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ABSTRACT

i Spectra from airborne systems must be analysed in terms of their

mlneral-related absorption features. The first part of this paper
discusses methods for removing backgrounds and extracting these

features one at a time from reflectance spectra. The second part
_, discusses methods for converting radiance spectra into a form similar

I to reflectance spectra so that the feature extraction procedures canbe implemented on aircraft spectrometer data.

INTRODUCTION

Aircraft and spacecraft based spectrometer data pose

fundamentally different analytical problems to those we have found

when working with multlspectral imagery. These new problems are

associated with the analysis of curve shape. The overall brightness

variability which is the dominant feature in multispectral imagery is
now taken for granted and we are interested in the detailed shape of

the reflectance curve as a function of wavelength. In this paper we

shall deal with spectra in the SWIR region 1.9-2.5 _m and treat the

problems involved in analysing both reflectance curves, such as those

i obtained in the laboratory, and the more difficult problem of
radiance curves acquired by remote sensing systems, i

t
ANALYSIS OF REFLECTANCE SPECTRA

Reflectance spectra in the SNIR region are usually composed of a

flat or generally convex background with superimposed sharper

absorption features due to the chemical groups which are of interest I
for remote sensing. The information content of these curves lles

primarily in the wavelength position of these absorption minima and _
to a lesser extent in the relative intensity and shape of the

i absorption features. The extraction and parametrlzatlon of
absorption features in s spectrum is the first step in the
recognition of the chemical species which are causing the absorption

spectrum. In order to extract these features we must first remove

I the overall convex background.

_ This may be )done_by ratioing the spectrum to its "upper convexhull (or envelope , defined as the lowest convex curve lying above

the given spectrum. The resulting curve - called the "hull-quotient"
of the input curve - appears as a horizontal llne of height unity

Interzupted by abeorptlon features extending down towards the
horizontal axis. Figure 1 illustrates a raw spectrum, its hull, and :

hull-quotient. Note especially the enhancement of features beyond

! 2.2 _, where removal of the sloping background has brought out sharp
minima not identifiable in the raw data.

The technique is easily extended to permit the isolation and 1
extraction of individual features. Thus, the "first featuregram" is i

obtained as the union of hulls for the parts of the hull-quotlent to
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Left and to right of the lowest point on that curve. The ratio of

hull-quotlent to first featuregram Is a curve coinciding with the

_l hull-quotient, except for the absence of its dominant feature.

i Remaining features may be extracted successively until the residual

spectrum is reduced to mere noise fluctuation of no significance.

If Implemerted as described above the algorithm produces V-

shaped absorption f_atures which do not match well with the usual

inverted Gaussian shape of most absorption features. Improved

performance is obtained by making the featuregram coincide with the

curve (from which it is to be removed) between the points of
inflection closest to the minimum and on either side of it. The rest

of the featuregram is made up of the two hulls computed beyond those

points. Figure 2 illustrates the features extracted from a simple

reflectance spectrum.

Feature extraction can provide the basis for automatic

classification of spectra. Classification of two types is

:' possible,

_ The first type compares the wavelength position, relative depth

_: and shape of each extracted feature with a llst of characteristics of

_, reference materials, and makes an assignment in much the same way as

would a human interpreter.

The second type of classifier relies on the signs of first and

second derivatives of hull-quotlents. The second derivative of a

convex curve is always non-positive. On the other hand, the slope of

a featuregram will be negative to the left of the feature-mlnlmum,

positive to the right. The ratio of a hull-quotient to its residual

noise-spectrum equals the product of extracted features and so is

characterized by long runs of channels with the same sign for the
first or second derivative.

By encoding the sign as 0 or i, and concatenating the strings for

first and second derivative, we obtain the 2N-channel "binary

signature" of an N-channel spectr_a. The Hamming distance (equal to

the number of mismatches in corresponding channels) between two such

signatures provides an effective measure of their similarity. Input

spectra could then be classified by comparison with stored, library

spectra. '_

RADIANCE SPECTRA

Radiance spectra acquired in airborne systems bear little

resemblance to the laboratory reflectance spectra that would result

from sampling the surface materials along the flight path. _part

from the ambiguity introduced by the heterogeneous composition of

each plxel, the difficulties are of two kinds. First, topographic

effects, such as different inclination, affect the apparent

brightness of different occurrences of the same material. Secondly,

the solar illumination curve, unlike a laboratory light source,

. varies considerably in accordance with ptevaillng atmospheric
conditions.

Using a very simple model we relate the radiance measurement Xi_

_ to the reflectance Ri_ in sample i, wavelength _, by means of a
multiplicative formula

X = T RiXI , (1)

112 \.
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Figure I. Raw spectrum, hull and hull-quotient for a kaolinite
spectrum b_t_en 1.4 and 2.5 _,m.
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The "topographic" fdctor Ti accounts for surface variability with

.; sample number and is constant for all wavelengths, while the

"illumination factor" I_ describes the unknown illumination curve,

assumed the same for all points on a single flight llne•

Write Xi to denote the geometric mean of Xi_ taken over all
channel wavelengths _. With a similar convention regarding the other

new symbols we h_ve from (I)
2

Xl.= TIRi. I ,

/ hence by division

Xi x/Xi.= (RIx/Ri.) (IX/I .), (2)

independent of the unknown factor TI. The spectra represented by the
two sides in (2) _y be called the "topographically equalized" (or

"albedo equalized") versions of the input spectra (I).

