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Abstract

A new set of tools for verifying smoothness of surfaces generated by stationary

subdivision algorithms is presented. The main challenge here is the verification of

injectivity of the characteristic map. The tools are sufficiently versatile and easy

to wield to allow, as an application, a full analysis of algorithms generalizing bi­

quadratic and bicuble B-spline subdivision. In the case of generalized biquadratic

subdivision the analysis yields a hitherto unknown sharp hound strictly less than

one on the second largest eigenvalue of any smoothly converging subdivision.

1 Introduction

The idea of generating smooth free-form surfaces of arbitrary topology by iterated mesh

refinement dates back to 1978, when two papers [CC78], [DS78] appeared back to back in

the same issue of Computer Aided Design. Named after their inventors, the Doo-Sabin

and the Catmul1-Clark algorithm represent generalizations of the subdivision schemes for

biquadratic and bicubic B-splines, respectively. By combining a construction principle

of striking simplicity with high fairness of the generated surfaces, both algorithms have

since become standard tools in Computer Aided Geometric Design. However, despite

a number of attempts [DS78], [BS86], [BS88], so far the convergence to smooth limit

surfaces could not be proven rigorously so far.

The proof techniques and actual proofs to be presented here are based on the concept

of the characteristic map as introduced in [Rei9Sa]. The characteristic map is a smooth

map from some compact domain U to R2 which can be assigned to stationary linear

subdivision schemes. It depends only on the structure of the algorithm and not on the
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data. If this map is both regular and injective, then the corresponding algorithm gener­

ates CI-limit surfaces. It is shown in this paper that on the other hand non-injectivity

at an interior point of the map implies non-smoothness of the limit surfaces. Further, we

establish two sufficient criteria for regularity and injectivity of the characteristic map

which allow a straightforward verification. The weaker one, however still applicable

in many cases, only requires the sign of one partial derivative of one segment of the

characteristic map to be positive.

A careful analysis of the Doo-Sabin and the Catmull Clark algorithm yields the

following results:

• The Doo-Sabin algorithm in its general form uses weights a = [aO, ... , an-I] for

computing a new n-gon from an old one can. Affine invariance and symmetry, i.e.

Ljai = 1, a i = on-i,J E Zn imply that the discrete Fourier transform of a is

real and of type a :::: [1, aI, a2
, ••• , a2

, aI]. If A := a l is greater in modulus than

the other entries except for 1 and if

(1.1)

for certain values Amax(n) < 1 then the limit surface is smooth. The bound AITIax(n)
can be computed explicitly, see Table 1. If 1 > A > Amnx(n) then the limit is a

continuous, yet non-smooth surface.

• In particual, the Doo-Sabin algorithm in its original form (5.1) complies with the

conditions, hence generates smooth limit surfaces.

• The Catmull-Clark algorithm in its general form uses three weights 0, p, 'Y sum­

ming up to one for computing the new location of an extraordinary vertex from

its predecessor and the centers of its neighbors. If

(1.2)

with en:= cos(21r/n), then the limit surface is smooth. If one of the both values

on the left hand side exceeds the right hand side, then the limit surface is not

smooth.

• In particular, the Catmull-Clark algorithm in its original form (6.2) complies with

the conditions and generates smooth limit surfaces.

2 Generalized subdivision and the characteristic map

In this section we briefly outline the results of subdivision analysis as developed in

[Rei95a], and establish a new necessary condition for CI-subdivision schemes.
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Generalized B-spline subdivision generates a sequence C m of finer and finer control

polyhedra converging to some limit surface y. On the regular part ofthe mesh, standard

B-spline subdivision is used for refinement, whereas special rules apply near extraordi­

nary mesh points. Since all subdivision masks considered here are of fixed finite size,

we can restrict ourselves to analyzing meshes with a single extraordinary mesh point of

valence n #- 4. The regular parts of the control polygons C m correspond to B-spline

surfaces Ym that form an ascending sequence

yo C Yl C Y2 C···

converging to the limit surface,

Y= U Ym·
mEN

With the prolongation of Ym defined by

X m := closure (Ym+1 \Ym) ,

the limit surface is the essentially disjoint l union

Y= yoU U X m ·
mEN

(2.1 )

(2.2)

(2.3)

(2.4)

The X m are ring-shaped surface layers which can be parametrized conveniently over a

common domain U X Zn, Zn := Z\n, consisting of n copies of the compact set

U := [0, 2J'\[0, 1)' , (2.5)

(2.6)

see Figure 1. Each surface layer X m can be parametrized in terms of control points

B ~ E R3 and piecewise polynomial functions N l according to

L

X m : U X Zn 31 (u,v,j) f-lo x!n(u,v) = L:Nl(u,v,j)B~.
(=0

Without loss of generality, we may assume that the functions Nt are linearly indepen­

dent. Otherwise, the setup can be reduced without altering the properties of the scheme.

