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Abstract
A new tuberculosis model consisting of ordinary differential equations and partial
differential equations is established in this paper. The model includes latent age (i.e.,
the time elapsed since the individual became infected but not infectious) and relapse
age (i.e., the time between cure and reappearance of symptoms of tuberculosis). We
identify the basic reproduction numberR0 for this model, and show that theR0 deter-
mines the global dynamics of the model. If R0 < 1, the disease-free equilibrium is
globally asymptotically stable, which means that tuberculosis will disappear, and if
R0 > 1, there exists a unique endemic equilibrium that attracts all solutions that can
cause the spread of tuberculosis. Based on the tuberculosis data in China from 2007 to
2018, we use GreyWolf Optimizer algorithm to find the optimal parameter values and
initial values of the model. Furthermore, we perform uncertainty and sensitivity anal-
ysis to identify the parameters that have significant impact on the basic reproduction
number. Finally, we give an effective measure to reach the goal of WHO of reducing
the incidence of tuberculosis by 80% by 2030 compared to 2015.
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1 Introduction

Tuberculosis (TB), one of the top 10 causes of death worldwide, is an infectious
disease caused by the bacillus mycobacterium tuberculosis. The bacillus can attack
any part of the body such as the lungs (pulmonary TB), kidney, spine and brain (extra-
pulmonary TB). The disease is spread through the air from one person to another, when
people who are sick with pulmonary TB expel the bacillus into the air, for example, by
coughing, speaking and so on, people nearbymay breathe in these bacillus and become
infected. The extrapulmonary TB is usually not infectious. About 5–10% of people
who infected with the bacillus will develop TB during their lifetime. However, people
with weak immune systems have a much higher risk of TB, such as people living
with HIV, malnutrition or diabetes, or people who smoke. TB occurs in every part of
the world. In 2017, there were an estimated 10 million new cases of TB worldwide,
the majority of them were concentrated in the African, South-East Asia and Western
Pacific regions. The following eight countries accounted for two thirds of the new
TB cases: India, China, Indonesia, the Philippines, Pakistan, Nigeria, Bangladesh and
South Africa (WHO 2019; CDC 2019).

Prevention and treatment have always been considered as important means of
controlling the spread of TB, they mainly include: treatment of latent TB infection,
vaccination of children with the bacille Calmette–Guérin (BCG) vaccine, people with
TB take the drugs exactly as prescribed for 6–9 months, and so on. These measures
are considered to have made a major contribution to the reduction in TB burden since
2000. TB incidence has fallen 1.5% per year since 2000, for a total reduction of 18%
worldwide. However, as the WHO notes, TB kills millions of people worldwide each
year, which is unacceptable in an era when you can diagnose and cure nearly every
person with TB. At this rate, the WHO 2030 goal (the new TB cases will reduce by
80% by 2030 compared to 2015) will not be achieved. If the world is to end TB, it
needs to scale up services and invest in research. Unfortunately, the gap between the
funding available and the requirement has widened over the past 2 years, this is not a
good sign for TB control. Therefore, increasing investment and developing the most
effective control measures are crucial for the current control of TB (WHO 2019; CDC
2019).

