
INFORMATIQUE THÉORIQUE ET APPLICATIONS

A. AVELLONE

M. GOLDWURM

Analysis of algorithms for the recognition of rational

and context-free trace languages

Informatique théorique et applications, tome 32, no 4-6 (1998), p. 141-
152.

<http://www.numdam.org/item?id=ITA_1998__32_4-6_141_0>

© AFCET, 1998, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.

org/legal.php). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme

Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1998__32_4-6_141_0
http://www.numdam.org/legal.php
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informaties and Applications

(vol. 32, n° 4-5-6, 1998, pp. 141 à 152)

ANALYSIS OF ALGORITHMS FOR THE RECOGNITION

OF RATIONAL AND CONTEXT-FREE TRACE LANGUAGES (*) (
1
)

by A. AVELLONE and M. GOLDWURM (2)

Communicated by W. BRAUER

Abstract. - We present an algorithm for the récognition of rational trace languages îhat has
a time complexity at most proportional to the number of préfixes of the input trace. In the worst
case it requires O (na) time and O(na~1) space, where a is the size of the maximum clique in
the indépendance alphabet; in the average case, it works in O (nk) time, where k is the number
of connected components of the dependence alphabet. This algorithm is based on a dynamic
programming technique îhat can also be appliedfor the récognition of context-free trace languages.
Hère we present an extension of the classical CYK algorithm that requires O (n3or) time and O (n2a)
space in the worst case, and O (n3k) time and O (n2k) space in the average case. © Elsevier Paris

Résumé. - Nous présentons un algorithme pour la reconnaissance des langages rationnels de
traces qui a une complexité en temps au plus proportionnelle au nombre de préfixes de la trace
d'entrée. Dans le pire cas, il a un comportement en O (n a) en temps et en O (n<x~l) en espace, où a
est la taille de la clique maximale de l'alphabet d'indépendance; en moyenne il a un comportement
en O (nk) en temps où k est le nombre de composantes connexes de l'alphabet de dépendance. Cet
algorithme repose sur une technique de programmation dynamique qui peut aussi être appliquée
à la reconnaissance de langages libres de contexte de traces. Nous présentons une extension de
l'algorithme classique de CYK qui travaille en temps O (n 3 a) et en espace O (n2a) dans le pire
cas et en temps O (n3fc) et en espace O (n2k) en moyenne. © Elsevier Paris

1. INTRODUCTION

In this work we present two algorithms for the récognition of trace
languages and study its time and space complexity. Trace languages have
been introduced in Computer Science to describe the behaviour of concurrent
Systems [13] and their properties have been studied in the classical framework
of the theory of formai languages [9], A trace language is defined as a subset
of a trace monoid which is given by the quotient of a free monoid with respect

(*) Received January 1998; revised April 1998; accepted May 1998.
C1) This work has been supported by Ministero dell'Université e délia Ricerca Scientifica e

Tecnologica, Progetto 40% "Algoritmi, modelli di calcolo e strutture informative".
(2) Dipartimento di Scienze deirinformazione, Università degli Studi di Milano via Comelico 39,

20135 Milano-Italy {avellone,goldwurm}@dsi.unimi.it

Informatique théorique et Applications/Theoretical Informaties and Applications
0988-5004/98/04-05-06/© Elsevier, Paris

142 A. AVELLONE, M. GOLDWURM

to the congruence obtained by allowing the commutation of certain pairs of
generators. Hence a trace monoid is defined by a so-called independence
alphabet, Le. a pair (S,X), where E is a finite set of symbols and I is the
set of pairs of commutative éléments in S. An element of such a monoid is
called trace and is denoted by [x], where a; is a représentative string.

Rational and context-free trace languages can be defined as in the case of
free monoids and their main properties are well-known (see, for instance,
[16, 6, 5, 14, 1]). In particular the corresponding membership problems have
been studied in the literature [6, 15, 3, 7]. We recall that, given a trace
monoid M defined by an independence alphabet (S,2"), the membership
problem for a trace language T Ç M i s the problem of determining, for
an input string x G £*, whether the trace [x] belongs to T. Hère, the
independence alphabet {E,2) and the trace language T are fixed and do not
belong to the instance of the problem.

