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ABSTRACT. We consider a mathematical SIL model for the spread of a directly transmitted infectious

disease in an age-structured population; taking into account the demographic process and the vertical

transmission of the disease. First we establish the mathematical well-posedness of the time evolution

problem by using the semigroup approach. Next we prove that the basic reproduction ratio R0 is

given as the spectral radius of a positive operator, and an endemic state exist if and only if the basic

reproduction ratio R0 is greater than unity, while the disease-free equilibrium is locally asymptotically

stable if R0 < 1. We also show that the endemic steady states are forwardly bifurcated from the

disease-free steady state when R0 cross the unity. Finally we examine the conditions for the local

stability of the endemic steady states.

RÉSUMÉ. Nous considérons ici un modèle mathématique SIL de transmission directe de la maladie

dans une population hôte structurée en âge; prenant en compte les processus démographiques et

la transmission verticale de la maladie. Premièrement, nous étudions le caractère bien posé du pro-

blème par la théorie des semi-groupes. Ensuite, nous montrons que le taux de reproduction de base

R0 est le rayon spectral d’un opérateur positif; et un équilibre endémique existe si et seulement si R0

est supérieur à l’unité, tandis que l’équilibre sans maladie est localement asymptotiquement stable si

R0 < 1. Nous établissons aussi l’existence d’une bifurcation de l’équilibre sans maladie quand R0

passe par l’unité. Enfin, nous donnons des conditions nécessaires pour la stabilité locale de l’équilibre

endémique.
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1. Introduction

During the earliest centuries mankind faces ever more challenging environmental and

public health problems, such as emergence of new diseases or the emergence of disease

into new regions, and the resurgence diseases (tuberculosis, malaria HIV/AIDS, HBV).

Mathematical models of populations incorporating age structure, or other structuring of

individuals with continuously varing properties, have an extensive history.

The earliest models of age structured populations, due to Sharpe and Lotka in 1911

[37] and McKendrick in 1926 [39] established a foundation for a partial differential equa-

tions approach to modeling continuum age structure in an evolving population. At this

early stage of development, the stabilization of age structure in models with linear mor-

tality and fertility processes was recognized, although not rigorously established [35, 36].

Rigorous analysis of these linear models was accomplished later in 1941 by Feller [16],

in 1963 by Bellman and Cooke [4], and others, using the methods of Volterra integral

equations and Laplace transforms. Many applications of this theory have been devel-

oped in demography [9, 27, 33, 43], in biology [1, 2, 3, 10, 24, 48] and in epidemiology

[7, 8, 17, 18, 22, 32, 13, 12].

The increasingly complex mathematical issues involved in nonlinearities in age struc-

tured models led to the development of new technologies, and one of the most useful of

these has been the method of semi-groups of linear and nonlinear operators in Banach

spaces. Structured population models distinguish individual from another according to

characteristics such as age, size, location, status and movement. The goal of structured

population is to understand how these characteristics affect the dynamics of these models

and thus the outcomes and consequence of the biological and epidemiological processes.

In this paper we consider a mathematical S-I-L (Susceptibles-Infected-Lost of sight)

model with demographics process, for the spread of a directly transmitted infectious dis-

ease in an age-structured population. By infected (I) we mean infectious taking a chemo-

prophylaxis in a care center. And by loss of sight (L), we mean infectious that begun their

effective therapy in the hospital and never return to the hospital for the spuctrum exami-

nations for many reasons such as long duration of treatment regimen, poverty, mentality,

etc... The lost of sight class was previously consider in some papers as [6, 15].

In this paper, the infective agent can be transmitted not only horizontally but also

vertically from infected mothers to their newborns (perinatal transmission). There are im-

portant infective agents such as HBV (hepatitis B virus), HIV (human immunodeficiency

virus) and HTLV (human T-cell leukemia virus) that can be vertically transmitted. Com-

pared with the pure horizontal transmission case, so far we have not yet so many results

for vertically diseases in structured populations. In Africa, the vertical transmission of the

disease like HIV is in progression nowadays.

Worldwide, 1% of pregnant women are HIV-positive. However, sub-Saharan Africa

where 95% of HIV positive women live carries the vast majority of this burden [46].

Without treatment, approximately 25%-50% of HIV-positive mothers will transmit the

virus to their newborns during pregnancy, childbirth, or breastfeeding [5]. In 2007, over 2

million children worldwide were living with HIV/AIDS, with the overwhelming majority

again in sub-Saharan Africa [46]. Approximately 400,000 infants contract HIV from their

mother every year, which is about 15% of the total global HIV incidence [41, 50]. The
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rate of pediatric HIV infections in sub-Saharan Africa remains unacceptably high, with

over 1,000 newborns infected with HIV per day [25].

Large simple trials which aim to study therapeutic interventions and epidemiological

associations of human immunodeficiency virus (HIV) infection, including perinatal trans-

mission, in Africa may have substantial rates of lost of sight. A better understanding of

the characteristics and the impact of women and children lost of sight is needed. Accord-

ing to Ioannidis et al. [30], for the impact of lost of sight and vertical transmission cohort

in Malawi, several predictors of lost of sight were identified in this large HIV perinatal

cohort. Lost of sights can impact the observed transmission rate and the risk associations

in different studies. They (Ioannidis et al.) also focus that the HIV infection status could

not be determine for 36.9% of infant born to HIV-infected mothers; 6.7% with missing

status because of various sample problems and 30.3% because they never returned to the

clinic (Lost of sight).

Firstly, the epidemic system is formulated. Then, we will describe the semigroup

approach to the time evolution problem of the abstract epidemic system. Next we consider

the disease invasion process to calculate the basic reproduction ratio R0, then, we prove

that the disease-free steady state is locally asymptotically stable if R0 < 1. Subsequently,

we show that at least one endemic steady state exists if the basic reproduction ratio R0

is greater than unity. By introducing a bifurcation parameter, we show that the endemic

steady state is forwardly bifurcated from the disease-free steady state when the basic

reproduction ratio crosses unity. Finally, we consider the conditions for the local stability

of the endemic steady states.

2. The model

In this section, we formulate a model for the spread of the disease in a host population.

We consider a host population divided into three subpopulations; the susceptible class, the

infective class (those who are infectious but taking a chemoprophylaxis) and the lost of

sight class (those who are infectious but not on a chemoprophylaxis) denoted respectively

by S(t, a), I(t, a) and L(t, a) at time t and at specific age a. Let β(., .) be the contact

rate between susceptible individuals and infectious individuals. Namely, β(a, σ) is the

transmission rate from the infectious individuals aged σ to the susceptible individuals

aged a. All recruitment is into the susceptible class and occur at a specific rate Λ(a). The

rate of non-disease related death is µ(a). Infected and lost of sight have additional death

rates due to the disease d1(a) and d2(a) respectively. The transmission of the disease

occurs following adequate contacts between a susceptible and infectious or lost of sight.

r(a) denoted the proportion of individuals receiving an effective therapy in a care center

and φ(a) the fraction of them who after begun their treatment will not return in the hospital

for the examination. After some time, some of them can return in the hospital at specific

rate γ(a).
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The basic system (age-structured SIL epidemic model) with vertical transmission can

be formulated as follows by equation (1).





(
∂

∂t
+

∂

∂a

)
S(t, a) = Λ(a)− (λ(t, a) + µ(a))S(t, a),

(
∂

∂t
+

∂

∂a

)
I(t, a) = λ(t, a)S(t, a)− (µ(a) + d1(a)

+r(a)φ(a))I(t, a) + γ(a)L(t, a),(
∂

∂t
+

∂

∂a

)
L(t, a) = r(a)φ(a)I(t, a) − (µ(a) + d2(a)

+γ(a))L(t, a).

(1)

For the boundary conditions of model (1), we consider that pregnant lost of sight

women generally return to the clinic for the birth of they new born, therefore, we can

assume that there is not lost of sight new born (i.e. L(t, 0) = 0). Due to the above

consideration, the initial boundary conditions of model (1) is given by:





S(t, 0) =
∫ a+

0
f(a)[S(t, a) + (1− p)(I(t, a) + L(t, a))]da,

I(t, 0) = p
∫ a+

0 f(a)(I(t, a) + L(t, a))da,
L(t, 0) = 0,
S(0, a) = ϕS(a); a ∈ (0, a+),
I(0, a) = ϕI(a); a ∈ (0, a+),
L(0, a) = ϕL(a); a ∈ (0, a+),

(2)

and where f(a) is the age-specific fertility rate, p is the proportion of newborns produced

from infected individuals who are vertically infected and a+ < ∞ is the upper bound of

age. The force of infection λ(t, a) is given by

λ(t, a) =

∫ a+

0

β(a, σ)(I(t, σ) + L(t, σ))dσ.

where β(a, s) is the transmission rate between the susceptible individuals aged a and in-

fectious or lost of sight individuals aged s. a+ <∞ is the upper bound of age.