The simplest way of elimlnatlng the unknown lllt_Inatlon factor

is by taking the geometric mean over all samples in equation (2).
With en obvious notation we find

x./x.. = (R./m..)(I_/I.), (3)

giving upon division

(Xil/Xi.)/(X.k/X..) = (Rix/Ri.)/(R._/R..). (4)

We have thus computed from the eriginal radiance spectra Xi_ a new
set of spectra with the advantage that they are the same as would be

obtained by applying the same process to the unknown reflectance

spectra Ri_.
The geometric means must, in practicegbe computed from arithmetic

means of logarithms; hence_it is the logarithm of the quantity in

(4) which results from the processing. Such spectra are termed the

"logarithmic residuals" of the original spectra Xix, the quantity In

(4) giving then the "exponentiated log residuals" of the Xi_. This _.
residual method has some features in common with that used by Marsh

and McKeon (i983) but it is also fundamentally different in the way

it removes the IIfactor. i
Log residual spectra lack some of the information originally !

present. For example, a mineralogical absorption feature present in

all samples, even If situated away from the known positions of

atmospheric absorptions, will be treated as a component of I_ and
removed by the processing. On the other hand, a mlneraloglca)

feature whose presence in a few samples was obscured in the radiance

spectra, due to its coincidence with a major atmospheric absorption,

will become evident in the log residual data. Thus, despite its

limltstlons, the log residual transformation of radiance spectra from

airborne systems has shown itself to be a very useful aid to

interpretation•

lhe log reoidual technique as described above requires

modification to render it compatible with the processing described

earlier for reflectance spectra, Suppose, for example, that a

particular absorption feature, such as the clay/muscovlte feature at _

2.2 microns, is strongly represented within a flight llne That _• %
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feature will then persist in the geometric mean (3) of the albedo

"' equalized spectra. Samples which do not have an absorption at 2.2

microns will give values at 2.2 pm which are high relative to the

f mean. The ratio (4) for such samples will thus exhibit what may

facetiously be terTaed an "emission feature" at that wavelength.

Such features will of course d_feat the algorithm for

(absorption) feature extraction. To overcome the problem we need a

replacement for the geometric mean (3) which likewise contains the

factor IX/I. , but is never less than any value (2) which _t is to

divide. The required quantity is of course the least upper bound

spectrum (LUB)f

tUB (X ) = LUBI(RIx/R ii ix/El. . , ")(I /_._

taken over all sample numbers i. We get in place of (4)%
z

,_ (Xik/Xi.)/tUBi(XiA/X i.) = (RIx/Ri.)/LUBI(Rik/Ri.) , (5)
.
L

, which may be termed the least upper bound (or supremum) residual

'_" corresponding to X i_.
_;i The least upper bound residuels may be computed as well from the

earlier log residuals as from the radiance data. We have only to
observe that the h.ft member in (5) equals

L

[(Xix/X i ),/(X k/X )]/LUB [(Xik/X i )/(X %/X )].

This observation has allowed us to use, as input, an extensive ]
library of early log residual back-up tapes, to generate least upper

bouud residuals with a minimum of computation.
!

EXAMPLES
¢

Aircraft data were acquired over a number of Australian test

sites with the GER spectrometer system (Collins et al., 1981) in

• September, 1982. The examples used here are taken from a flightline

over the Mary Kathleen area in NW Queensland. The data were

corrected for instrument response function and processed t6 log _

residual spectra and least upper bound spectra as described above.

Figure 3 shows the results of the two procedures when used on

data averaged over three uniform areas of distinctly different

terrain type.

DISCUSSION

The area covered by the flight line used in this example can,

to a first degree of approximation, be thought of as being composed

of two cover types. These are firstly, a mixture of soll with arid-

land grass known as spinife., and secondly, an anomalous Ca-rlch clay

which is exposed in the Mary Kathleen open pit. The spectra of both

these species are incorporated into the mean reflectance spectrum of

the flight llne and so will be subtracted from each true spectrum to-z

produce the log residual spectrum for any given sample in the

r flightline. The result for a region which is typical of the

- grass/soll mixture is shown in Figure 3(a). The log residual
spectrum (upper curve) is what we call a "not - C_-clay" spectrum.

__ 116
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3(c_ Log residual (upper) and LUB (lower) spectra for an area
of granite. The typical 2.2 absorbtion feature is much more
visible on the log residual than the LUB residuals.
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It contains an upward feature with the inverted shapeof a Ca-clay
absorption feature. In contrast, the least upper bound residual
(lower curve) shows a typical spectrum for a mixture of dry grass and
a 2.2-absorbing clay. Although the least upper bound procedure does
remove obnoxious upward features it superimposes a very strong dry
grass spectrum onto the spectra of all samples except those from the
open pit. In doing this it is correctly reproducing the reflectance
spectra of those samples but it is also masking subtle mineralogical
features evident in the log residual spectra, Figures 3(b) and
3(c). From this we can see that, in areas of relatively uniform dry
grass cover, the log residual spectra have certain advantages. They
remove the unwanted dry grass spectrum, leaving a spectrum which can
more easily be alloted to the mineralogy.

CONCLUSIONS

Successful analysis of airborne spectrometer data depends on an
ability to extract absorption features and measure their wavelength,
shape and intensity. Background removal and feature extraction

procedures can perform this function on reflectance curves. Radiance
spectra can often be converted into "reflectance--like" curves by log
residual or least upper bound residual methods which then enable the

application of feature extraction procedures.
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