The n parts x ~ , ... , X ~ - l forming X m are referred to as segments. Collecting the func­

tions Nt in a row vector N and the control points in a column vector B m yields the

vector notation

Xm(u,v,j) = x~(u,v) = N(u,v,j)B m . (2.7)

The schemes to be considered here are linear and stationary, i.e. there exists a square

subdivision matrix A with

(2.8)

IThe intersecl.ion consists exclusively of points on the common boundary curve, which are identified.
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Figure L Domain U (left) and structure of surface layers X m (right).

Definition 2.1 Let the eigenvalues >'0, ... ,AL of A be ordered by modulus,

1-10 1~ 1-1,1 ~ ... ~ I-ILI , (2.9)

and denote by "po, ... , 'l/JL the corresponding generalized real eigenvectors. If ]Aol > 1.\1[ =

1'\21 > 1>'31 then the characteristic map of the subdivision algorithm is defined by

'l! : U X Zn >-> N[,p" ,p,] E R' ,

or in complex form by

'l!. : U X Zn >-> N,p. E C, ,p.:=,p, + i,p, .

(2.10)

(2.11)

Remark i) ['l/Jl,¢2] is a (L+ 1) x 2-matrix. Its rows play the role of 2D control points.

ii) Throughout, the subscript * will indicate that the we refer to the complexification

of a two-dimensional real variable or function. We will switch complex and real repre­

sentation without further notice.

On the left hand side, Figure 2 shows a typical example of a characteristic map for

n = 5 as obtained for example by the Doo-Sabin algorithm. In order to guarantee affine

invariance of the algorithm, the rows of A must sum up to 1. Thus, [1, ... ,1] is always

an eigenvector of A to the eigenvalue 1. The following Theorem establishes a sufficient

criterion for subdivision algorithms generating smooth limit surfaces.

Theorem 2.1 If). := ).1 = ).2, 1 > ). > 1).31, is a real eigenvalue with geometric

multiplicity 2, and if the characteristic map is regular and inJ"ective, then the limit surface

y is a regular C1-manifold for almost every choice of initial data B o.
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Figure 2: Injective (left) and non-injective (right) characteristic map

A proof of this Theorem can be found in [Rei95a]. Generalizations, though not required

here, are provided in [Rei95b] and [PR96]. Subsequently, it will be assumed that the

eigenvalues of A satisfy the assumptions of Theorem 2.l.

The following Theorem states a necessary criterion for the convergence of a subdivi­

sion scheme to smooth limit surfaces.

Theorem 2.2 If the characteristic map of a subdivision scheme is non-injective! t.e.

there exist (u,v,j) I: (u',v',l) such that

'lJ(u,v,j) = 'lJ(u',v',j') , (2.12)

and if W(u, v,i) is an interior point of iJ!(U, Zn)! then the limit surface y is not a regular

CI-manifold for almost every choice of initial data Bo.

Proof Choose an e-neighborhood V.(W(u,v,j)) such that V.{W(u,v,j)) C W(U,Zn).

Then there exist neighborhoods V and V' of (u,v,i) and (u',vl,l), respectively, with

lJr(V) _- llT(V') = ~(lJr(u, v,i)).: If ~ is a con~inuous map sufficiently close to W, i.e.

IIW- Wll ro < e(2, then W(V) n W(V') '" 0and Wis also not injective. Now, express Bm
in terms of the generalized eigenvectors 'l/Jt,

L

Bo = ~,p,b" Bm= bo + >.m(,p,b, + ,p,b,) + o(I>'lm).
l=O

(2.13)

Then for almost every choice of initial data B o, the coefficients hI and h 2 are linearly

independent, and we can choose coordinates such that bo = 0 is the origin and hI =
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el, b2 = e2 are the first two unit vectors. A rescaling of the surface layers yields

Xm := ,,-mXm = e,,p, +e,,p, +0(1) = [W,O] +0(1) as m ~ 00.

(2.14)

Now, assume that y is a regular Cl-manifold. Then the latter equation implies that the

tangent plane at the orig;in is the xv-plane. The projection ¢m of xmon the xv-plane

is converging to \]I, so 'if;m is non-injective for m sufficiently large. Consequently, the

projection of the layers X m to the xy-plane are non-injective near the origin for almost

all m. This contradicts the assumption, since the projection of a regular Cl-manifold

on its tangent plane is locally injective. 0

Finally, let us state two basic properties of characteristic maps. The first one is derived

from the fact that Wand Aw = A\]I join smoothly,

The second one expresses continuity between segments,

3 Symmetry and Fourier Analysis

t E [0,11 . (2.15)

(2.16)

This section examines the special structure of the characteristic map for subdivision

schemes obeying generic symmetry assumptions, namely that subdivision is independent

of the particular labeling of control points used for refining the control mesh. According

to the split of X m into n segments, the vectors B m of control points can be divided into

n equally structured blocks,

(3.1 )

and A is partitioned into n x n square blocks Ai,i',j,j' E Zn.