A first algorithm for the récognition of rational trace languages is presented
in [6] (see also [7]) and works in O (na) time in the worst case, where a

is the size of the largest clique of the concurrent alphabet. That algorithm
requires Q (na) time and Q (na) space for an input of size n even in the best
case C1); hence its time and space complexity is of the same order of growth
also in the average case. An attempt to reduce the average case complexity for
this problem is achieved in [3] where a procedure is described which works
in time at most proportional to \x\ • jjPreffrr] for any input a; G S*, where
JjPrefjx] is the number of préfixes of the trace [x]. For most independence
alphabets this implies a significant réduction of the average computation time
since, assuming equiprobable ail strings of given length, the mean number of
préfixes of a trace of length n is 0 (nk), where k is the number of connected
components of the dependence alphabet (S, Xe) [4, 11]. As a conséquence,
while that algorithm works in O (n a + 1) time in the worst case, it only
requires O (nfc+1) time in the average case.

Hère, we present another algorithm for the récognition of rational trace
languages that works in time at most proportional to ()Pref [x] for any input
x G £*. Then, it requires O (na) time in the worst case and O (nk) time
in the average case. Note that we get a linear time algorithm in the average
case whenever the dependence graph {£, 1e) is connected. Moreover, the
number of memory cells used during the computation is given by the

(l) Given two séquences {fn} and {gn} of real numbers, we write fn — &(gn) if there exist
two positive constants c, C and an integer n0 € N such that cgn < fn < Cgn for ail n > no -

Informatique théorique et Applications/Theoretical Informaties and Applications

ANALYSIS OF ALGORITHMS FOR TRACE LANGU AGE RECOGNITION 143

maximum number of préfixes of the input trace that have fixed length. This
implies O (na~l) space in the worst case and, of course, O (n

M m { M - i } j
space in the average case.

This algorithm is based on a particular représentation of the préfixes
of a trace introduced in [10] to compute the set of words belonging to a
given trace. The same approach allows to simplify the algorithms for the
récognition of context-free trace languages described in [7] and [3] which
are based on Valiant's algorithm for context-free récognition [17]. Here we
present a simpler procedure for the same problem which can be seen as a
natural extension of the classical CYK algorithm [12], It works in O (n3a)
time and O (n2a) space in the worst case, and in O (nafc) time and O (n2k)

space in the average case.
In this work, as a model of computation, we consider a Random Access

Machine (RAM) under uniform cost criterion [2].

2. PRELIMINARIES

An independence alphabet is a pair {E, X) such that S is a finite alphabet
and ï Ç E x E is a symmetrie and irreflexive relation on S; it is usually
represented by an undirected graph, where E is the set of nodes and X the
set of edges. The complementary graph (E, Xe) will be called dependence

alphabet. In the following we often use the parameters a and k that represent
respectively the size of the maximum clique of {E, X) and the number of
connected components of (E, Xe). Note that we always have k < a.

The trace monoid defined by an independence alphabet (E, X)y is the
quotient E*/ & j of the free monoid E* with respect to the smallest
congruence ^ j such that ab ̂ jba for all pairs (a, b) G X. We dénote such
a monoid by M (E, X). A trace language T is a subset of Mi (E, X) and a
trace is an element of M (E, X), usually denoted by [x] for a représentative
string x, The length of a trace t is given by the length of any of its
représentatives. Analogously, for any set L Ç E*, we represent by [L] the
trace language {t G M (E, X)\3x G L : t = [x]}. We also dénote by •
the product of the monoid M (S, J) ; clearly, for every *i, £2 G M (S, T),
t\ - £2 G M (E, X) is the trace [xy\ where t\ = [x] and £2 = [y]- This
opération can be extented to trace languages: for every Ti, T2 Ç M (S, X),

7i • T2 is the trace language {t G M (S, X)\t = t\ * t2: h G Tu t2 G T2};
analogously, the star opération is defined by T* = IJn^o ^ f o r e v e r y
trace language T, where T° = {[e]} (here e dénotes the empty word) and
Tn =T- T71'1 for each n > 1.

vol. 32, n° 4-5-6, 1998

144 A. AVELLONE, M. GOLDWURM

The class of rational trace languages over the monoid M (S, X) is defined
as the smallest class of trace languages containing ail finite sets and closed
under the opérations of union, product and star. It is well-known that a
trace language T is rational if and only if T = [L] for some regular
language L Ç E* [16]. Analogously, we define the class of context-free

trace languages as the class of subsets T Ç M (E,X) such that T — [L],

where L Ç S* is a context-free language [5]. The membership problem for
a trace language T Ç M(S , J) such that T = [L] for some L Ç £*, is
equivalent to the problem of verifying, for an input x G E*, whether there
exists a word y E L such that y « jx .