Let us note that in the literature the transmission rate β(a, σ) can take many forms:

β(a, σ) = β = constant (Dietz 1975 [11]; Greenhalgh 1987 [19]), β(a, σ) = g(a)
(Gripenberg 1983 [20]; Webb 1985 [49]), β(a, σ) = g(a)h(σ) (Dietz and Schenzle 1985

[14]; Greenhalgh 1988 [23]; Castillo-Chavez and al. 1989 [8]).

In the following, we consider systems (1)-(2) under following assumption:

Assumption 1. We assume that β ∈ L∞[(0, a+,R+) × (0, a+,R+)] and functions

f, d1, d2, γ, Λ, µ belong to L∞(0, a+,R+).

3. Existence of flow

The aim of this section is to derive premininary remarks on (1)-(2). These results

include the existence of the unique maximal bounded semiflow associated to this system.
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3.1. Abstract formulation

Let X be the space defined as

X := L1(0, a+,R3)

with the norm

||ϕ||X =

3∑

i=1

||ϕi||L1 ;

where ϕ = (ϕ1, ϕ2, ϕ3)
T ∈ X . Let us note X+ the positive cone of X .

It is well known that (X, ||.||X) is a Banach space. Let A : D(A) ⊂ X → X be a

operator defined by

Aϕ = −ϕ′ − µϕ, (3)

with the domain

D(A) =



ϕ = (ϕ1, ϕ2, ϕ3) ∈W 1,1(0, a+,R3) and




ϕ1(0)
ϕ2(0)
ϕ3(0)


 =




∫ a+

0
f(a)[ϕ1(a) + (1− p)(ϕ2(a) + ϕ3(a))]da

p
∫ a+

0
f(a)(ϕ2(a) + ϕ3(a))da

0








;

the function F : D(A) → X defined by

F




ϕ1

ϕ2

ϕ3


 =




Λ− λ[., ϕ]ϕ1

λ[., ϕ]ϕ1 − (d1 + rφ)ϕ2 + γϕ3

rφϕ2 − (d2 + γ)ϕ3


 ,

λ[., ϕ] ∈ L1(0, a+,R) is a function such that

λ[a, ϕ] =

∫ a+

0

β(a, σ)[ϕ2(σ) + ϕ3(σ)]dσ

and W 1,1(0, a+,R) is a usual Sobolev space.

Let us first derive the following lemma on operator A.

Lemma 1. 1) The operator A is generator of a C0-semigroup of linear bounded

operators {T (t)}t≥0 such that

T (t)ϕ(a) =

{
ϕ(a− t) if a− t ≥ 0
C(t− a) if a− t ≤ 0

for t ≤ a+

and T (t)ϕ(a) = 0R3 for t > a+; where C(t) = (C1(t), C2(t), 0) ∈ R3 is the unique

solution of the following Volterra integral equation

C(t) = G(t) + Φ(t, C),

with

G(t) =

(∫ a+

t

f(s)(ϕ1(s− t) + (1− p)ϕ2(s− t) + ϕ3(s− t))ds ; p

∫ a+

t

f(s)ϕ2(s− t)ds ; 0

)
,

Φ(t, C) =

(∫ t

0

f(s)(C1(t− s) + (1− p)C2(t− s))ds ; p

∫ t

0

f(s)C2(t− s)ds ; 0

)
.
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2) The domain D(A) of operator A is dense in X and A is a closed operator.

Proof. The proof of this result is rather standard. Standard methodologies apply to pro-

vide item 1 (see Pazy 1983 [40]). Item 2 is a direct consequence of the fact that the

operatorA is generator of a C0-semigroup of linear bounded operators (see Corollary 2.5

in Pazy 1983 [40]).

Therefore, one obtains that System (1)-(2) re-writes as the following densely defined

Cauchy problem 



dϕ(t)

dt
= Aϕ(t) + F (ϕ(t)),

ϕ(0) = (ϕS , ϕI , ϕL)
T .

(4)

3.2. Existence and uniqueness of solutions

We set X0 := D(A) andX0+ the positive cone ofX0. In general we can not solve (4)

in this strong formulation, if u0 ∈ X0+ \D(A). So, for arbitrary ϕ0 ∈ X0+ , we solve it

in the integrated form:

ϕ(t) = ϕ0 +A

∫ t

0

ϕ(s)ds+

∫ t

0

F (ϕ(s))ds ; t > 0. (5)

A solution of (5) is called a mild solution of the initial value problem (4). So, in the

following, we are looking for mild solution of abstract Cauchy-problem (4).

We can easily find that:

Lemma 2. On Assumption 1, the nonlinear operator F from X to X is continuous and

locally Lipschitz.

Using Lemmas 1 and 2 the main results of this section reads as (see Theorem 1.4 in

Pazy 1983[40]).

Theorem 1. Recalling Assumption 1 and let Lemmas 1 and 2 be satisfied. If ϕ0 ∈
X0+ := L1(0, a+,R3

+). Then there exists a unique bounded continuous solution ϕ to

the integrated problem (5) defined on [0,+∞) with values in X0+.

4. Equilibria

4.1. Disease-Free Equilibrium (DFE)

The following proposition gives the characteristics of the disease-free equilibrium

(DFE) of system (1)-(2).

Let us introduce l(a) = exp
(
−
∫ a

0
µ(s)ds

)
the average lifetime of individuals at age

a.
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Proposition 1. Let

∫ a+

0

f(a)l(a)da < 1 be satisfied. Then, system (1)-(2) has a unique

Disease Free Equilibrium (DFE), ϕ0 = (S0, 0L1 , 0L1), where S0 is given by




S0(0) =
1

1−
∫ a+

0 f(a)l(a)da

∫ a+

0

f(a)l(a)

(∫ a

0

Λ(s)

l(s)
ds

)
da,

S0(a) = l(a)

[
S0(0) +

∫ a

0

Λ(s)

l(s)
ds

]
for 0 ≤ a ≤ a+.

(6)

Proof. : ϕ is an equilibrium of problem (4) if and only if

ϕ ∈ D(A) and Aϕ+ F (ϕ) = 0X . (7)

For the DFE we have ϕ2 = ϕ3 ≡ 0L1 . Hence λ[a, ϕ] ≡ 0L1 . From where the result

follows using straightforward computations.

4.2. Endemic equilibrium (EE)

ϕ is an endemic equilibrium of (4) if and only if (7) is satisfied. That is,

ϕ1(a) = ϕ1(0)l(a) exp

(
−

∫ a

0

λ[σ, ϕ]dσ

)

+

∫ a

0

l(a)

l(s)
exp

(
−

∫ a

s

λ[σ, ϕ]dσ

)
Λ(s)ds; (8)

ϕ2(a) =

∫ a

0

l(a)Γ1(a)

l(s)Γ1(s)
exp

(
−

∫ a

s

r(σ)φ(σ)dσ

)
[γ(s)ϕ3(s) + λ[s, ϕ]ϕ1(s)] ds

+ϕ2(0)l(a)Γ1(a) exp

(
−

∫ a

0

r(σ)φ(σ)dσ

)
; (9)

ϕ3(a) = ϕ3(0)l(a)Γ2(a) exp

(
−

∫ a

0

γ(σ)dσ

)

+

∫ a

0

l(a)Γ2(a)

l(s)Γ2(s)
exp

(
−

∫ a

s

γ(σ)dσ

)
r(s)φ(s)ϕ2(s)ds; (10)

ϕ1(0) =

∫ a+

0

f(a)[ϕ1(a) + (1− p)(ϕ2(a) + ϕ3(a))]da; (11)

ϕ2(0) = p

∫ a+

0

f(a)(ϕ2(a) + ϕ3(a))da; (12)

ϕ3(0) = 0. (13)

where
Γ1(a) = exp

(
−
∫ a

0 (d1(s) + r(s)φ(s))ds
)
;

Γ2(a) = exp
(
−
∫ a

0
(d2(s) + γ(s))ds

)
.