Definition 3.1 A subdivision algorithm is called symmetric if it is invariant both under

a shift 5 and a reflection R of the labeling of the vector B m of control points. 5 and R

are permutation matrices characterized by

N(u,v,j + l)Bm =N(u, v,j)SBm

N(v, u, -ilBm =N(u, v,j)RBm .

(3.2)

(3.3)

Invariance of the subdivision algorithm means that the subdivision matrix A commutes

both with Rand 5, i.e.

SA = AS, RA = AR .

6
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With SM' the segments of Sand E the identity matrix of the same size as

shift matrix S is given by
..,

S),) - o· ·'+lE- ),) .

sj,j' the,

(3.5)

Comparison of SA and AS shows that the subdivision matrix of a symmetric scheme is

block-cyclic, i.e.

i,i' E Zn· (3.6)

Thus, (2.8) becomes

i E Zn· (3.7)

With

w. := c,. + is. := exp(21ri/n)

define the discrete Fourier transform by

(3.8)

(3.9)
.-1

ft' := L w;:;'pi
j=O

Here, p = [po, ... , pn-l] is an n-vector in the generalized sense that its entries pi can

be either scalars, or vectors, or matrices. It will always become clear from the context,

what is meant. Applying the discrete Fourier transform to (3.7) yields

fl' = A'fl' (3.10)m+] m'

see [LipSl] for a comprehensive introduction to the Fourier analysis of cyclic systems.

Theorem 3.1 The characteristic map is n o n ~ i n i e c t i v e unless the dominant eigenvalue

,\ is an eigenvalue oj Al and }in-I.

Proof ,\ is an eigenvalue of A if and only if it is an eigenvalue of Ak for some k E

{O, ... , n - I}. If ,\ is an eigenvalue of Ak then it is also an eigenvalue of An-k, since A

is real and An-k = Ak. Let Ak.(fi = )...(fi, then

,po := [ w ~ , j ; , w ~ , j ; , ... , W ~ ( ' - 1 ) , j ; ] (3.11)

is a complex eigenvector of A. Consequently, the segments \ ] f ~ of the complex charac­

teristic map satisfy

Now, the winding number of the closed curve

a.(t): [0,1r/2) x Z. 3 (t,j) ~ W!(2cos(t),2sin(t».

(3.12)

(3.13)

is either k or n - k. So, if k ¢ {l,n -I}
that \]f. is not injective.

the curve a. has self-intersections implying

o
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The effect of a dominant eigenvalue stemming from the wrong Fourier component is

depicted in Figure 2 on the right hand side. It shows the non-injective characteristic

map for the Doo-Sabin algorithm for n = 5 with weights chosen such that >. is an

eigenvalue of ..1.2 and ..44
. As a consequence of Theorem 3.1, it will be assumed that>' is

an eigenvalue of Al and An-I, subsequently. Sa, (3.12) becomes

. . °
w~ =w~q, ... (3.14)

The following Lemma is the key to reducing the analysis of the characteristic map W to

the examination of a single segment, say q,o. III is called normalized if -$ is scaled such

that wO(2, 2) = (d,O) with d > O. Note that normalization is always possible if W is

injective, since then wO(2,2) I' wO(I, 1) = AwO(2, 2).

Lemma 3.1 If III. is a normalized characteristic map of a symmetric scheme) then

and in particular

O( -0)W.u,v)=W,(v,u.

Proof (3.2) and (3.3) yield N(u, V, j)S-1 R = N(u, v, j )RS implying that

S-IR = RS

(3.15)

(3.16)

(3.17)

since the functions forming N are assumed to be linearly independent. From (3.4) one

concludes that R1{J. is an eigenvector of A to the eigenvalue >., i.e. it can be written as

R,p, = a,p, + b,p., a,b E C.

On using S1{J. = wn 1{J.. , one obtains from the latter two equations

(3.18)

Since 1{J. and 1{J.. are linearly independent, this implies a = 0, hence R1{J. = b?fJ... In order

to determine b, consider W ~ ( 2 , 2). By (3.3),

d = N(2, 2, O),p, = N(2, 2, O)R,p. = bN(2, 2, O),p, = bd, (3.20)

thus b = 1 and R1{J* = 1/;•. Finally, we obtain

W ~ ( u , v ) = N(u,v,j),p. = N(v,u,-j),p, = w~j(v,u).

8
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4 Criteria for regularity and injeetivity

In this section we derive a sequence of Lemmas resulting in two sufficient criteria for

the regularity and injectivity of the characteristic map that can be verified efficiently.

Throughout, it will be assumed that \IT is a normalized characteristic map of a symmetric

subdivision scheme.

The first Lemma states that for regular functions injeetivity is equivalent to injec­

tivity at the boundary.

Lemma 4.1 Denote by au the boundary of U and by wg the restriction o/Wo to au.
[fwO = [\IJ~, wg] is regular, i.e.

(",0 "'0)D1J10 "= 1,1.< 1,v
. WO WO ,

2,1.1 2,v

J
O
:~ det D"'O '" 0 , (4.1)

then WO is injective if and only if wg is injective.