The notion of prefix of a trace plays a key rôle in our analysis. Given
two traces p,£ G M(E,X), we say that p is a pre/îx of £ if i = p - ç for
some g G M(E,T); similarly, ç is called suffix of £. Note that if p is a
prefix of t then there exist x, y e T,* such that £ = [x], p — [y] and y is
a (string) prefix of x. A suffix g of t is said to be maximum independent if
g = [aia,2 • • • a/J where (a*, ay) G X for every z ̂ j , and g is the longest
suffix of t that has this property.

In the following, for every x G S*, Pref[x] dénotes the set of préfixes
of [x], Prefix] the set of préfixes of [x] that have length i, while jjPref[x]
and JtPrefj[x] are the corresponding cardinalities. Observe that, while the
number of préfixes of a word x is \x\ + 1, in the case of a trace the number
of préfixes does not depend only on its length. It is easy to prove that, for
every x G S*, ||Pref [x] < c\x\a> where a is the size of the maximum clique
of (E,X) and c is a constant only depending on the independence alphabet.
Such a bound can be reduced in the average case: assuming equiprobable
ail strings x G S* of given length, the average number of préfixes of a
trace of length n is rjnk + O (nk~1), where k is the number of connected
components of the dependence alphabet (E,Xe) and 77 is a constant only
depending on (S,J) [11].

A trace t G M (S, T) can also be represented by a set of strings as follows.
Let {Ai,..., Am} be a clique cover of the dependence alphabet (S, Xe), that
is a family of subsets of S such that (J^Lj A = S, A x A Q %c for each
% G {1,2, ...,?rz,} and, for every {a, b} G Xe, both a and b belong to A for
some i G {1,2, . . . ,m}. For instance Ai, A2,..., Am could be the set of all
maximal cliques in (E,XC). For any a G S, we dénote by I(a) the set of
indices {i G {1,.. . , m}\a G A } - Note that, for any a, b G S, (a, b) belongs
to X if and only if I(a) Ci I(b) = 0. For every i G {1,2,...,m} and any
x G E*, we dénote by 11^(x) the projection of x over the subalphabet A-

Informatique théorique et Applications/Theoretical Informaties and Applications

ANALYSIS OF ALGORITHMS FOR TRACE LANGUAGE RECOGNITION 145

Now, consider a family of words {2/ï}j€{i,2,...,m} such that yi G A* for
every i G {1, 2,..., m}. For the sake of simplicity we dénote it by {yi} when
the clique cover is understood. We say that such a family is reconstructible

if there exists y G E* such that yi — U^(y) for every i G {1, 2, ..., m}.
Let 7£ (S,X) be the set of ail reconstructible families. It is easy to show that,
for every pair {xi}, {yi} G 7£(E, X), the family of words {o^y;} belongs
to 7J(£, J) . As a conséquence 7£ (S, I) forms a monoid with respect to
the product • defined by {xi} • {yi} = {xiyi} for ail {x;}, {y«} G 7£(E, 2").
It can be proved that the monoids M (S, X) and 7£(£, X) are isomorphic
[8, 10]. Hence, every trace t G M (S, J) can be represented by the family
{xi} G 72. (E, X) such that x; = 11^(x) for each i G {1, 2,..., m} and x

is any représentative of t.

3. REPRESENTATION OF PREFIXES

Given an independence alphabet (S, X), let us consider a clique cover
{•Ai, v42,..., Am} of the complementary graph (E, Xe) and a word
x G S*. The représentation of a prefix p = [y] of [x] is the array
(fei, fe2,..., A;TO) G Nm such that fcj is the length of TL^t(y) for every
i G {1, 2,..., ?n} [10]. Note that (0, 0,..., 0) represents the empty prefix
while the whole trace [x] is represented by (ni, n2,..., nm) where, for ail
i G {1,..., n}, m is the length of 11^(x).