Let us set λ(s) = λ[s, ϕ] for s ∈ [0, a+). Equation (8) re-write as

ϕ1(a) = ϕ1(0)A11(λ, a) + u1(λ, a). (14)
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Equations (8) and (9) give

ϕ2(a) = ϕ1(0)A21(λ, a) + ϕ2(0)A22(a) + u2(λ, a). (15)

Equations (10), (13) and (14) give

ϕ3(a) = ϕ1(0)A31(λ, a) + ϕ2(0)A32(λ, a) + u3(λ, a); (16)

with

A11(λ, a) = l(a) exp

(
−

∫ a

0

λ(σ)dσ

)
;

A21(λ, a) =

∫ a

0

χ21(a, s)λ(s) exp

(
−

∫ s

0

λ(σ)dσ

)
ds;

A22(a) = l(a)Γ1(a);

A31(λ, a) =

∫ a

0

χ31(a, s)λ(s) exp

(
−

∫ s

0

λ(σ)dσ

)
ds;

A32(a) = l(a)Γ2(a)

∫ a

0

Γ1(s)

Γ2(s)
r(s)φ(s)ds;

u1(λ, a) =

∫ a

0

l(a)

l(s)
Λ(s) exp

(
−

∫ a

s

λ(σ)dσ

)
ds;

u2(λ, a) =

∫ a

0

l(a)

l(s)
Λ(s)

∫ a

s

Γ1(a)

Γ1(η)
λ(η) exp

(
−

∫ η

s

λ(σ)dσ

)
ds;

u3(λ, a) =

∫ a

0

l(a)Γ2(a)

l(s)Γ2(s)
r(s)φ(s)u2(λ, s)ds

+

∫ a

0

l(a)Γ1(a)

l(s)Γ1(s)
exp

(
−

∫ a

s

r(σ)φ(σ)dσ

)
γ(s)ϕ3(s)ds;

and

χ21(a, s) = l(a)
Γ1(a)

Γ1(s)
; χ31(a, s) = l(a)

∫ a

s

Γ2(a)Γ1(η)

Γ2(η)Γ1(s)
r(η)φ(η)dη.

From equations (11) and (12), we respectively deduce that

(
1−

∫ a+

0

f(a)[A11(λ, a) + (1− p)(A21(λ, a) +A31(λ, a))]da

)
ϕ1(0)

− (1− p)ϕ2(0)

∫ a+

0

f(a)[A22(a) +A32(a)]da = v1(λ);

(17)

and

pϕ1(0)

∫ a+

0

f(a)[A21(λ, a) +A31(λ, a)]da

+ ϕ2(0)

(
p

∫ a+

0

f(a)[A22(a) +A32(a)]da− 1

)
= −v2(λ);

(18)
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where

v1(λ) =

∫ a+

0

f(a)[u1(λ, a) + (1− p)(u2(λ, a) + u3(λ, a))]da;

v2(λ) = p

∫ a+

0

f(a)[u2(λ, a) + u3(λ, a)]da.

Therefore, we find that ϕ1(0) =
∆1(λ)

∆(λ)
and ϕ2(0) =

∆2(λ)

∆(λ)
; with

∆(λ) = (1− p)p

∫ a+

0

f(a)[A22(a) +A32(a)]da×

∫ a+

0

f(a)[A21(λ, a) +A31(λ, a)]da

+

(
1−

∫ a+

0

f(a)[A11(λ, a) + (1− p)(A21(λ, a) +A31(λ, a))]da

)
×

(
p

∫ a+

0

f(a)[A22(a) +A32(a)]da− 1

)
;

∆1(λ) = v1(λ)

(
p

∫ a+

0

f(a)[A22(a) +A32(a)]da− 1

)

− (1 − p)v2(λ)

∫ a+

0

f(a)[A22(a) +A32(a)]da;

∆2(λ) = v2(λ)

(∫ a+

0

f(a)[A11(λ, a) + (1− p)(A21(λ, a) +A31(λ, a))]da − 1

)

− pv1(λ)

∫ a+

0

f(a)[A21(λ, a) +A31(λ, a)]da.

Equations (15) and (16) give





ϕ2(a) =
∆1(λ)

∆(λ)
A21(λ, a) +

∆2(λ)

∆(λ)
A22(a) + u2(λ, a)

ϕ3(a) =
∆1(λ)

∆(λ)
A31(λ, a) +

∆2(λ)

∆(λ)
A32(a) + u3(λ, a)

(19)

Since λ(a) =
∫ a+

0
β(a, s)(ϕ2(s) + ϕ3(s))ds; then we have

λ(a) = H(λ)(a); (20)

where H is the operator defined from L1(0, a+,R) into itself by

H(ϕ)(a) =

∫ a+

0

β(a, s)

[
∆1(ϕ)

∆(ϕ)
(A21(ϕ, s) +A31(ϕ, s)) + u2(ϕ, s) + u3(ϕ, s)

+
∆2(ϕ)

∆(ϕ)
(A22(s) +A32(s))

]
ds. (21)
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Hence, system (1)-(2) have an endemic equilibrium if and only if the fixed point equation

(20) has at least one positive solution.

Now let us introduce the following technical assumptions on the transmission rate β
as in Inaba [26, 28, 29]:

Assumption 2. 1) β ∈ L1
+(R×R) such that β(a, s) = 0 for all (a, s) /∈ [o, a+]×

[0, a+].

2) lim
h→0

∫ +∞

−∞
|β(a+ h, ξ)− β(a, ξ)|da = 0 for ξ ∈ R.

3) It exists a function ε such that ε(s) > 0 for s ∈ (0, a+) and β(a, s) > ε(s) for

all (a, s) ∈ (0, a+)2.

On the above assumption, some properties of operator H are given by the following

lemma.

Lemma 3. Let Assumption 2 be satisfied.

(i) H is a positive, continu operator. There exist a closed, bounded and convex subset

D ⊂ L1
+(0, a

+,R) such that H(D) ⊂ D.

(ii) Operator H has a Fréchet derivative H0 at the point ϕ ≡ 0 defined by (22) and

H0 := H ′(0) is a positive, compact and nonsupporting operator.

Proof. (i) The positivity and the continuity of operatorH are obvious. Letϕ ∈ L1(0, a+,R+),
then

A21(ϕ, a) ≤ 1; A31(ϕ, a) ≤

∫ a

0

l(a)Γ2(a)

l(s)Γ2(s)
r(s)φ(s)ds := Ã31(a);

u1(ϕ, a) ≤

∫ a

0

l(a)

l(s)
Λ(s)ds; u2(ϕ, a) ≤ a||Λ||∞ and

u3(ϕ, a) ≤ ||Λ||∞Ã31(a) + sup
s∈[0,a]

γ(s)||ϕ||L1 .

Since
∆1(ϕ)
∆(ϕ) = ϕ1(0);

∆2(ϕ)
∆(ϕ) = ϕ2(0) and the flow of system (1)-(2) is bounded (The-

orem 1), we can find MΩ > 0 such that |ϕ1(0)| ≤ MΩ and |ϕ2(0)| ≤ MΩ. Therefore,

||H(ϕ)||L1 ≤M ; with

M = ||β||∞

∫ a+

0

[
MΩ(1 +A22(s) + (Ã31(s) + A32(s)) + sup

s∈[0,a]

γ(s)) + ||Λ||∞(Ã31(s) + s)

]
ds.

Setting D = B+(0,M) with B+(0,M) := {ϕ ∈ L1(0, a+,R+) : ||ϕ||L1 ≤M}. Hence

H(D) ⊂ D. This end the proof of item (i).

(ii) We find that

H0(ψ)(a) =

∫ a+

0

β(a, s)

[
∆1(0)

∆(0)
(DA21(0, s)(ψ) +DA31(0, s)(ψ)) +Du2(0, s)(ψ)

+Du3(0, s)(ψ) +
D∆2(0)(ψ)

∆(0)
(A22(s) +A32(s))

]
ds.
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where Du denotes the derivative of the function u and

Du2(0, a)(ψ) =

∫ a

0

χ2(a, s)ψ(s)ds; Du3(0, a)(ψ) =

∫ a

0

χ3(a, s)ψ(s)ds;

DA21(0, a)(ψ) =

∫ a

0

χ21(a, s)ψ(s)ds; DA31(0, a)(ψ) =

∫ a

0

χ31(a, s)ψ(s)ds;

D∆2(0)(ψ) = p

∫ a+

0

χ4(a)ψ(a)da.

with

χ21(a, s) =
l(a)Γ1(a)

l(s)Γ1(s)
exp

(
−

∫ a

s

r(σ)φ(σ)dσ

)
l(s)

χ31(a, s) =

∫ a

s

l(a)Γ2(a)

l(η)Γ2(η)
r(η)φ(η)χ21(η, s)dη

χ2(a, s) = χ21(a, s)

∫ s

0

Λ(η)

l(η)
dη; χ3(a, s) = χ31(a, s)

∫ s

0

Λ(η)

l(η)
dη;

χ4(a) =

[
S0(a)

l(a)

∫ a+

0

f(σ)l(σ)dσ − S0(0)

]∫ a+

a

f(s) [χ21(s, a) + χ31(s, a)] ds.