Proof Assume that WO is regular and wg is injective. By the Inverse Function Theorem,
(1FT), points in the interior U of U are mapped to points in the interior of \IlO(U), i.e.

8"'°(U) n "'°(1f) ~ 0 .

Define the function J1 assigning the number of pre-images to the points in WO(U),

(4.2)

1": ",O(U) 0> (x,y) >-+ #((u,v) E U: ",O(u,v) ~ (x,y)) EN. (4.3)

Injectivity of \Jig and (4.2) imply 1"(8"'0(U)) ~ l.

1FT, hence ,u(lJIO(U)) = 1, i.e. \II is injective.

J1 is upper semi-continuous by the

o

The second Lemma gives a sufficient condition for w ~ being located in a sector of angle

21rIn in the complex plane.

Lemma 4.2 If \Ilo is regular and

fOl' all t E [0,1], then

fOT all (u,v) E U.

"'1,"(1, t) > 0, " ' ~ , J l , t) > 0

- 7rIn :S arg ",O(u, v) :S 7rln

9
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Proof By Lemma 3.1, we have

(4.6)

and in particular ",g(t,t) = O,t E [1,21. Let p.(t):= p,(t) +ip,(t):= " ' ~ ( I , t ) , t E [0,1],

then P2 is monotonically increasing because wg,v > aand

",g(I,O) = p,(O) < p,(t) < p,(I) = ",g(l, I) = 0, t E (0, I) . (4.7)

Now, consider " ' ~ ( t , O ) , t E [1,21. By (3.12), (2.16) and (3.16) we obtain for t E [1,2)

wn"'~(t,O) = "'~(t,O) = "'~(O,t) = "'~(t,O). (4.8)

This implies either argw~(i,O) = -1fln or argw~(O,t) = 1f -'KIn. The second case

contradicts (4.7), thus

arg " ' ~ ( t , 0) = -7r /n, arg " ' ~ ( O , t) = 7r/n . (4.9)

This means that \ll'°(i,O) is a part of the straight half line h(r) = rexp(-i1fln),r >
O. Since p.. is monotonically increasing in both real and imaginary part, it has no

intersections with h except for p... (O), hence

-7r/n = argp.(O) < argp.(t) < argp.(I) = 0, t E (0, I). (4.10)

Using the scaling property (2.15) and symmetry with respect to the real axis, the latter

two equations imply tbat (4.5) holdsfor all (0, v) E aU. By the 1FT, we have a " ' ~ ( U ) c
W~(aU), i.e. -1fln:S arg8wO(U):S 'KIn. Since lJr°(U) is compact, this implies -1fln::;

argWO(U) ::; 'K In as asserted. 0

The third Lemma provides a sufficient condition on the partial derivatives of lITo that
imply injectivity.

Lemma 4.3 [fwO is regular and wL,(l, i), wg)l ,i) > 0, t E [0,1]' then \ITo is injective.

Proof By Lemma 4.1 it suffices to show that the restriction wg of WO to the boundary

of U is injective. Let

p~(t) := " ' ~ ( I , t), p ~ ( t ) : = " ' ~ ( I + t, 0), p:(t):= " ' ~ ( 2 , 2 t ) (4.11)

p;(t):= " ' ~ ( t , I ) , p:(t):= " ' ~ ( O , I +t), p:(t):= " ' ~ ( 2 t , 2 ) (4.12)

for t E [0,1]' see Figure 3, then

1 d \ 3 \=0
p. = P. = P. = "P. = "P.

p ~ = P:

10
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"In

h(r)

Figure 3: Curves P ~ " " 1 p~.

with P* = PI + iP2 defined as in the Proof of Lemma 4.2. P: and p ~ do not intersect,

SInce

argp: = -1r/n, argp: = 1r/n (4.15)

by (4.9). Both curves also do not have self-intersections, since they are regularly

parametrized and parts of straight lines. Next, we show that argp.(t) is monotoni­

cally increasing in t. By (4.7) and (4.9),

p,(O) < 0, p,(I) = 0, PI(O) = p,(O)sin(-"/n) > o. (4.16)

By assumption, PI and P2 are monotone increasing, thus PI > 0 and P2 :::; O. This implies

d "
( )

PIP, - PIP'
-d argp. = , ..2 > 0

t Pt+P2
(4.17)

as announced. Monotonicity of argp. = argpl = argp3 = -argp4 = -argp6 has

the following consequences: First, it guarantees that P:,P:,P:,P: do not have self­

intersections. Second, it excludes intersections of p: and P ~ , since p ~ = >.p~,.>. =I 1.

Analogously, p: and p ~ are disjoint. Third, the only intersections of p ~ and p ~ with p;

are

1 ) I ~ ( I , 0) = p;(O) = p~(O)

1)1~(2, 0) = p:(O) = p;(I) ,

11
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and analogously for p ; ' , ~ , ~ . Fourth, the only intersections of p ~ U p : Up!' and p 1 u p ~ U p ~

are

and the proof is complete.

