences (e.g. Mogi
1967; Kisslinger & Jones 1991; Utsu et al. 1995; McGuire et al.
2005).

Additional important structural and geophysical parameters are
the thickness of a weak sedimentary cover and the thermal gradi-
ent. Regions with a sedimentary layer that is thicker than a few
km produce weaker aftershock sequences, with a smaller number
of events and faster decay, similar to what is produced by high R
values. Increasing the temperature gradient leads to a smaller num-
ber of events, but the aftershock decay rate and duration remain
largely unaffected. Thus the temperature gradient does not have a
strong direct effect on properties of aftershock sequences, although
it can have a major indirect effect through the R value. However,
increasing temperature gradient reduces the overall depth extent of
the brittle seismogenic zone and the simulated aftershocks. In addi-
tion, the maximum hypocentre depth decreases with time from the
main shock due to a transient deepening of the brittle–ductile tran-
sition depth produced by the high strain rates generated by the main
shock. These results are compatible with observed correlations be-
tween the depth of seismicity and temperature gradient (Magistrale
2002), and temporal evolution of the depth of aftershocks following
the 1992 Landers CA earthquake (Rolandone et al. 2004).

The results of this work are associated with aftershock sequences
of single main shocks with zero background seismicity. Additional
related cases can be obtained by adding to the results a constant value
representing the ongoing background seismicity. In a more general
study, the main shocks should be generated spontaneously by the
gradual remote loading, as an integral part of the evolving seismicity,
rather than being imposed. This will be the subject of a continuing
work. Our analysis indicates that properties of aftershocks are sensi-
tive to a number of geological and physical parameters. The relations
between aftershock properties, the temperature field, and degree of
seismic coupling have been examined in a number of observational
studies. In contrast, the relations between aftershock properties and
sedimentary cover layers received little attention. This should be the
subject of future observational works.

A C K N O W L E D G M E N T S

We thank Dave Yuen, Don Turcotte, Shun-Ichiro Karato and David
Kohlstedt for discussions on rock rheology. The manuscript ben-
efited from constructive comments by Carl Kisslinger, Robert
Shcherbakov and Russ Evans. The studies were supported by grants
of the Southern California Earthquake Center (based on NSF co-
operative agreement EAR-8920136 and United States Geological
Survey cooperative agreement 14-08-0001-A0899), the Israel Min-
istry of Infrastructures (24-17-022) and the US–Israel Binational
Science Foundation, Jerusalem Israel (2004046).

R E F E R E N C E S

Agnon, A. & Lyakhovsky, V., 1995. Damage distribution and localization
during dyke intrusion, in The Physics and Chemistry of Dykes, pp. 65–78,
eds Baer, G. & Heimann A., Balkema, Brookfield, Massachusetts.
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A P P E N D I X : M AT E R I A L S TA B I L I T Y
A N D DY N A M I C W E A K E N I N G

Lyakhovsky et al. (1997a) define the critical value of damage αc

leading to brittle instability (their eqs 14 and 15) from the condi-
tions for the loss of convexity of the elastic potential (3). When the
damage variable reaches αc, the potential (3) is not convex and a
unique solution for the static stress distribution in the elastic material
ceases to exist (Ekland & Temam 1976). Similarly to localization of
plastic deformation in elasto-plastic models (e.g. Rudnicki & Rice
1975), the loss of convexity in the damage rheology model leads to
strain localization along a narrow damage zone (e.g. Hamiel et al.
2004). As shown below, elastic waves propagating in a solid with
slowly increasing damage are amplified when the damage variable
α reaches a value αd slightly lower than the critical level αc defined
from the convexity consideration. The modified critical value αd

depends on the rate of damage increase and a material parameter
governing the weakening timescale. In our simulations, αc is used to
define the initiation of a seismic event, while αd is used to calculate
the (quasi-dynamic) propagation of the event.

In a 1-D case of a damaged solid, the equation for elastic wave
propagation is

ρ
∂2u

∂t2
+ ψ (α)

∂u

∂t
= ∂

∂x

(
μα

∂u

∂x

)
, (A1)

where u(x , t) is displacement, ρ is density, μα is the effective elastic
modulus of a damaged solid given by μα = μ0(1 − α) and ψ(α)
is a radiation damping term. We are looking for a travelling wave
solution of (A1) in the form

u(x, t) = f (t) · exp(ikx), (A2)

where k is wave number. Substituting (A2) into (A1) and assuming
gradual spatial variations compared to the disturbance wavelength
(k(∂ μα/∂x) � 1) leads to equation for f (t) in the form

ρ
d2 f

dt2
+ ψ (α)

d f

dt
+ k2μα f = 0. (A3)

Eq. (A3) has an oscillatory solution with frequency ω2 = k2μα/ρ for
slowly changing material properties compared to the wave frequency
(α̇/ω � 1). The amplitude change during progressive oscillations
is proportional to exp[−(ω̇/ω + ψ/2ρ)t] (e.g. Cole 1968). Thus,
the travelling waves are damped only if

2ρ

ψ
< −ω

ω̇
. (A4)

The condition (A4) implies that the characteristic time of the fre-
quency reduction is larger than the characteristic time associated
with the damping term. Using the linear relation between the dam-
age variableα and the effective elastic modulusμα , the characteristic
time of the frequency change is

ω

ω̇
= −2(1 − α)

α̇
. (A5)

The characteristic time associated with the damping term, or
Maxwell timescale, is equal to the ratio between the viscosity and
elastic shear modulus. For a constant Newtonian viscosity and de-
grading elastic modulus, this timescale increases proportionally to
1/(1 − α). The singularity at the maximum damage level α = 1 be-
comes stronger in the case of a power-law viscosity ρ/ψ ∼ 1/(1 −
α)n , where n is the power in a stress vs. strain-rate relation for ductile
flow. Adopting for simplicity the Newtonian case and substituting
(A5) back to (A4) provides the following condition for stability of
the material with quasi-static damage increase,

α̇ <
(1 − α)2

τr
, (A6)

where τ r is a characteristic timescale associated with the damp-
ing term in a damage-free material. The condition (A6) could be
rewritten in terms of maximum damage αd satisfying the dynamic
stability condition for a given rate of damage increase

αd = 1 −
√

τr α̇. (A7)

Similarly, in the general 3-D case with critical damage αc defined
from the static convexity condition, αd is

αd = αc −
√

τr α̇. (A8)

The right term in eq. (A8) may be considered as a dynamic weak-
ening of the material following the occurrence of brittle instability.
The damage level αd is used in our work to perform quasi-dynamic
calculations of rupture propagation.
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