Hence, operator H0 read as a kernel operator:

H0(ψ)(a) =

∫ a+

0

χ(a, s)ψ(s)ds; (22)

where the kernel χ(a, s) is defined by

χ(a, s) =
S0(s)

l(s)

∫ a+

s

β(a, η) (χ21(η, s) + χ31(η, s)) dη

+
pχ4(s)

∆(0)

∫ a+

0

β(a, σ)(A22(σ) +A32(σ))dσ. (23)

The positivity of H0 is obvious. Let us show the compactness of the operator H0 on

Assumption 2. Let ψ ∈ L1 and ǫ > 0. From Assumption 2; there exists ρ = ρ(ǫ) > 0

such that, for |h| < ρ we have
∫ a+

0
|β(a + h, ξ) − β(a, ξ)|da < ǫ. Is therefore h ∈ R

such that |h| < ρ. ||τhH0(ψ)−H0(ψ)||L1 =

∫ a+

0

|H0(ψ)(a + h)−H0(ψ)(a)|da. It is

easily checked that

|H0(ψ)(a + h)−H0(ψ)(a)| ≤ ||ψ||L1

∫ a+

0

|β(a+ h, s)− β(a, s)|C1(s)ds;

where

C1(a) =

(
||Λ||∞ +

∆1(0)

∆(0)

)(
1 +

∫ a

0

l(a)Γ2(a)

l(s)Γ2(s)
r(s)φ(s)ds

)

+
||Λ||∞
∆(0)

(A22(a) +A32(a))

∫ a+

0

f(a)

(
1 +

∫ a

0

l(a)Γ2(a)

l(s)Γ2(s)
r(s)φ(s)ds

)
da.
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Since
(
|h| < ρ =⇒

∫ a+

0
|β(a+ h, s)− β(a, s)|da < ǫ

)
, it comes that

||τhH0(ψ)−H0(ψ)||L1 ≤ ǫ

(∫ a+

0

C1(a)da

)
||ψ||L1 .

Let B a bounded subset of L1 such that ψ ∈ B. Then

||τhH0(ψ)−H0(ψ)||L1 ≤ ǫ

(∫ a+

0

C1(a)da

)
× sup

ϕ∈B

{||ϕ||L1}.

Applying the Riesz-Fréchet-Kolmogorov theorem on H0(B) we conclude that H0(B) is

relatively compact. From where H0 si a compact operator.

Now, let us check that H0 is a nonsupporting operator. We define the operator F0 ∈
(L1(0, a+,R+))

∗ (dual space of L1(0, a+,R+)) by

〈F0;ψ〉 =

∫ a+

0

ε(s)[Du2(0, s)(ψ) + δ(s)Du3(0, s)]ds;

where ε is the positive function given by Assumption 2 and 〈F0;ψ〉 is the value of F0 ∈
(L1(0, a+,R+))

∗ at ψ ∈ L1(0, a+,R+). Then for ψ ∈ L1(0, a+,R+) we haveH0(ψ) ≥
〈F0;ψ〉 · e ( with e = 1 ∈ L1(0, a+,R+)). From whereHn+1

0 (ψ) ≥ 〈F0;ψ〉 〈F0; e〉
n · e ∀n ∈

N. Hence for all n ∈ N∗; F ∈ (L1(0, a+,R+))
∗ \ {0} and ψ ∈ L1(0, a+,R+) \ {0} we

have 〈F ;Hn
0 (ψ)〉 > 0. Therefore,H0 is a nonsupporting operator.

The main results of this section reads as

Theorem 2. Let Assumption 2 be satisfied. Let us note R0 = ρ(H0) the spectral radius

of operator H0.

1) If R0 ≤ 1, system (1)-(2) has a unique DFE defined by (6);

2) If R0 > 1, in addition to the DFE, system (1)-(2) has at least one endemic

equilibrium.

Proof. The operator H always has λ ≡ 0 as fixed point. This corresponds to the perma-

nent DFE for system (1)-(2). For the rest, we are looking for the positive fixed point to the

operatorH . From Lemma 3 we know that there exists a closed, bounded and convex sub-

set D of L1(0, a+,R+) which is invariant by the operator H . Moreover, from Lemma 3,

H has a Fréchet derivativeH0 at the point 0 and H0 = DH(0) is a compact and nonsup-

porting operator. Therefore, there exists a unique positive eigenvector ψ0 corresponding

to the eigenvalueR0 = ρ(H0) of H0. Using the same arguments as for the Krasnoselskii

fixe point theorem [34], it comes that ifR0 = ρ(H0) > 1, then the operatorH has at least

one positive fixed point λ∗ ∈ L1(0, a+,R+) \ {0}, corresponding to the EE of system

(1)-(2).

Let us suppose that R0 = ρ(H0) ≤ 1. If the operatorH has a positive fixe point λ∗ ∈
L1(0, a+,R+)\{0} then λ∗ = H(λ∗). Let us notice thatH−H0 ∈ L1(0, a+,R+)\{0};

hence λ∗ ≤ H0(λ
∗). Let F0 ∈ (L1(0, a+,R+))

∗ \ {0} be the positive eigenfunctional

corresponding to the eigenvalueR0 = ρ(H0) of H0 (Sawashima [44]). Therefore

0 ≤ 〈F0;H0(λ
∗)− λ∗〉 = 〈F0, ;H0(λ

∗)〉 − 〈F0;λ
∗〉 ;

= ρ(H0) 〈F0;λ
∗〉 − 〈F0;λ

∗〉 ;

= (ρ(H0)− 1) 〈F0;λ
∗〉 .
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From where (ρ(H0) − 1) 〈F0;λ
∗〉 ≥ 0. Since 〈F0;λ

∗〉 > 0, it follows that ρ(H0) ≥ 1;

which is a contradiction.

5. Stability analysis for equilibrium

In order to investigate the local stability of the equilibrium solutions (S∗(a); I∗(a);L∗(a))
we rewrite (1)-(2) into the equation for small perturbations. Let

(S(t, a), I(t, a), L(t, a)) = (S∗(a), I∗(a), L∗(a)) + (x(t, a), y(t, a), z(t, a)).

Then from system (1) we have

(
∂

∂t
+

∂

∂a

)
x(t, a) = −λ(t, a)(S∗(a) + x(t, a))

−(µ(a) + λ∗(a))x(t, a); (24)
(
∂

∂t
+

∂

∂a

)
y(t, a) = λ(t, a)(x(t, a) + S∗(a)) + λ∗(a)x(t, a)

−(µ(a) + d1(a) + r(a)φ(a))y(t, a); (25)
(
∂

∂t
+

∂

∂a

)
z(t, a) = r(a)φ(a)y(t, a) − (µ(a) + d2(a))z(t, a); (26)

and from (2) we also have





x(t, 0) =
∫ a+

0
f(a)[x(t, a) + (1− p)(y(t, a) + z(t, a))]da;

y(t, 0) = p
∫ a+

0
f(a)(y(t, a) + z(t, a))da;

z(t, 0) = 0;

(27)

with λ(a, t) =

∫ a+

0

β(a, s)(y(t, s) + z(t, s))ds and λ∗(a) =

∫ a+

0

β(a, s)(I∗(s) +

L∗(s))ds.
Let us note u(t) = (x(t), y(t), z(t))T . Then from equations (24), (25) and (26) we have

d

dt
u(t) = Au(t) +G(u(t)); (28)

where A is the operator defined by (3). The nonlinear term G is defined by

G(u) =




−P(u2, u3)(u1 + S∗)− (λ∗ + µ)u1

P(u2, u3)(u1 + S∗) + λ∗u1 − (µ+ d1 + rφ)u2
rφu2 − (µ+ d2)u3


 ;

and P is linear operator defined on L1 × L1 by

P(u2, u3)(a) =

∫ a+

0

β(a, s)(u2(s) + u3(s))ds. (29)
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The linearized equation of (28) around u = 0 is given by

d

dt
u(t) = (A+ C)u(t); (30)

where the linear operator C is the Fréchet derivative of G(u) at u = 0 and it is given by