1 } 1 ~ ( 1 , 1) = p;(I) = p;(1)

1}1~{2, 2) = p:(1) ~ p~(I) ,

(4.20)

(4.21)

o

The following Theorem establishes a sufficient criterion for the partial derivatives of wD

which guarantees regularity and injectivity of the characteristic map. Its usefulness is

due to the fact that it requires only estimates for the partial derivatives of a single seg­

ment IIfD. Since for generalized B-spline subdivision schemes the functions in questions

are piecewise polynomial, the conditions can be verified numerically or even analytically

using B-spline representations and the convex hull property.

Theorem 4.1 [f wD is regular and W ~ , v ( 1 , t), wg,v(1, i) > 0, t E [O,lL then the charac­

teristic map '\If is regular and injective.

Proof By Lemma 4.3, WD is regular and injective. (3.14) says, that 'if!i is obtained from

llJD by a 2wjjn-rotation about the origin. So, each \JJi,j E Zn is regular and injective.

Further, the segments wi do not overlap, since Lemma 4.2 yields

(2j -1)7r/n:S a r g 1 } 1 ~ : S (2j +1)7r/n, j E Zn· (4.22)

o

The assumptions of the following Corollary are stronger than those of Theorem 4.1, but

can be verified with less effort since no products of partial derivatives are involved.

Corollary 4.1 If ' i f ! ~ ) u , v ) , wg,v(u,v) > 0 for all (u,v) E U, then the characteristic

map 'if! is regular and injective.

Proof The symmetry relation (4.6) yields

D1}10(u,v) = ( 1}1l,.(v,u) \jI1.•(u,v))
-\jI,,.{v,u) 1 } 1 ~ .•(u,v) ,

12
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Figure 4: Mesh refinement by the DoD-Sabin algorithm.

1/16 ---3/16

3/16---9/16

,,,
,

\

\

/

Figure 5: Masks for the Doo-Sabin algorithm.

5 The Doo-Sabin algorithm

5.1 Algorithm

The DoD-Sabin algorithm is a generalization of the subdivision scheme for biquadratic

tensor product B-splines. For each n-gon of the original mesh, a new, smaller n-gon

is created and connected suitably with its neighbors, see Figure 4. Figure 5 shows the

mask for generating a new n-gon from an old one for the regular case n = 4 (left), and

the general case (right). The weights suggested by Doo and Sabin in [DS78] are

_; OJ,O 3+2cos(2xj/n)
~ = - + .

4 4n
(5.1 )

Below we analyze more general schemes assuming beforehand nothing but affine invari­

ance and symmetry,

n-1

L ~ = 1, a1 = a
n

-
j

•

;=0

13

(5.2)
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" \

m
~
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Figure 6: Labeling of control points for the Doo-Sabin algorithm

5.2 Characteristic map

Each of the n segments x1,. 1 j E Zn, of the surface layers generated by the Doo-Sabin

algorithm consists of 3 biquadratic B-spline patches. Accordingly, the n blocks Btn

forming the vector of control points Em consist of 9 elements, each. The labeling is

shown in Figure 6. The 9 X 9-matrices A.k, k E Zn, as introduced in (3.10) have the

following structure,

A' = (
i!'
A'1,0

A'2,0

o
A'1,1

A'2,1

(5.3)

With p := 9/16, q := 3/16, r := 1/16, the sub-matrices are given by

., (P+wnq)

Ur
0

T)"
AID = P , All = r

p+wnq 0

(5.4)

q + W n 1' P 0 wnq

q P q r
" .,

A20 = r A
21

= q P q

q r q P
q+WnT wnq 0 P

14



The matrix Ati has eigenvalues 1/4,1/8,1/16, hence each of them is an n-fold eigenvalue

of the subdivision matrix A. Further, A has a 5n-fold eigenvalue 0 stemming from the
5 x 5-zero submatrix of ;ik. Due to their high multiplicity, these eigenvalues do not come

into account for playing the role of the dominant eigenvalue >.. The only eigenvalues left

are the upper left entries &\ k E Zn, of ;ik obtained by applying the discrete Fourier

transform to the vector [0.0, ... , an-I] of weights for the n-gon. Since the 0'; sum up

Lo 1, we have >'0 := a ~ = 1. Due to symmetry, the remaining eigenvalues are real and
occur in pairs according to &~ = &~-k. From the theory developed in the preceding

sections we know that

must satisfy

1> >. > max{1/4, I & ~ I , ... , I&~-'I] .

The eigenvector of the Matrix Al corresponding to >. is

(5.5)

(5.6]

.1. _
'e' -

2>'(16)' - 1)(8)' -1](4)' -I]
6>'(16)' - 1)(6)' -1 + 2Wn >')

18>'(32)'' - 1 + 4c,,>.]