Our goal is to describe an algorithm that computes, for an input x G E*
of length n, the représentations of all the préfixes of [x]. The method we
apply is based on the properties of reconstructible families presented in the
previous section. Note that for every p G Prefj[x], where j G {1,.. . , n},
there exists q G Pref/_i[x] such that p = q • [a] for a suitable a G S.
Hence, the représentation of a prefix of length j can easily be computed
from the représentation of a suitable prefix of length j — 1. This suggests
the following Procedure Build Préfixes that exécutes n cycles and, at the
j-th cycle, it computes the représentations of the préfixes of [x] of length j .

In Procedure Build Préfixes, for every i G {1, 2,..., m}, xi dénotes the
projection \[A^(x) and xi = Xi(l)x2(2) • • • Xi(ni), where Xi (j) G S for
ail j G {1, 2,1.., m}.

Procedure Build Préfixes

Input: x G E* where \x\ = n;

Output: 7 = { i E N m | is the représentation of a prefix p G Pref^]}.

vol. 32, n° 4-5-6, 1998

146 A. AVELLONE, M. GOLDWURM

begin

let 0 G N m be the array (0, 0,..., 0);
R = V = {0};
for j — 1, 2,..., n do

begin

S = 0;
for r G R do

for a G E (in a given order <) do

if (Vi G I(a) xi(n + 1) = a) then

begin

for i = 1, 2,..., m do

(1) if i G I(a) then ^ = r; + 1; else st = r;;

(2) if s £ S then 5 = 5u{s};
end

R = S; V = V U S;

end

end

The analysis of the procedure dépends on the structure we use to represent
the set R and S that contain the partial results of the computation. The set
R can be represented by a simple list of arrays in Nm because the procedure
only has to scan all its éléments. On the contrary, for the set 5, we define
a data structure that allows to exécute in constant time both the test for
membership and the opération of insertion required at line (2). The same
structure is used by the algorithm presented in section 4.

In order to describe such a structure let us consider the directed graph
G[x\ = {V, E)9 having labeled edges, where V is the set of all représentations
of préfixes of [x], and E is the set of all ordered pairs (r, s) such that
s = r • [a] for some a G S, r and s being the préfixes represented by r and
5, respectively, and a is the label of the edge.

It is easy to prove that, for every pair of nodes r, s, representing the
préfixes r, s G Pref[z], and every word y = a\a2 • • • a^ G S*, s = r • [y]

if and only if there is a directed path in G\x] from r to s labeled by y

(i.e. the path has length h and, for each i G {1, 2,..., h}, its i-th edge is
labeled by aï).

To represent this graph in the memory of our RAM model we maintain,
for each node r G V, two lists A (r) and B (r) which yield, respectively,

Informatique théorique et Applications/Theoretical Informaties and Applications

ANALYSIS OF ALGORITHMS FOR TRACE LANGU AGE RECOGNITION 147

the edges leaving from and coming into r. More precisely, for every edge
(r, s) G E labeled by a G S, A (r) contains the pair (p£r a), where p$_ is
a pointer to the location of s in the machine memory. Similarly, for every
edge (v, L) € E labeled by a G S, the list B (r) contains the pair (p^, a).

It is clear that, for an input x, Procedure Build Préfixes computes ail
nodes of G\x\. We slightly modify the procedure in order to compute also the
lists A (Y) and B (r) for each node r. At the j-th cycle, besides Computing
ail nodes s representing préfixes of length j , the procedure also détermines
their lists B (s) together with the lists A (r) of ail nodes r that represent
préfixes of length j — 1; it also maintains in a list Sj the (address of) nodes
representing the préfixes of length j once they are computed. Moreover we
assume that, during the exécution of the j-th cycle, the procedure keeps in
memory the lists 5y_i, 5?-_2,..., Sj-a together with lists A(r) and B (r)

of their nodes r (if j < a it only keeps Sj - i , S7-2, ».,

Such a data structure allows to test the membership to Sj in constant
time. In order to show that, let r, s and a be the éléments considered at
line (1), and let r and s be the préfixes represented by r and s, respectively.
Consider the maximum independent suffix q of s. Observe that a must
occur in q. Therefore, let y = a\a,2 • • • a/> be a (possibly empty) word in
£* such that q — [ya], where a2 G S for each i. We know that the set
C = {ai, a2,..., a/i, a} forms a clique of (E, J) which can be computed in
constant time since C = {b G S|VÏ G /(&) Xi(si) = b}. Now, consider the
prefix v of r such that v -[y] — r and let v be its représentation. Then there
exists a directed path in G\x] from v to r labeled by y (if h — 0 then v = r
and y — e). The edges occurring in this path have already been found by
the algorithm because they connect nodes representating préfixes of length
smaller than j . Moreover, s_ is already included in Sj if and only if a < ai

for some i G {1,2,..., h}. In this case there also exists a path of length h + 1
from n to 5 passing through a node r' preceding r in Sy-i.