Mathematicalmodelinghas always been averyuseful and important tool in studying
the transmission mechanism of epidemic disease, drinking or other behavior, through
mathematical analysis and numerical simulation of the model, effective control mea-
sures can be designed and evaluated (Ullah et al. 2019; Wang et al. 2019; Agusto and
Khan 2018; Rebaza 2019; Ngeleja et al. 2018; Zhao et al. 2019; Huo et al. 2019b;
Xiang et al. 2019; Ma 2019; Shi and Wang 2019; Cai et al. 2018; Du and Feng 2018;
Zhang and Xing 2019; Meng et al. 2018; Meng and Wu 2018; Zhang et al. 2018;
Bao et al. 2020; Bao and Li 2020; Huang and Tian 2019; Li and Huang 2019; Huo
et al. 2019a; Zhang et al. 2019a, b; Huo et al. 2020; Huang 2020). Due to the com-
plexity of the pathogenesis of tuberculosis, there have been many articles to establish
different models to study TB and incorporate certain factors, such as treatment, drug
resistance, HIV/TB co-infection, relapse, vaccination and so on (Whang et al. 2011;
Zhao et al. 2017; Ozcaglar et al. 2012; Liu and Zhang 2011; Ren 2017; Choi et al.
2015). Liu and Zhang (2011) argued that vaccination can only reduce infection, not
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eliminate it entirely, and treatment can also only reduce the infectivity of treated TB
cases (compared to untreated cases). According to this, they investigated the effects
of vaccination and treatment on the spread of TB. Agusto and Adekunle (2014) for-
mulated a mathematical model of the transmission of TB-HIV/AIDS co-infection. By
using treatment of infected individuals with TB as the system control variable, they
investigated optimal strategies for controlling the spread of the disease. Most of the
models are qualitative analysis of tuberculosis transmission, and few are quantitative
analysis based on actual data. Recently, more and more researchers are beginning to
combine data to study the spread of diseases (Jing et al. 2020; Ullah et al. 2019; Zhao
et al. 2017; Ghosh et al. 2018; Liu et al. 2020). Ullah et al. (2019) studied a TB model
and used the actual data to estimate the model parameters, then they analyzed the
effect of various parameters to define the importance of these parameters to disease
transmission. Based on tuberculosis data from China, Zhao et al. (2017) evaluated the
parameters by the Least Square method. Then, they gave two effective measures to
achieve WHO’s goal through numerical simulation.

During the spread of tuberculosis, it is worth noting that after becoming infected,
some people develop TB disease soon (within weeks), before their immune system
can fight the TB bacteria. Other people may get sick years later, when their immune
system becomes weak for some reason. Many people with TB infection never develop
TB disease. Iannelli and Milner (2017) argued that age structure is important when
modeling a long-lasting disease, because the chance of infected individuals becoming
infectious individuals and recovering patients relapsing is variable.

Motivated by these factors, in this paper, we formulate a new age-structured TB
model to study the effects of relapse and treatment on transmission dynamics of TB.
We not only introduce the treatment individuals as a class but also assume that the
treatment class is also infectious. The article is organized as follows. In Sect. 2, we
introduce an age-structured TBmodel and present some basic properties. In Sect. 3, we
define the basic reproductive number and prove the local stability of the disease-free
equilibrium and the unique endemic equilibrium. In Sect. 4, we present the uniform
persistence result and prove the global stability of the disease-free equilibrium and
the unique endemic equilibrium. In Sect. 5, we perform data fitting and sensitivity
analysis of the basic reproductive number, and assess the feasibility of the WHO End
TB Strategy by 2030. In Sect. 6, we give a brief discussion.

2 TBmodel and basic properties

2.1 Model formulation

Themodel divides the total population at time t intofivemutually-exclusive subgroups:
susceptible class, latent class (those who are infected but not yet infectious), infectious
class, treatment and recovered class denoted by S(t), e(t, a), I (t), T (t) and r(t, θ),
respectively. Here the parameter a denotes the latent age of the infected individuals,
θ denotes the relapse age of the recovered individuals. We assume that people during
treatment may still be re-infected due to contact with TB patients. If some people
have been treated successfully, but in the process of treatment, they re-contact with
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Fig. 1 Flowchart of the TB transmission

tuberculosis patients, they will enter the latent class, and those who are re-infected
in other situations will enter the infectious class. Burman et al. (2009) argued that
recurrent TB can develop in some patients after they complete therapy. This shows
that people who have recovered may have a relapse. The flow among those subgroups
is shown in the following flowchart (Fig. 1).