6>'(16)' - 1)(6)' -1 + 2wn >']

(16)' -1)(12)'' + 18>' - 3 +wn (4)'' + 12>' -1))

6>'(32)'' + 64>' -12 + c,,(20)' + 1) - i8n (16)' -1))

64>.3 + 512>" - 46>' - 8 + 36c,,>'(2)' + 1)

6>'(32)'' + 64>' -12 + c,,(20)' + 1) + i8n {16>. -1))

(16)' -1)(12).' + 18>' - 3 +wn {4>" + 12>' -1))

(5.7]

Note that the characteristic map depends only on the values of >. and n. That is, all

masks 0' with identical first Fourier component yield the same characteristic map.

5.3 Verification

Let us start with briefly discussing the particular case>. = 1/2 as obtained in particular

for the weights in (5.1). Here we obtain the eigenvector

(

7 14 + twn 21 + 14wn )

,po = 3 14 + twn 21 + 6c" 28 + 2Wn + 9wn

21 + 14wn 28 + 2wn + 9wn 35 + 12c"

(5.8)

The segment 1 J I ~ of the characteristic map consists of three bi-quadratic patches, which

can be expressed in Bernstein-Bezier form with the following coefficients,

15



3
- *
2

28 + 100. 35 + 130. 42 + 190. 49 + 170. 56 + 200.
28(n - 218n - 14(n - 78n - I

21t70. 28+140. 35+130. 42+120. 49+170.
2 Sn 14sn tsn 0 -7sn

I I I
U+Uo. D+210. ~ + 1 0 0 . 35+130. a+190.

148
n
-- 78n -- 0 -- -78

n
-- -14s

n

I I
21+70. 28+140. 35+210.

-78n -14sn -218n

I I
U+Uo. D+Do. ~ + ~ o .

-148n -- -218n -- -288n (5.9)

Computing the partial derivative \l1~,V 1J!~,1I + ilJitv with respect to v yields three
quadratic-linear patches with coefficients

3
- *2

14+140. 14+140. 11+120. 14+100. 14+60.
148n -- 14sn 14sn -- 148n -- 148n

I I I
14+140. 14+140. 14+60. 14-20. 14-40.

148
n
-- 14sn -- 148n -- 148n -- 148n

I I
14-140. U-140. 14-140.

148n -- 148n -- 148n (5.10)

Both the real and the imaginary part of the coefficients are positive. So, by the con-

o vex hull property and Corollary 4.1 the algorithm is verified to generate smooth limit

surfaces.

The situation for general.\ is more subtle, in particular as..\ --i" 1. First, Corollary 4.1

turns out to be insufficient. Second, there exists a limit value Amax{n) < 1 depending

on n such that even the assumptions of Theorem 4.1 are not fulfilled for 1 > ..\ >
Amax . It will be shown in the next subsection that this is due to an actual loss of

smoothness as ). passes the bound. All formulas required here were derived using a

computer algebra system. They are partially rather lengthy and will not be stated

explicitly unless necessary. Rather, we depict the crucial results graphically.

In order to apply Theorem 4.1, we have to compute J O
, i.e. the determinant of the

Jacobian of \liD. JO is a continuous, piecewise bi-cubic function over U thath can be

expressed in Bernstein-Bezier form with 3 x 16 coefficients J~, fl = 1, ... ,48 depending

on nand )., Explicit calculation shows that all coefficients JZ are of type

(5.11)
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with P/J, Q/J polynomials of degree $ 6 in A. We give the coefficient corresponding to

JO(l,l) the index JL = 1, i.e.

JO(I, 1) = J? = 5n (16.\ - 1)(P, + ""Q,) .

The polynomials PI and QI are

P, (.\) ,= 96.\3(_128.\3 + 128.\' -7.\ -2)

Ql(.\) ,= 864.\' .

(5.12)

(5.13)

(5.14)

In order to apply analytic tools, it is convenient to consider Cn as a free variable varying

in the interval Cn E [-1/2,1] corresponding to n ~ 3. For fixed>. E (1/4,1) there is at

most one value Cn where J~ changes sign,

(5.15)

Figure 7 shows a plot of all these functions as well as a magnification of the significant

region. From the analysis of the case>. = 1/2 we know that J2(Cn, 1/2) > 0 for a;ll JL.

Thus, JO is positive as long as (>., Cn) lies in the shaded region, which is bounded by

R I (>'). More precisely, the feasible set for (A,e,.) providing positivity of JO is

A ,= ((A,,,,,) E (1/4,1) x [-1/2,1], J?("",.\) > 0). (5.16)

For verifying the assumptions of Theorem 4.1 it remains to show that W ~ , v ( l , t), wg,v(l, t) >
ofor t E [0,1] and (Cn, >') E A. Note that both functions are linear in t. So, it suffices

to check positivity for t E {O, I}, which follows immediately from

\jI:,,(I,O) = 2.\(16.\ -1)(4.\ -1){4.\ + 1)(1- "")

\jIg,.(I,O) = 2.\(16.\ -1)(4.\ -1)(4.\ +1)8n

\jig ,(1, 1) = 128n .\'(16.\ -1),

\jIt,(I,I) = J? /2\j1g,,(I,I).