Hence, in order to test whether s G Sj, the procedure vérifies whether
ai < a for alH G {l,2,...,/i}:in the affirmative case it adds 5 to Sj, updates
A (r) and sets A (s) and B (s) respectively to the empty list and the list
only containing (p^, a). Otherwise, if a < ai for some i G {1,2,..., /i}, the
procedure first détermines the address of node v following backwards the
path from v_ to r labelled by aia2 * • * a^ (any permutation of {ai, a2,..., a^}
actually leads to v)- Then, it computes the word yf G S* obtained by
sorting {ai, a2,..-, a^,a} according to < and détermines the address of s

by following the path labelled by y{ that starts from v. Then the procedure

vol. 32, n° 4-5-6, 1998

148 A. AVELLONE, M. GOLDWURM

simply updates lists A(r) and S (s), adding (ps_,a) to A(r) and (pL, a)

to B(s).

Using this structure, instruction (2) of the procedure can be executed in
constant time (i.e. its time cost only dépends on the independent alphabet)
because the length of the paths to be followed in G\x] is smaller or equal
to a and, for every node r, both lists A (r) and B (r) contain at most
a éléments each. This means that, on our RAM model, Procedure Build

Préfixes exécutes a constant number of steps for each prefix of the input
trace. Therefore, we can state the following result.

PROPOSITION 1: There are two positive constants a, b such that, for any

input x G S*, Procedure "Build Préfixes" computes the représentations of

ail préfixes of [x] in time T (x) satisfying the relations

aflPref [a] < T(x) < feJtPref[a].

4. RATIONAL RECOGNITION

Given an independence alphabet {S, /) , consider a nondeterministic finite
state automaton A = (Ç, #o, S, F) over £, where Q is the set of states, qo

the initial state, 6 : Q x S* —> 2^ the transition function and F Ç Q the
subset of final states. In this section we describe an algorithm for solving
the membership problem for the trace language [L], L being the language
recognized by A. Also in this case we assume that the independence alphabet
(S, 7) and the automaton A are fixed. Hence the input is simply given by
a string x e S*.

Now, for every t E M (S, /) , let Vt dénote the set of states reachable
from qo by any représentative of t, i.e.

Vt = {q e Q\3y Et : q e 6(qo, y)}.

Then, for an input x G S*, the algorithm computes the set Vjxj. Clearly
[x] e [L] if and only if Vjx] H F ^ 0.

The set Vjx] can be computed by applying the following property.

PROPOSITION 2: Given an independence alphabet (S, 7), let t e M (S, 7)
be a trace of length n > 1 and let ti, t<i,..., i/ be the préfixes oft of length

n — 1. För every i G {1, 2,..., j } we dénote by ai the element of E SMC/Î / t o

Informatique théorique et Applications/Theoretical Informaties and Applications

ANALYSIS OF ALGORITHMS FOR TRACE LANGU AGE RECOGNITION 149

t — ti • [ai]. Then Vt satisfies the following relation

i
Vt = I J {p G Q\3q eVu:pe6 (q, a,-)}.

The proposition can be easily proved by induction on the length n of
trace t. This property allows to compute the set Vt for a trace t of length n,
once the sets Vt% are known for all the préfixes U of t having length n — 1.
Therefore we can apply the same method used in the previous section to
compute the représentations of the préfixes of a given trace.

The algorithm follows exactly the scheme of Procedure Build Préfixes. It
exécutes n cycles, where n is the length of the input string. At the j-th cycle
it computes the sets V̂ for all the préfixes s of the input trace that have
length j together with the corresponding représentations. The computation
uses the sets Vr of the préfixes r of length j — 1 that have been computed
at the previous cycle. When an edge (r, s) G E with label a G S is found,
then, using Vr, the algorithm computes the set

T={peQ\3qeVt:pe6(q, o)}

and adds it to Vs.

Since the computation of set T can be done in constant time, the
analysis of the algorithm can be achieved as in the previous section. This
implies, for all inputs x G S*, an overall computation time T (x) such that
a|JPref[z] < T(x) < 6JtPref[ar], where a and b are fixed positive constants.