Base on the above notations and the flowchart (Fig. 1), we formulate the TB model
as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= � − βS(I + ρT ) − μS,

d I (t)

dt
=

∫ +∞

0
σ(a)e(t, a)da +

∫ +∞

0
ω(θ)r(t, θ)dθ

+ (1 − η)ρ1T − (γ + μ + μI )I (t),

dT (t)

dt
= γ I (t) − (μ + μt + α + ρ1)T (t),

∂e(t, a)

∂t
+ ∂e(t, a)

∂a
= −(μ + δ(a) + σ(a))e(t, a),

∂r(t, θ)

∂t
+ ∂r(t, θ)

∂θ
= −(μ + ω(θ))r(t, θ),

(1)

with the following boundary conditions

e(t, 0) = βS(I + ρT ) + ηρ1T , r(t, 0) =
∫ +∞

0
δ(a)e(t, a)da + αT , (2)

and initial conditions

e(0, a) = e0(a), r(0, θ) = r0(θ), S(0) = s0, I (0) = i0, T (0) = t0, (3)

where e0(a), r0(θ) ∈ L1+(0,+∞), and s0, i0, t0 ∈ R+. The meanings of the parame-
ters in (1) are explained in Table 1.

Throughout this paper, we make the following assumptions and notations.
(A1) : �,μ, β, ρ1, η, γ, ρ, α, μI , μt > 0;
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Table 1 Description of
parameters of the model (1)

Parameters Description

� The recruitment rate of the susceptible class

μ The natural death rate of the population

β The transmission coefficient of TB

ρ Parameters that reduce the rate of transmission due to
treatment

δ(a) The rate at which latent individuals progress into
recovered class due to treatment

σ(a) The rate at which latent individuals progress into
infectious class

γ The treatment rate of infectious class

μI The death rate due to TB

μt The death rate due to treatment

α The rate at which treatment individuals progress into
recovered class due to

complete treatment

ρ1 The rate of developing a new infections due to exposure
to tuberculosis

during treatment

η The proportion of individuals who become the latent
class due to re-infection

ω(θ) The age-dependent relapse rate

(A2) : ω(θ), δ(a), σ (a) ∈ L∞+ (0,+∞) with essential upper bounds ω̄, δ̄, σ̄ > 0 ,
respectively;

For a, θ ≥ 0, we denote

k1(a) = e− ∫ a
0 (μ+δ(s)+σ1(s))ds, k2(θ) = e− ∫ θ

0 (μ+ω(s))ds, K1 =
∫ +∞

0
σ1(a)k1(a)da,

K2 =
∫ +∞

0
ω(θ)k2(θ)dθ, K3 =

∫ +∞

0
δ(a)k1(a)da,

Y = R
3+ × (L1+(0,+∞))2, with norm

‖ (x1, x2, x3, x4, x5) ‖Y =
3∑

i=1

| xi | +
5∑

i=4

∫ +∞

0
| xi (s) | ds.

2.2 Well-posedness

Base on above assumptions, we can verify the local existence of unique and nonnega-
tive solution of the model (1) with the nonnegative initial conditions (see Webb 1985
and Iannelli (1994)), thus we obtain the following proposition.
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Proposition 1 Let x0 ∈ Y , then there exists ε > 0 and neighborhood B0 ⊂ Y with
x0 ∈ B0 such that there exists a unique continuous function, � : [0, ε] × B0 → Y ,
where �(t, x0) is the solution to (1) with �(0, x0) = x0.

For t ∈ [0, ε], ‖ �(t, x0) ‖Y = S(t) + I (t) + T (t) + ∫ +∞
0 e(t, a)da +

∫ +∞
0 r(t, θ)dθ, we deduce that ‖ �(t, x0) ‖Y satisfies the following inequality:

d

dt
‖ �(t, x0) ‖Y ≤ � − μ ‖ �(t, x0) ‖Y .

According to the comparison principle, we have

‖ �(t, x0) ‖Y ≤ �

μ
− e−μt (

�

μ
− ‖ x0 ‖Y ), (4)

which yields

‖ �(t, x0) ‖Y ≤ max{�
μ

, ‖ x0 ‖Y }. (5)

Boundedness is a direct consequence of nonnegativity of solution. Then we have
the following proposition.