Finally, let us summarize the results derived in this section.

(5.17)

(5.18)

(5.19)

(5.20)

Theorem 5.1 Let a ~ , ... , a~-l be symmetric weights for the Doo-Sabin algorilhm. If

A := & ~ = &~-I satisfies

1> .\ > max{I/4, I & ~ I , · · · , 1&:-'1)
128.\'(1-.\) -7.\ - 2 +9.\cos(27r/n) > 0,

(5.21)

(5.22)

then the limit surface y is a regular CI-manifold for almost every choice of initial data

Bo·
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0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 7: Feasible sel A and functions Rp (,,\).

5.4 Failure beyond the bound

In contrast to the lower bound>. > 1/4, which appears naturally, the existence of an

upper bound for>' may surprise. It is not an artifact of the particular type of sufficient

conditions in Theorem 4.1, but a sharp bound beyond which the Doo-Sabin algorithm

provably fails. If Jf < a then

1 j f ~ , . ( l , 1) = 125"'\'(16'\ -1) > 0

1jf~ .•(1, 1) = J~ /2Ijfg,.(1, 1) < 0 .

(5.23)

(5.24)

Consider the curve [gl(t),92(t)] := w°(t, t). Symmetry with respect to the x-axis implies

92(t) =O. For the first component we obtain

(5.25)

hence for each sufficiently small e > a there exists an e' > e such that 91 (1 + c) =

91(1 + e'). This implies the non-injectivity of the characteristic map W,

1jf0(1 + c, 1 + e) = IjfO(l +e', 1 + e'), e # c' . (5.26)

Moreover, for e sufficiently small, JO(l +c:, 1+c:) < 0 by continuity. So, 1J!°(1 +c:, 1+c:) is

an interior point of 1J!(U, Zn) by the 1FT, and the assumptions of Theorem 2.2 are fulfilled

proving sharpness of the bound. Figure 8 shows a magnification of the characteristic

map for n = 3 in a vicinity of IjfO(l, 1) for'\ = 1/2 (left) aod'\ = 0.95 (right). The latter

18



Figure 8: Characteristic map for n = 3 and A = 0.5 (left) and A = 0.95 (right).

case corresponds to weights aD = 0.9667, a
1 = a 2 = 0.01667. Six layers of a subdivision

surface generated by these weights are shown in Figure 9. The magnification on the right

hand side is non~proportional, i.e. the 'height' of the surface has been expanded in order

to depict its wavy shape. Let us conclude the discussion of the Doa-Sabin algorithm

with a brief description of the qualitative and quantitative behavior of Amax(n). As

n --+ 00, Amax(n) is increasing monotonically towards 1. The asymptotic behavior for

large n is

The lowest bound occurs for n = 3, namely

V187 (1 (27 V5563)) 1
Am..(3) = 24 cos 3" arctan 1576 + 3" '" 0.8773 .

Table 1 lists the values of Amax for n = 3, ... 1 12.

6 The Catmull-Clark algorithm

6.1 Algorithm

(5.27)

(5.28)

The Catmull-Clark algorithm is a generalization of the subdivision scheme for bicubic

tensor product B-splines. Each n-gon of the original mesh is subdivided into n quadri­

laterals thus generating a purely quadrilateral mesh after the first step. There are three

masks for subdividing such a mesh, namely one for computing a new centroid, one for

19



Figure 9: Non-smooth surface generated by the Doo-Sabin algorithm with), = 0.95.

3 0.8772872432

4 0.9223409885

5 0.9478340134

6 0.9628618416

7 0.9723152935

8 0.9786066941

9 0.9829902941

10 0.9861607079

11 0.9885250887

12 0.9903339733

Table 1: Values of the bound ).max(n) for n = 3, ... ,12.

••
Figure 10: Mesh refinement by the Catmull-Clark algorithm.
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1/1 - 1/4

1/4 - 1/4

1/16 -1/16

3/8 - 3/8

1/16-1/16

1/64 -3/32 -1/64

3/32-9/16-3/32

1/32-9/16-1/64

'I/n

/ \
___ Pin Pln--..

,In \ / ,In

\ n /--- --..fi/n I fi/n

I fi/n I--- --..,In ,In

Figure 11: Masks for the Catmull-Clark algorithm.

a new edge point, and one for the new location of a former vertex, see Figure 11. So,

the variables at disposal are the weights

0.,13",0.+13+,=1.

In [CC78), Catmull and Clark suggest

(6.1)

7
0:=1-­

4n'

1,=-.
4n

(6.2)

6.2 Characteristic map

Each of the n segments xfn,j E In, of the surface layers generated by the Catmull-Clark

algorithm consists of 3 bicubic B-spline patches. Accordingly, the n blocks B1n forming

the vector of control points Em consist of 13 elements, each. The labeling used here is

shown in Figure 12. Note that the centroid

M m := B::' = ... = B:;,-1 (6.3)

is replaced by n identical copies in order to achieve the desired periodic structure. For

all masks involving M m we substitute

1 n-l .