C(u) =




−P(u2, u3)S
∗ − (λ∗ + µ)u1

P(u2, u3)S
∗ + λ∗u1 − (µ+ d1 + rφ)u2
rφu2 − (µ+ d2)u3




Now let us consider the resolvent equation for Â+ C:

(z − (A+ C))ψ = ϑ; ψ ∈ D(A), ϑ ∈ X, z ∈ C. (31)

Applying the variation of constant formula to (31) we obtain the following equations:

ψ1(a) = Π(a)l(a)e−za

[
ψ1(0) +

∫ a

0

(T11(s)ϑ1(s)− T12(s)P(ψ1, ψ2)(s))ds

]
;(32)

ψ2(a) =

[
ψ2(0) +

∫ a

0

ezs

Γ1(s)l(s)
(ϑ2(s) + λ∗(s)ψ1(s) + P(ψ1, ψ2)(s)S

∗(s))ds

]

×Γ1(a)l(a)e
−za; (33)

ψ3(a) = Γ2(a)l(a)e
−za

[
ψ3(0) +

∫ a

0

ezs

Γ2(s)l(s)
(ϑ3(s) + r(s)φ(s)ψ2(s))ds

]
.(34)

with Π(a) = exp

(
−

∫ a

0

λ∗(σ)dσ

)
; T11(s) =

ezs

Π(s)l(s)
and T12(s) = S∗(s)T11(s).

Equations (32)-(33) and (35)-(34) respectively gives

ψ2(a) = Γ1(a)l(a)e
−za

[
ψ2(0) + T21(a)ψ1(0) +

∫ a

0

T23(z, a, s)P(ψ1, ψ2)(s))ds

+

∫ a

0

T24(z, a, s)ϑ1(s)ds+

∫ a

0

T25(z, s)ϑ2(s)ds

]
(35)

and

ψ3(a) = Γ2(a)l(a)e
−za

[
T32(a)ψ2(0) + T31(a)ψ1(0) + ψ3(0) +

∫ a

0

T33(z, a, s)P(ψ1, ψ2)(s))ds

+

∫ a

0

T34(z, a, s)ϑ1(s)ds+

∫ a

0

T35(z, a, s)ϑ2(s)ds+

∫ a

0

T36(z, a, s)ϑ3(s)ds

]
;

(36)

where

T21(a) =

∫ a

0

Π(s)

Γ1(s)
λ∗(s)ds; T24(z, a, s) =

ezs

l(s)Π(s)

∫ a

s

Π(σ)

Γ1(σ)
λ∗(σ)dσ,

T23(z, a, s) =
ezs

l(s)
S∗(s)

(
1

Γ1(s)
−

1

Π(s)

∫ a

s

Π(σ)

Γ1(σ)
λ∗(σ)dσ

)
,
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T25(z, s) =
ezs

l(s)Γ1(s)
, T31(a) =

∫ a

0

Γ1(s)

Γ2(s)
r(s)φ(s)T21(s)ds,

T32(a) =

∫ a

0

Γ1(s)

Γ2(s)
r(s)φ(s)ds, T36(z, a) =

eza

Γ2(a)l(a)
,

T33(z, a, s) =

∫ a

s

Γ1(σ)

Γ2(σ)
r(σ)φ(σ)T23(z, σ, s)dσ,

T34(z, a, s) =

∫ a

s

Γ1(σ)

Γ2(σ)
r(σ)φ(σ)T24(z, σ, s)dσ,

T35(z, a, s) = T25(z, s)

∫ a

s

Γ1(σ)

Γ2(σ)
r(σ)φ(σ)dσ.

Since ψ ∈ D(A); it comes that

ψ1(0) =

∫ a+

0

f(a)[ψ1(a) + (1 − p)(ψ2(a) + ψ3(a))]da; (37)

ψ2(0) = p

∫ a+

0

f(a)(ψ2(a) + ψ3(a))da; (38)

ψ3(0) = 0. (39)

Equations (36)-(39); (32)-(35)-(40)-(37) and (35)-(40)-(38) respectively lead to

ψ3(a) = Γ2(a)l(a)e
−za

[
T32(a)ψ2(0) + T31(a)ψ1(0) + +

∫ a

0

T33(z, a, s)P(ψ1, ψ2)(s))ds

+

∫ a

0

T34(z, a, s)ϑ1(s)ds+

∫ a

0

T35(z, a, s)ϑ2(s)ds+

∫ a

0

T36(z, s)ϑ3(s)ds

]
;

(40)

(B11(z)− 1)ψ1(0) + (1− p)B12(z)ψ2(0) +

∫ a+

0

B13(z, a)P(ψ1, ψ2)(a)da

+

∫ a+

0

B14(z, a)ϑ1(a)da+

∫ a+

0

B15(z, a)ϑ2(a)da+

∫ a+

0

B16(z, a)ϑ3(a)da = 0;

(41)

and

pB21(z)ψ1(0) + (pB22(z)− 1)ψ2(0) + p

∫ a+

0

B23(z, a)P(ψ1, ψ2)(a)da

+ p

∫ a+

0

B24(z, a)ϑ1(a)da+ p

∫ a+

0

B25(z, a)ϑ2(a)da+ p

∫ a+

0

B26(z, a)ϑ3(a)da = 0;

(42)

with

B11(z) =

∫ a+

0

f(a)l(a)e−za [Π(a) + (1− p)(Γ1(a)T21(a) + Γ2(a)T31(a)] da;
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B12(z) =

∫ a+

0

f(a)l(a)e−za [Γ1(a) + Γ2(a)T32(a)] da;

B13(z, a) =

∫ a+

a

f(s)l(s)e−zs [−T12(a)Π(s) + (1− p)(Γ1(s)T23(z, s, a) + Γ2(s)T33(z, s, a))] ds;

B14(z, a) =

∫ a+

a

f(s)l(s)e−zs [T11(a)Π(s) + (1− p)(Γ1(s)T24(z, s, a) + Γ2(s)T34(z, s, a))] ds;

B15(z, a) =

∫ a+

a

f(s)l(s)e−zs [Γ1(s)T25(z, a) + (1− p)Γ2(s)T35(z, s, a)] ds;

B16(z, a) = (1 − p)

∫ a+

a

f(s)l(s)e−zsΓ2(s)T36(z, s)ds;

B21(z) =

∫ a+

0

f(a)l(a)e−za[Γ1(a)T21(a) + Γ2(a)T31(a)]da;

B22(z) =

∫ a+

0

f(a)l(a)e−za[Γ1(a) + Γ2(a)T32(a)]da;

B23(z, a) =

∫ a+

a

f(s)l(s)e−zs[Γ1(s)T23(z, s, a) + Γ2(s)T33(z, s, a)]ds;

B24(z, a) =

∫ a+

a

f(s)l(s)e−zs[Γ1(s)T24(z, s, a) + Γ2(s)T34(z, s, a)]ds;

B25(z, a) = T25(z, a)

∫ a+

a

f(s)l(s)e−zs[Γ1(s)T25(z, a) + Γ2(s)T35(z, s, a)]ds;

B26(z, a) = T36(z, a)

∫ a+

a

f(s)l(s)Γ2(s)e
−zsds.