Proposition 2 Let x0 ∈ Y , then there exists a unique continuous semiflow, � : R+ ×
Y → Y , where �(t, x0) is the solution to (1) with �(0, x0) = x0, and (4),(5) are
satisfied for t ∈ R+. The following set is positively invariant for system (1)

� = {x = (S(t), I (t), T (t), e(t, a), r(t, θ)) ∈ Y : ‖ x ‖Y ≤ �

μ
}.

From Proposition 2 and inequality (4), we obtain the following proposition.

Proposition 3 (i) The solution of (1), �(t, ·), is point dissipative, and � attracts all
points in Y ;

(ii) Let B ⊂ Y be bounded, then �(t, B) is bounded;
(iii) If x0 ∈ Y and ‖ x0 ‖Y ≤ A for some A ≥ �

μ
, then S(t), I (t), T (t), ‖

e(t, ·) ‖L1+ , ‖ r(t, ·) ‖L1+≤ A.

2.3 Asymptotic smoothness

Integrating the equations for e(t, a), r(t, θ) in (1) along the characteristic lines, t −
a=const., t − θ=cost., respectively, we deduce that

e(t, a) =
⎧
⎨

⎩

e(t − a, 0)k1(a), 0 ≤ a ≤ t,

e0(a − t)
k1(a)

k1(a − t)
, 0 ≤ t < a,
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r(t, θ) =
⎧
⎨

⎩

r(t − θ, 0)k2(θ), 0 ≤ θ ≤ t,

r(θ − t)
k2(θ)

k2(θ − t)
, 0 ≤ t < θ.

(6)

The continuous semiflow {�(t, ·)}t≥0 is said to be asymptotically smooth, if each
positively invariant bounded closed set is attracted by a nonempty compact set.

We will use the following two lemmas proposed by Smith and Thieme (2011) to
prove the asymptotic smoothness of the semiflow.

Lemma 1 The semiflow� : R+×Y → Y is asymptotically smooth if there are maps
U1,U2 : R+ × Y → Y such that �(t, x) = U1(t, x) + U2(t, x), and the following
hold for any bounded closed set A ⊂ Y that is forward invariant under �:

(i) lim
t→+∞ diamU2(t,A ) = 0;

(ii) there exists tA ≥ 0 such that U1(t,A ) has compact closure for each t ≥ tA .

Since Y is an infinite dimensional space, space L1+(0,+∞) is a component of Y .
For infinite dimensional space, we cannot deduce precompactness only from bound-
edness. Thus, to derive the precompactness of Y , we apply the following lemma:

Lemma 2 LetB be a bounded subset of L1+(0,+∞). ThenB has compact closure if
and only if the following conditions hold:

(i) sup
f ∈B

∫ +∞
0 | f (s) | ds < +∞;

(ii) lim
h→+∞

∫ +∞
h | f (s) | ds = 0 uniformly in f ∈ B;

(iii) lim
h→0+

∫ +∞
0 | f (s + h) − f (s) | ds = 0 uniformly in f ∈ B;

(iv) lim
h→0+

∫ h
0 | f (s) | ds = 0 uniformly in f ∈ B.

We are now ready to prove a result on the semiflow � generated by system (1) is
asymptotically smooth.

Theorem 1 The semiflow � generated by system (1) is asymptotically smooth.

Proof We first decompose� into the following two parts:U1,U2 defined respectively
by

U1(t, x) = (S(t), I (t), T (t), ẽ(t, ·), r̃(t, ·)), U2(t, x) = (0, 0, 0, 0, ψe(t, ·), ψr (t, ·)),

where

ψe(t, a) =
⎧
⎨

⎩

0, 0 ≤ a ≤ t,

e0(a − t)
k1(a)

k1(a − t)
, 0 ≤ t < a,

ψr (t, θ) =
⎧
⎨

⎩

0, 0 ≤ θ ≤ t,

r0(θ − t)
k2(θ)

k2(θ − t)
, 0 ≤ t < θ,
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ẽ(t, a) =
{
e(t − a, 0)k1(a), 0 ≤ a ≤ t,
0, 0 ≤ t < a,

r̃(t, θ) =
{
r(t − θ, 0)k2(θ), 0 ≤ θ ≤ t,
0, 0 ≤ t < θ,

for x = (S(0), I (0), T (0), e0(a), r0(θ)), clearly, we have �(t, x) = U1(t, x) +
U2(t, x).