As regards the space complexity note that, during the exécution of the j-th

cycle, the algorithm only has to keep the set Vr for ail r G Sj-\ and the
lists 5j_i, Sj-2, »-, Sj-a- As a conséquence, the number of memory cells
used for an input a; G £* of length n is at most proportional to

max{(tPrefj[x]|i — 1, 2,..., n}.

PROPOSITION 3: For every independence alphabet (E, I) there exists

a constant c > 0 such that, for ail x G S* of length n and every

i G {1,2,..., n},

t)Prefi[x] < en™-1,

where a is the size of the largest clique in (S, ƒ).

voh 32, n° 4-5-6, 1998

150 A. AVELLONE, M. GOLDWURM

Proof: Let x be a string of length n > 1 in S* and let C be a clique of
size a in (E, /) . We can consider C as a trace in M (S, /) whose symbols
are distinct, mutually independent éléments. It is not difficult to see that,
for every i G {1, 2,..., n},

] < ftPref, (Cm)

where m = [^] and Cm is the m~th power of C in the monoid M (S, /) .
Now observe that ||Prefi(Cm) is at most the number of i-combinations

with répétitions of a set of a éléments. Hence, for every i G {1, 2,..., n}, we
have JtPreft(C

m) < C^1). Since C ^ 1) < ci<x~l f o r a suitable constant
c > 0 only depending on a, we obtain the resuit. D

The analysis presented in this section can be summarized by the following.

PROPOSITION 4: Given an indépendance alphabet (S, X) and a finite state

automaton A accepting a language L Ç E*, the membership problem for the

trace language [L] can be solved by an algorithm that, in the worst case,

requires O (na) time and O (n 0" 1) space, where a is the size ofthe largest

clique of(E,T).In the average case, assuming equiprobable all input strings

oflength n, it works in O (nk) time and O {j^^k.a-i}^ SpaC€f wnere k is

the number of connected components of (S, Ie).

5. CONTEXT-FREE RECOGNITION

A further application of the procedure presented in Section 3 concerns
the membership problem for context-free trace languages. A procedure for
solving the problem can be obtained as a natural extension of the classical
CYK algorithm for context-free (string) récognition. An analogous extension
has been obtained for Valiant's algorithm [7].

Given an independence alphabet (E, T), let G = (V, E, S, P) be a
context-free grammar in Chomsky normal form which générâtes a language
L C S * , where V is the set of variables, S G V is the initial variable and
P the set of productions. For an input o: G S* of length n the algorithm
vérifies whether there exists a string y E L that belongs to [x]. In an initial
phase Procedure Build Préfixes is applied to compute the sets PQ, P\,..., Pn

where, for each z, Pi = {z£ N m | r represents a prefix r G Prefï[#]}. Then,
for each pair of integers i, j , 0 < i < j < n, and ail pairs of représentations

Informatique théorique et Applications/Theoretical Informaties and Applications

ANALYSIS OF ALGORITHMS FOR TRACE LANGUAGE RECOGNITION 1 5 1

(lï s) G Pi x Pj, the algorithm computes the set

G E* : A

Clearly, a positive answer is returned if and only if S G To,z, where 0 and x_

represent [e] and [x]9 respectively. Observe that, for each i G {0, 1,..., n — 1}
and every (r, s) G P* x P i + i , we have T ^ = {A G V\3(A ^ a) e P :

r • [a] = 5}. Moreover, for every £ G {2, 3,..., n}, i G {0, 1,..., n — £},

and each (r, s) G P« x P2+^, a variable A belongs to T^$ if and only if,
for some h G {1, ...,£- 1}, there are u G Pi+h and (A -+ BC) G P such
that B G Tr,H and C G T^s- Therefore the algorithm first computes TL^

for each (r, s) G Pi x P2+i and all i G {0, 1,..., n - 1}. Then, it exécutes
the following procedure:
begin

for £ G {2, 3,...,71} do

for i G {0, 1,..., n - £} do

for (r, s) G P% x Pi+^ do

begin

TL,S = 0;
for /i = {1 , 2 , . . . , ^ - 1} do

for u G P?;+^ do

TLJS - T M U {A G y | 3 (A ^ B C) e P : B e Tr_^ C G T « ï â } ;

end

end

Note that, if X = 0, the previous procedure reduces to the classical CYK
algorithm.