System (41)-(42) is a linear system with respect to ψ1(0) and ψ2(0), hence

ψ1(0) =

∫ a+

0

det11(z, a)P(ψ1, ψ2)(a)da+

∫ a+

0

det12(z, a)ϑ1(a)da+

+

∫ a+

0

det13(z, a)ϑ2(a)da+

∫ a+

0

det14(z, a)ϑ3(a)da; (43)

ψ2(0) =

∫ a+

0

det21(z, a)P(ψ1, ψ2)(a)da+

∫ a+

0

det22(z, a)ϑ1(a)da

+

∫ a+

0

det23(z, a)ϑ2(a)da+

∫ a+

0

det24(z, a)ϑ3(a)da; (44)

where

det11(z, a) =
−1

det
[(pB22(z)− 1)B13(z, a)− p(1− p)B12(z)B23(z, a)] ;

det12(z, a) =
−1

det
[(pB22(z)− 1)B14(z, a)− p(1− p)B12(z)B24(z, a)] ;
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det13(z, a) =
−1

det
[(pB22(z)− 1)B15(z, a)− p(1− p)B12(z)B25(z, a)] ;

det14(z, a) =
−1

det
[(pB22(z)− 1)B16(z, a)− p(1− p)B12(z)B26(z, a)] ;

det21(z, a) =
p

det
[(B21(z)B13(z, a)− (B11(z)− 1)B23(z, a)] ;

det22(z, a) =
p

det
[(B21(z)B14(z, a)− (B11(z)− 1)B24(z, a)] ;

det23(z, a) =
p

det
[(B21(z)B15(z, a)− (B11(z)− 1)B25(z, a)] ;

det24(z, a) =
p

det
[(B21(z)B16(z, a)− (B11(z)− 1)B26(z, a)] ;

det = (B11(z)− 1)(pB22(z)− 1)− p(1− p)B21(z)B12(z).

From equations (29)-(35)-(40)-(43)-(44) it follows that

P(ψ2, ψ3)(η) = (I − Vz)
−1

[(Uzϑ1)(η) + (Wzϑ2)(η) + (Yzϑ3)(η)] ; (45)

where Vz , Uz , Wz and Yz are the Volterra operator define on L1(0, a+,R) into itself by

(Uzϕ)(a) =

∫ a+

0

Θz(η, a)ϕ(a)da; (Vzϕ)(a) =

∫ a+

0

χz(η, a)ϕ(a)da;

(Yzϕ)(a) =

∫ a+

0

Ez(η, a)ϕ(a)da; (Wzϕ)(a) =

∫ a+

0

Kz(η, a)ϕ(a)da;

(46)

where

χz(η, a) = Cte
1 (η)det11(z, a) + Cte

2 (η)det21(z, a)

+

∫ a+

a

β(η, s)l(s)e−zs[Γ1(s)T23(z, s, a) + Γ2(s)T33(z, s, a)]ds;
(47)

Θz(η, a) = Cte
1 (η)det12(z, a) + Cte

2 (η)det22(z, a)

+

∫ a+

a

β(η, s)l(s)e−zs[Γ1(s)T24(z, s, a) + Γ2(s)T34(z, s, a)]ds;

Kz(η, a) = Cte
1 (η)det13(z, a) + Cte

2 (η)det23(z, a)

+

∫ a+

a

β(η, s)l(s)e−zs[Γ1(s)T25(z, s, a) + Γ2(s)T35(z, s, a)]ds;

Ez(η, a) = Cte
1 (η)det14(z, a) + Cte

2 (η)det24(z, a) +

∫ a+

a

β(η, s)l(s)e−zsΓ2(s)T36(z, s, a)ds;
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and

Cte
1 (η) =

∫ a+

0

β(η, a)l(a)e−za[Γ1(a)T21(a) + Γ2(a)T31(a)]da;

Cte
2 (η) =

∫ a+

0

β(η, a)l(a)e−za[Γ1(a) + Γ2(a)T32(a)]da;

Let us recall some definitions related to a C0-semi-group {T (t)}t>0 on a Banach

space with infinitesimal generator R. The type or the growth bound of the semi-group

{T (t)}t>0 is the quantity:

ω0(R) :=
inf{α ∈ R : ∃M ≥ 1 such that ||T (t)|| ≤Meαt ∀t ≥ 0}

= lim
t→0

ln ||T (t)||

t
.

The spectral bound of the C0-semi-group {T (t)}t>0 is the quantity:

s(R) := sup{Reλ : λ ∈ σp(R)},

where σp(R) denote the point spectrum of R.

Wow, we conclude that

Lemma 4. Recalling Assumptions 1 and 2. Then

1) The perturbated operator A+ C has a compact resolvent and

σ(A+ C) = σp(A+ C) = {z ∈ C : 1 ∈ σp(Vz)};

where σ(A) and σp(A) denote the spectrum ofA and the point spectrum ofA respectively.

2) Let {U(t)}t≥0 be the C0-semigroup generated by A + C. Then {U(t)}, t ≥ 0
is eventually compact and

ω0(A+ C) = s(A+ C).

Proof. 1) From equations (32), (43) and (46) we find that

ψ1(a) = Π(a)l(a)e−zaψ1(0) + J1(ϑ1)(a) +K1(ϑ1, ϑ2)(a);

with

J1(ϑ1)(a) =

∫ a

0

Π(a)l(a)T11(s)e
−zsϑ1(s)ds;

K1(ϑ1, ϑ2)(a) =

∫ a

0

Π(a)l(a)T11(s)S
∗(s)e−zs(I − Vz)

−1

[(Uzϑ1)(s) + (Wzϑ2)(s) + (Yzϑ3)(s)]ds.

ψ1 is a compact operator if and only if J1 and K1 are compact. Since J1 is a Volterra

operator with continue kernel, we deduce that J1 is a compact operator on L1. Using the

same arguments as for the proof of the compactness of operator H0 (Lemma 3), we can
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show that the operators Uz , Wz and Yz are compact for all z ∈ C. Let us set Σ := {z ∈
C : 1 ∈ σp(Vz)}. Hence, if z ∈ C\Σ then,K1 is a compact operator fromL1×L1 to L1.

In the same way, we can show that ψ2(a) and ψ3(a) are represent by a compact operators.

Therefore, the resolvent of A+C is compact. From where σ(A+C) = σp(A+C) (see

Kato, p.187 [31]) i.e. C\Σ ⊂ ρ(A+C) and ρ(A+C) denotes the resolvent ofA+C. In

other words Σ ⊃ σ(A+C) = σp(A+C). Since Vz is a compact operator, we know that

σ(Vz) \ {0} = σp(Vz) \ {0}. If z ∈ Σ, then it exists ψz ∈ L1 \ {0} such that Vzψz = ψz .

Let us set

φ1(a) = Π(a)l(a)e−za

[∫ a+

0

det11(z, a)ψz(a)da−

∫ a

0

eza

Π(s)l(s)
ψz(s)ds

]
;

φ2(a) = Π(a)l(a)e−za

[∫ a+

0

det21(z, a)ψz(a)da−

∫ a

0

eza

Γ1(s)l(s)
(λ∗(s)φ1(s) + S∗(s)ψz(s))ds

]
;

φ3(a) = Γ2(a)l(a)e
−za

∫ a

0

eza

Γ2(s)l(s)
r(s)φ(s)ψ2(s)ds.

Then (φ1, φ2, φ3)
T is an eigenvector of A + C associated to the eigenvalue z. Hence,

z ∈ σ(A + C) = σp(A + C) i.e. Σ ⊂ σ(A + C) = σp(A + C). This end the proof of

item 1.

2) For ψ ∈ X , let us set

C1ψ = (−P (ψ2, ψ3)S
∗,P(ψ2, ψ3)S

∗, 0)T ;

C2ψ = (−(λ∗ + µ)ψ1, λ
∗ψ1 − (µ+ d1 + rφ)ψ2rφψ2 − (µ+ d2)ψ3)

T ; .

ThenC = C1+C2. The operatorA+C2 generated a nilpotentC0-semigroup {S2(t)}t≥0,

from where {S2(t)}t≥0 is norm continuous. Using Assumptions 1 and 2, we find that C1

is compact operator on X . From Theorem 1.30 of Nagel(1986) [42] it comes that C1 is

generator of a norm continuous C0-semigroup {S1(t)}t≥0. Therefore, S1(t) + S2(t) is

a C0-semigroup generated by A + C and it is norm continuous (Spectral theorem P.87

Nagel [42]).

Let us remark that if ω0(A + C) < 0, the equilibrium u = 0 of system (28) is

locally asymptotically stable (linearized stability, Webb 1985[49]). Therefore, to study

the stability of equilibrium states, we have to know the structure of the set Σ := {z ∈ C :
1 ∈ σp(Vz)}. Since ||Vz ||L1 → 0 if z → +∞, I − Vz is inversible for the large values of

Rez.

By theorem of Steinberg(1968)[47], the function z  (I − Vz)
−1 is meromorphic in

the complex domain, and hence the set Σ is a discrete set whose elements are poles of

(I − Vz)
−1 of finite order.

In the following, we will use elements of positive operator theory.