Let A ⊂ Y , r is a constant greater than �
μ
, for each x ∈ A , we set ‖ x ‖Y ≤ r .

So we can derive

‖ U2(t, x) ‖Y =
∫ +∞

t
e0(a − t)

k1(a)

k1(a − t)
da +

∫ +∞

t
r0(θ − t)

k2(θ)

k2(θ − t)
dθ

=
∫ +∞

0
e0(s)

k1(s + t)

k1(s)
ds +

∫ +∞

0
r0(s)

k2(s + t)

k2(s)
ds

=
∫ +∞

0
e0(s)e

− ∫ s+t
s (μ+δ(l)+σ(l))dlds+

∫ +∞

0
r0(s)e

− ∫ s+t
s (μ+ω(l))dlds

≤ e−μt ‖ x ‖Y ≤ re−μt .

Thus, limt→+∞ diam U2(t,A ) = 0. In the following we will show that U1(t,A )

has compact closure for each t ≥ 0.
From Proposition 3, we know that S(t), I (t), T (t) remain in the compact set [0, r ]

for all t ≥ 0. Next, we will show that ẽ(t, a) and r̃(t, θ) remain in a precompact
subset of L1+(0,+∞) which is independent of x . According to

0 ≤ ẽ(t, a) =
{
e(t − a, 0)k1(a), 0 ≤ a ≤ t,

0, 0 ≤ t < a,

and (2), it is easy to show that

0 ≤ ẽ(t, a) ≤ (β(1 + ρ)r + ηρ1)re
−μa .

Therefore, the conditions (i),(i i) and (iv) of Lemma 2 are satisfied. Now, we only
need to check the condition (i i i) of Lemma 2.

∫ +∞

0
| ẽ(t, a + h) − ẽ(t, a) | da

=
∫ t−h

0
| ẽ(t, a + h) − ẽ(t, a) | da +

∫ t

t−h
| ẽ(t, a) | da

=
∫ t−h

0
| ẽ(t − a − h, 0)k1(a + h) − ẽ(t − a, 0)k1(a) | da

+
∫ t

t−h
| ẽ(t − a, 0)k1(a) | da
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≤
∫ t−h

0
| ẽ(t − a − h, 0) || k1(a + h) − k1(a) | da

+
∫ t−h

0
| ẽ(t − a − h, 0) − ẽ(t − a, 0) || k1(a) | da + (β(1 + ρ)r + ηρ2)rh,

where

∫ t−h

0
| ẽ(t − a − h, 0) || k1(a + h) − k1(a) | da

≤ (β(1 + ρ)r + ηρ1)r(
∫ t−h

0
k1(a)da −

∫ t−h

0
k1(a + h)da)

= (β(1 + ρ)r + ηρ1)r(
∫ t−h

0
k1(a)da −

∫ t

h
k1(s)ds)

= (β(1 + ρ)r + ηρ1)r(
∫ t−h

0
k1(a)da −

∫ t−h

h
k1(s)ds −

∫ t

t−h
k1(s)ds)

= (β(1 + ρ)r + ηρ1)r(
∫ h

0
k1(a)da −

∫ t

t−h
k3(s)ds) ≤ (β(1 + ρ)r + ηρ2)rh

Notice that | d I (t)

dt
|≤ (ω̄ + σ̄ )r + (1 − η)ρ1r + (γ + μ + μI )r , | dS(t)

dt
|≤

� + β(1 + ρ)r2 + μr , | dT (t)

dt
|≤ γ r + (μ + μT + α + ρ1)r , then

| ẽ(t − a − h, 0) − ẽ(t − a, 0) |
≤ β | S(t − a − h)I (t − a − h) − S(t − a)I (t − a) |