It is easy to verify that the algorithm works in time T (x) and space
S (x) such that

a(t(Pref[a:])3 <T(x) < b($Pve([x]f, c(BPref[o:])2 < S (x) < d(t|Pref[a;])2,

for suitable positive constants a, 6, c, d and for every input x G S*. This
proves the following resuit:

PROPOSITION 5: An extension of the CYK algorithm solves the membership

problemfor context-free trace language in O (n3a) time and O (n2a) space

in the worst case, and in O (n3fc) time and O (n2k) space in the average case,

where a and k are the coefficients introduced in the previous propositions,

vol. 32, n° 4-5-6, 1998

152 A. AVELLONE, M. GOLDWURM

REFERENCES

1. I. L AALBERSBERG and E. WELZL, Trace languages defined by regular string languages,
R.A.I.R.O. -Informatique Théorique et Applications, 1986, 20, pp. 103-119.

2. A. V. AHO, J. E. HOPCROFT and J. D. ULLMAN, The design and analysis of computer
algorithms, Addison-Wesley, 1974.

3. A. BERTONI and M. GOLDWURM, On the préfixes of a random trace and the membership
probiem for context-free trace languages. In L. HUGUET and A. POLI, eds, Applied
Algebra, Algebraic Algorithms and Error-Correcting Codes (Proceedings AAECC 5),
Menorca (Spain) June 15-19, 1987, number 356 in Lecture Notes in Computer
Science, pp. 35-59, Berlin-Heidelberg-New York, 1989, Springer.

4. A. BERTONI, M. GOLDWURM and N. SABADINI, Analysis of a class of algorithms for
problems on trace languages. In Th. BETH and M. CLAUSEN, eds., Applicable Algebra,
Error-Correcting Codes, Combinatorics and Computer Algebra (Proceedings
AAECC 4), Karlsruhe (FRG) September 23-26, 1986, number 307 in Lecture Notes
in Computer Science, pp. 202-214, Berlin-Heidelberg-New York, 1988, Springer.

5. A. BERTONI, G. MAURI and N. SABADINI, Context-free trace languages, In Proceedings
7th Coll. on Trees in Algebra and Programming (CAAP), Lille (France), 1982,
pp. 32-42.

6. A. BERTONI, G. MAURI and N. SABADINI, Equivalence and membership problems for
regular trace languages, In Proc. 9th ICALP, number 140 in Lecture Notes in
Computer Science, pp. 61-71, Berlin-Heidelberg-New York, 1982, Springer.

7. A. BERTONI, G. MAURI and N. SABADINI, Membership problems for regular and context
free trace languages, Information and Computation, 1989, 82, pp. 135-150.

8. R. CORI and D. PERRIN, Automates et commutations partielles, R.AJ.R.O. -
Informatique Théorique et Applications, 1985, 19 (1), pp. 21-32.

9. V. DIEKERT and G. ROZENBERG (Eds.), The book of traces, World Scientific, 1995.
10. C. DUBOC, Commutations dans des monoides libres : un cadre théorique pour l'étude

du parallélisme. Thèse, Faculté des Sciences de l'Université de Rouen, 1986.
11. M. GOLDWURM, Probabilistic estimation of the number of préfixes of a trace,

Theoretical Computer Science, 1992, 92, pp. 249-268.
12. M. H. HARRISON, Introduction to formai language theory, Addison-Wesley, 1978.
13. A. MAZURKIEWICZ, Concurrent program schemes and their interprétations, DAIMI

Rep. PB 78, Aarhus University, Aarhus, 1977.
14. E. OCHMANSKI, Regular behaviour of concurrent Systems, Bulletin of the European

Association f or Theoretical Computer Science (EATCS), Oct 1985, 27, pp. 56-67.
15. W. RYTTER, S orne properties of trace languages, Fundamenta Informaticae, VII,

1984, pp. 117-127.
16. M. SZIJÂRTO, A classification and closure properties of languages for describing

concurrent System behaviours, Fundamenta Informaticae, 1981, 4 (3), pp. 531-549.
17. L. G. VALIANT, General context-free récognition in less than cubic time, Journal of

Computer and System Sciences, 1975, 10, pp. 308-315.

Informatique théorique et Applications/Theoretical Informaties and Applications