M m = - LB;'. (6.4)
n j=o

The 13 x 13-matrices Ak, k E Jn1 turn out to have the following structure,

Ck
0

~) .

0.0

A,k= "k A,k (6.5)A,0

A,'
A 1,1

Ak
2,0 2.1
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BO,t2
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,7 BO,ll
m m

BO,IO
m

BO,9
m

Figure 12: Labeling of control points ror the Catmull-Clark algorithm.

With

PI := 1/64, p, := 3/32, P3 := 9/16, q, := 1/16, q,:= 3/8, r:= 1/4 ,
(6,6)

the sub-matrices are given by

(ao.,. {3o". ,0". )"
2q, c" +q, q,(I;-wn) (6.7)Ao,o = qzok,O

TOk,O r(1 +wn)

qzok,o qt + q2W n q, q, qtWn 0 0

PZOk,O 2ptCn+P3 p,(1 +wn) PI W n p, PI 0

qlok,o qtWn + q2 q, 0 q. q, 0

PI Dk,a p,(1 +wn) P3 p, PI(I+wn) p, PI

e' ;\' ) 0 q, q,(I+wn) qtWn q, q, 0I,. 1,1

Ak ;\'
=

0 0 0r r r r',. ',I
0 q, q, q, q, q, q,

0 0 r r 0 r r

0 qlWn q, q, qtWn q, q,

0 rWn r r rWn 0 0

The eigenvalues 1/8,1/16,1/32,1/64 of the sub-matrix At! are n-fold eigenvalues of A.

Other non-zero eigenvalues come only from A~;o. For k = 0 we obtain the obligatory

22



eigenvalue '\0 = 1 and, letting I := 1 - 0' - fi,

(6.8)

which might be either both real or complex conjugate. For k f. 0, the non-zeros eigen­

values of AKo are

>.~ = (c",d 5 +V{c",d 9)(c",d 1)) /16

>.; = (c,,'k + 5 - V{c",k + 9){c",k + 1)) /16 ,

where c",k := cos(21rk/n). Let

>.:= >.: = >.~-I = (c" + 5 + V(c" + 9)(c" + 1)) /16,

then straightforward calculus shows that for all n

(6.9)

(6.10)

(6.11)

1 >>' > 1/4 > >.; > 1/8 ,

>. > >.~ > 1/4 ,

k=l, ,n-l

k = 2, ,n - 2.

(6.12)

(6.13)

Consequently, ,\ is dominant if 0', fi" are chosen such that

(6.14)

In particular, this inequality holds for the original weights of Catmull-Clark (6.2), as

can be verified by inspection. A characterization of feasible positive weights can be

found in [BS88]2. For computing the characteristic map, the eigenvector .(j; of A.1 is

partitioned into three blocks, ;j; = [t,bo, t,b1l t,b2] according to the special structure of Al
.

Then Al(f; = ,\-¢ is equivalent to

Now, -if; can be computed conveniently starting from

• _ T
,po := [1 +w", 16>' - 2c" - 6] ,

(6.15)

(6.16)

which solves the first eigenvector equation. Note that the characteristic map depends

only on n, and not on the particular choice of weights 0', fi" provided that (6.11) holds.

2Thc result in the reference is incorred for n ;::: 3 and certain fr, f3 yielding complex eigenvalues > " ~ , 2 .
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6.3 Verification

Corollary 4.1 is sufficient for verifying the algorithm. One proceeds as follows:

1. For given n ;::: 3, compute the dominant eigenvalue A according to (6.14) and the

corresponding eigenvector ~ according to (6.15).

2. Express the three patches of the segment '110 of the characteristic map in Bernstein­

Bezier form.

3. Compute the forward differences tJ. JL1 p, = 1, ... I 36, of Bezier coefficients corre­

sponding to the partial derivative with respect to v.

4. If all tJ.1J1 Ji = 1, ... ,36 are positive in both components, then by the convex hull

property of the Bernstein-Bezierform the assumptions of Corollary 4.1 are fulfilled

and the characteristic map is regular and injective.

Tills procedure can be run on a computer algebra system, but the resulting expressions

are rather length, and discussing them is not very instructive. A numerical treatment

is more convenient and yields equally reliable results, since only a finite number of

quantities has to be checked for sign. The findings are summarized on Figure 13. The

left and right hand side correspond to the two components of b.p.. The top row shows

the values of all t1p. for n = 3, ... , 20. The bottom row shows the minimum of the t1p.

on a double-logarithmic scale for n = 10, ... ,10,000, which should cover most cases of

practical relevance. The positivity of all differences is evident. By Corollary 4.1, this

proves smooth convergence of the Catmull-Clark algorithm provided that the inequality

(6.11) holds.
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