For the positivity of operator Vz we make the following assumption

Assumption 3.
∫ a+

0

(d1(σ) + r(σ)φ(σ))dσ ≤ exp

(
−

∫ a+

0

λ∗(σ)dσ

)
; (48)

where λ∗(σ) =
∫ a+

0 β(σ, η)(I∗(η) + L∗(η))dη.
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Lemma 5. Let Assumption 3 be satisfied. Then

1) The operator Vz , z ∈ R, is nonsupporting with respect to L1(0, a+,R+) and

lim
z−∞

ρ(Vz) = +∞ ; lim
z+∞

ρ(Vz) = 0.

2) There exists a unique z0 ∈ R ∩ Σ such that

ρ(Vz0) = 1 and





z0 > 0 if ρ(V0) > 1,
z0 = 0 if ρ(V0) = 1,
z0 < 0 if ρ(V0) < 1.

3) z0 > sup{Rez : z ∈ Σ \ {z0}}.

Proof. 1) Let z ∈ R. Unconditionally, Vz is a positive operator when λ∗(a) ≡ 0
(case of DFE). When λ∗(a) > 0, Vz is a positive operator once Γ1(s)T23(z, a, s) +
Γ2(s)T33(z, a, s) ≥ 0 for all 0 ≤ a ≤ s ≤ a+. To have the previous inequality, it suffices

that inequality (48) of Assumption 3 holds. We can checked that

Vzψ ≥ 〈fz, ψ〉 · e; (49)

where ψ ∈ L1(0, a+,R+); e ≡ 1 ∈ L1(0, a+,R+) and fz is a positive linear functional

defined by

< fz, ψ > = m

∫ a+

0

∫ a+

a

e−z(a−s) l(s)

l(a)

(
1

Γ1(a)
−

1

Π(a)

∫ s

a

Π(σ)

Γ1(σ)
λ∗(σ)dσ

)
dsda;

with m = inf(a,s)∈[0,a+)2 β(a, s). From (49), we show that V n+1
z ψ ≥ 〈fz, ψ〉 〈fz, e〉

n
· e

for all n ∈ N. Since fz is positive operator and e ∈ L1(0, a+,R+) \ {0}, we have

〈F, V n
z ψ〉 > 0 ∀ψ ∈ (L1(0, a+,R+))

∗ \ {0} ∀ψ ∈ L1(0, a+,R+) \ {0}. That is Vz is

nonsupporting.

Let Fz be the eigenfunctional of Vz that corresponds to the eigenvalue ρ(Vz). Taking

the duality pairing into inequality (49), we have

ρ(Vz) 〈Fz , ψ〉 ≥ 〈fz, ψ〉 〈Fz , e〉 .

Taking ψ = e and since Fz is positive, it follows that ρ(Vz) ≥ 〈fz, e〉 → +∞ when

z → −∞. From where lim
z−∞

ρ(Vz) = +∞. since ||Vz ||L1 → 0 when z → +∞, we

deduce that lim
z+∞

ρ(Vz) = 0. This end the proof of item 1.

2) Let h : R → C; z 7→ ρ(Vz). The kernel χz defined by (47) is strictly decreasing

with respect to z ∈ R. Let z1, z2 ∈ R such that z1 < z2, then χz1 < χz2 that is

Vz1 > Vz2 . Since Vz1 and Vz2 are compact and nonsupporting operators we deduce from

Marek(1970) [38] that ρ(Vz1) > ρ(Vz2). Therefore, the function h is strictly decreasing.

The limits of the function h(z) = ρ(Vz) at −∞ and +∞ give that there exist a unique

z0 ∈ R ∩ Σ such that ρ(Vz0) = 1. If ρ(V0) > 1 then h(0) > h(z0) i.e. z0 < 0 (strictly

decreasing of h) and the other cases is show in the same way. This end the proof of item

2.

3)Let z ∈ Σ, then there exists ψz ∈ L1 such that Vzψz = ψz . Let |ψz | be a function

defined by |ψz|(s) := |ψz(s)|. The definition of Vz leads to

|ψz| = |Vzψz | ≤ VRez |ψz|. (50)
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Let FRez be the positive eigenfunction associated to the eigenvalue ρ(VRez) of VRez .

From (50) we deduce that 〈FRez, |ψz|〉 ≤ 〈FRez , VRez|ψz |〉 = r(VRez) 〈FRez, |ψz |〉.
The positivity of FRez implies that r(VRez) ≥ 1 that is h(Rez) ≥ h(z0) i.e. z0 ≤ Rez.

To end the proof, let us show that: if z0 = Rez then z = z0.

We know that |ψz | ≤ VRez|ψz | = Vz0 |ψz |. Let us suppose that |ψz| < Vz0 |ψz |; taking the

pairing product with the dual functionF0 corresponding to the eigenvalue ρ(Vz0) = 1, one

has 〈F0, |ψz|〉 > 〈F0, |ψz|〉, which is a contradiction. Hence |ψz| = Vz0 |ψz|. Therefore

|ψz| = cψ0 where c is constant not equal to zero (Sawashima 1964 [44]) and ψ0 is the

eigenfunction corresponding to ρ(Vz0) = 1. So ψz(a) = cψ0(a)e
iα(a) for a reel function

α; moreover |Vzψz | = |ψz | = cψ0 = cVz0ψ0. Substituting ψz(a) = cψ0(a)e
iα(a) into

the equality |Vzψz| = cVz0ψ0 one has

∫ a+

0

∫ a+

a

β(η, s)l(s)e−z0(s−a)[Γ1(s)T̃23(s, a) + Γ2(s)T̃33(s, a)]ψ0(a)dsda =

∣∣∣∣∣

∫ a+

0

∫ a+

a

β(η, s)l(s)e−(z0+i(s−a)Imz)[Γ1(s)T̃23(s, a) + Γ2(s)T̃33(s, a)]e
iα(a)ψ0(a)dsda

∣∣∣∣∣ ;

(51)

with

T̃23(a, s) =
S∗(s)

l(s)

(
1

Γ1(s)
−

1

Π(s)

∫ a

s

Π(σ)

Γ1(σ)
λ∗(σ)dσ

)
;

T̃33(a, s) =

∫ a

s

Γ1(σ)

Γ2(σ)
r(σ)φ(σ)T̃23(a, σ)dσ.

Applying two times, Lemma 6.12 of Heijmans(1986) [21], to the relation (51) it comes

that (s − a)Imz + α(a) = b for all 0 ≤ a ≤ s ≤ a+ where b is a constant. From the

equality Vzψz = ψz one has eibVz0ψ0 = ψ0e
iα(a) i.e. b = α(a). From where Imz = 0,

that is z = z0.

From the above result, we can state the threshold criterion as follows:

Proposition 2. Recalling Assumption 3. Then equilibrium (S∗, I∗, L∗) is locally asymp-

totically stable if ρ(V0) < 1 and unstable if ρ(V0) > 1.

Proof. From Lemma 5 (items 2. and 3.), we conclude that: sup{Rez; 1 ∈ σp(Vz)} = z0.

Hence s(A + C) = sup{Rez; 1 ∈ σp(Vz)} < 0 if ρ(V0) < 1, and s(A + C) =
sup{Rez; 1 ∈ σp(Vz)} > 0 if ρ(V0) > 1.

In the following, let us note V 0
0 the operator V0 corresponding to the case λ∗(σ) ≡ 0

(DFE) and V ∗
0 the operator V0 corresponding to the case λ∗(σ) > 0 (EE). It is easily

checked that

χ0
0(a, s) = χ(a, s); (52)

where χ(a, s) is the kernel of the Volterra operatorH0 defined by (23).

Now, the main results for the local stability of our epidemic model reads as

Theorem 3. Let Assumptions 1 and 2 be satisfied. Let R0 := ρ(H0) be the spectral

radius of the operator H0 defined by (22). Then,
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1) If R0 = ρ(H0) < 1 then, the unique equilibrium of (1)-(2) (DFE) is locally

asymptotically stable.

2) If R0 = ρ(H0) > 1 then, the DFE is unstable.

3) If R0 = ρ(H0) > 1 then, in addition to the DFE system (1)-(2) has at least one

endemic equilibrium (EE). Moreover, if ρ(V ∗
0 ) < 1 and Assumption 3 holds, then the EE

is locally asymptotically stable.

Proof. For the DFE, one has λ∗(σ) ≡ 0. Hence, from (52) it comes that ρ(H0) =
ρ(V 0

0 ) := ρ(V0) (for λ∗ = 0). From Prop. 2 we deduce that: if ρ(H0) = ρ(V0) < 1, the

DFE is locally asymptotically stable; and unstable if ρ(H0) = ρ(V0) > 1. This end the

proof of items 1. and 2.

The case of EE is a direct consequence of Prop. 2.

Remark 1.

(♣) To emphasize the impact of vertical transmission on the spread of the disease, let us

observe that the next generation operator H0 can be rewrite as follows

H0(ψ)(a) =

∫ a+

0

χ♦(a, s)ψ(s)ds +

∫ a+

0

χ♦(p, a, s)ψ(s)ds;

where the kernels χ♦(., .) and χ♦(p, ., .) are

χ♦(a, s) =
S0(s)

l(s)

∫ a+

s

β(a, η) (χ21(η, s) + χ31(η, s)) dη;

χ♦(p, a, s) =
pχ4(s)

∆(0)

∫ a+

0

β(a, σ)(A22(σ) +A32(σ))dσ.

It is easy to see that when the proportion of infected newborns is zero (p = 0), then

the kernel χ♦(0, ., .) ≡ 0. Therefore, the vertical transmission of the disease amplifies

positively the spread of the disease.

(♣♣) As a special case, we here briefly consider the proportionate mixing assumption,

that is, the transmission rate β can be written as β(a, s) = β1(a)β2(s) (see Dietz and

Schenzle [14]; Greenhalgh,1988 [23]). In this case, the basic reproductive number R0 is

explicitly given by:

R0 := ρ(H0) =

∫ a+

0

χ♦(s, s)ds+

∫ a+

0

χ♦(p, s, s)ds. (53)

And the same conclusion follows as for item (♣). Thus the vertical transmission of the

disease really has an impact on the dynamics and the spread of the disease into the host

population. We also refer to Figures 2-4 for some illustrations of the state variables of

system (1)-(2) when p takes different values: 0.02; 0.2 and 0.5.
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6. Numerical analysis

In this section, we propose a numerical scheme for our model and gives some illustra-

tions.

We adopt a finite differences scheme which is progressive of order 1 in time and

regressive of order 1 in age. Our model has a structure of the following partial differential

equation on the real axe:
∂u

∂t
+
∂u

∂a
= f(t, a). (54)

For equation (54), the numerical scheme is defined by:

un+1
i − uni

∆t
+
uni − uni−1

∆a
= f(tn, ai); (55)

where i and n are the index of age and time discretization respectively; and uni :=
u(tn, xi).

We recall that, generally, all explicit numerical scheme is conditionally stable (Stricwerda[45]).

To ensure the stability of the scheme (55) the necessary condition is the famous Courant-

Friedrichs-Lewy (CFL) condition given as follow:

∆t

∆a
6 1. (56)

For a given age step discretization ∆a, the restriction ∆t 6 ∆a is necessary for the time

step discretisation ∆t.

We are able now to give the solution of the problem (1)-(2) on some time interval

[0, T ] using the above numerical scheme.

The age-specific reproduction rate f(a) is taken to be

f(a) =

{
1
5 sin

2
(

π(a−15)
30

)
if 15 ≤ a ≤ 45;

0 if not.

The fecundity function f(.) is stated here in units of 1 / years for easier readability and

assumes that from age 15 to 45 years a woman will generally give birth to three children,

since
∫ a+

0 f(a)da = 3, where a+ = 80 is the largest age allowed for the simulation.

We also consider a low value of recruitment Λ(.)

Λ(a) =

{
1
10 sin

2
(

π(a−17)
43

)
if 17 ≤ a ≤ 60;

0 if not.

This recruitment assume that the total number of recruitment at time t is approximately

equal two, that is
∫ a+

0
Λ(a) = 2.15

The transmission coefficient β(., .) is assume to be

β(a, s) =





β0 sin
2

(
π(a− 14)

46

)
sin2

(
π(s− 14)

46

)
, if a, s ∈ [14, 60];

0 if not.
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Figure 1: (1a) Transmission coefficient β(., .) when the transmission constant β0 = 10−3.

(1b) Fecundity function f(.) .

Table 1: Numerical values for the parameters of the model

Parameters Description Estimated value

β0 Transmission constant Variable

p Vertical tranmission rate Variable

µ Natural death rate 0.0101/yr 1

r Rate of effective therapy 1/yr 1

φ Rate at witch infectious 0.75/yr 1

become loss of sight

γ Rate at witch lost of sight 0.02/yr 1

return to the hospital

d1 Death rate of infectious 0.02/yr 1

d2 Death rate of lost of sight 0.2/yr 1

Note: Source of estimates.
1 Assumed.

wherein the nonnegative constant β0 (transmission constant) will be variable. Figure 1

illustrates the transmission coefficient β (for β0 = 10−3) and the fecundity function f .

The other parameters of our system are arbitrarily chosen (see Table 1).

We provide numerical illustrations for different values of vertical transmission p: 0.02,

0.2 and 0.5

In Figure 2, the vertical transmission rate of the disease is fixed to be p = 0.02. We

observe that infectious individuals (infected and lost of sight) are between 17 and 70 of

age. The number of young infectious (namely infectious with age a < 17) is negligible,

because the value of vertical transmission rate p is low.

In figure 3, the vertical transmission rate of the disease is fixed to be p = 0.2. We

observe that much of the infectious individuals (infected and lost of sight) are between
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17 and 70 of age. Let us also observe that the number of infectious individuals with age

between 17 and 70 is approximately the same than the number of infectious individuals

with age between 17 and 70 when p = 0.02 (see Figs 2-3). But now, there are also

infectious individuals with age a < 17 which was not the case when p = 0.02.

The same observation is given by Figure 4 where the vertical transmission rate of the

disease is fixed to be p = 0.5. Hence Figures 2-4 emphasize that the vertical transmission

of the disease really has an impact on the dynamics and the spread of the disease into the

host population. See also Table 2 for the impact of the vertical transmission of the disease

on the spread of the epidemic.
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Figure 2: The transmission constant and the vertical transmission rate are fixed to be

β0 = 10−3 and p = 0.02. The other parameters are given by Table 1. (2a) Distribution

of Infected individuals. (2b) Distribution of Lost of sight. (2c) Distribution of infected

newborn. (2d) Distribution of Infected and Lost of sight individuals after 80 years of time

observation.
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Figure 3: The transmission constant and the vertical transmission rate are fixed to be

β0 = 10−3 and p = 0.2. The other parameters are given by Table 1. (3a) Distribution

of Infected individuals. (3b) Distribution of Lost of sight. (3c) Distribution of infected

newborn. (3d) Distribution of Infected and Lost of sight individuals after 80 years of time

observation.

Table 2: Impact of the vertical transmission of the disease.

Vertical transmission rate (p) Rate increase over the case when p = 0
p = 0.02 1.8%
p = 0.2 17.5%
p = 0.5 43.8%

Total cases (I+L) when p = 0: 954.85 cases. (i.e. when the vertical transmission of the disease is

neglected in the host population.
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Figure 4: The transmission constant and the vertical transmission rate are fixed to be

β0 = 10−3 and p = 0.5. The other parameters are given by Table 1. (4a) Distribution

of Infected individuals. (4b) Distribution of Lost of sight. (4c) Distribution of infected

newborn. (4d) Distribution of Infected and Lost of sight individuals after 80 years of time

observation.

7. Conclusion

In this paper, we consider a mathematical model for the spread of a directly transmit-

ted infections disease in an age-structured population with demographics process. The

disease can be transmitted not only horizontally but also vertically from adult individuals

to their children. The dynamical system is formulated with boundary conditions.

We have described the semigroup approach to the time evolution problem of the ab-

stract epidemic system. Next we have calculated the basic reproduction ratio and proved

that the disease-free steady state is locally asymptotically stable if R0 < 1, and at least

one endemic steady state exists if the basic reproduction ratio R0 is greater than the unity.

Moreover, we have shown that the endemic steady state is forwardly bifurcating from the

disease-free steady state at R0 = 1. Finally we have shown sufficient conditions which

guarantee the local stability of the endemic steady state. Roughly speaking, the endemic

A R I M A



50 A R I M A – Volume 17 – 2014

steady state is locally asymptotically stable if it corresponds to a very small force of in-

fection.

However the global stability of the model still an interesting open problem. Moreover,

biologically appropriate assumptions for the unique existence of an endemic steady state

is also not yet know.
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