+βρ | S(t − a − h)T (t − a − h) − S(t − a)T (t − a) |
+ηρ1 | T (t − a − h) − T (t − a) |
= β(| S(t − a − h) || I (t − a − h) − I (t − τ) |
+ | I (t − a) || S(t − a − h) − S(t − a) |)

+βρ(| S(t − a − h) || T (t − a − h) − T (t − τ) |
+ | T (t − a) || S(t − a − h) − S(t − a) |)

+ηρ1 | T (t − a − h) − T (t − a) |≤ �h,

where

� = (β + βρ)r(� + β(1 + ρ)r2 + μr) + (βρr + ηρ1)(γ r + (μ + μT + α + ρ1)r)

+βr((ω̄ + σ̄ )r + (1 − η)ρ1r + (γ + μ + μI )r).

Then

∫ t−h

0
| ẽ(t − a − h, 0) − ẽ(t − a, 0) || k1(a) | da ≤ �h

∫ t−h

0
e−μsds ≤ �

μ
h.
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Hence,

∫ +∞

0
| ẽ(t, a + h) − ẽ(t, a) | da ≤ (2(β(1 + ρ)r + ηρ1)r + �

μ
)h.

Thus, the condition (i i i) of Lemma 2 holds, then we can get that ẽ(t, a) satisfies the
conditions of Lemma 2. In a similar way, r̃(t, θ) also satisfies the conditions of Lemma
2. Therefore, we obtain U1(t,A ) has compact closure for each t ≥ 0, Using Lemma
1, we know semiflow � is asymptotically smooth. This completes the proof. 	


Combining Proposition 3 and � is asymptotically smooth, as well as the existence
theory of global attractors, the following result is immediate from Theorem 2.6 in
Magal and Zhao (2005) and Theorem 2.4 in D’Agata et al. (2006).

Theorem 2 The semiflow� has a global attractorA inY , which attracts any bounded
subset of Y .

3 Equilibria and their local stability

3.1 Existence of equilibria

System (1) alwayshas adisease free equilibrium E0=(�
μ

, 0, 0, 0L1(0,+∞), 0L1(0,+∞)).
One can obtain the reproduction number from system (1)

R0 = β
(K1 + K2K3)

γ + μ + μI

�

μ
+ γ (αK2 + (1 − η)ρ1 + (βρ �

μ
+ ηρ1)(K1 + K2K3))

(γ + μ + μI )(μ + μT + α + ρ1)
.

(7)

R0 represents the average number of secondary infected individuals produced by a
primary infected individual.

Next, we investigate the endemic equilibria of system (1). A endemic equilibrium
(S∗, I ∗, T ∗, e∗(a), r∗(θ)) of system (1) satisfies the following equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� − βS∗(I ∗ + ρT ∗) − μS∗ = 0,
∫ +∞

0
σ(a)e∗(a)da +

∫ +∞

0
ω(θ)r∗(θ)dθ = (μ + μI + γ )I ∗ − (1 − η)ρ1T

∗,

γ I ∗ − (μ + μT + α + ρ1)T
∗ = 0,

de∗(a)

da
= −(μ + δ(a) + σ(a))e∗(a),

dr∗(θ)

dθ
= −(μ + ω(θ))r∗(θ),

e∗(0) = βS∗(I ∗ + ρT ∗) + ηρ1T
∗, r∗(0) =

∫ +∞

0
δ(a)e∗(a)da + αT ∗.

(8)
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From (8) we can easily find that if R0 > 1, system (1) has a endemic equilibrium
E∗ = (S∗, I ∗, T ∗, e∗(a), r∗(θ)), where

I ∗ = R0 − 1

1 − αγK2 + ηρ1γ (K1 + K2K3) + (1 − η)ρ1γ

(μ + μI + γ )(μ + μT + α + ρ1)

,

T ∗ = γ

μ + μT + α + ρ1
I ∗,

S∗ = �

μ + β(I ∗ + ρT ∗)
, e∗(a) = e∗(0)k1(a), r∗(θ) = r∗(0)k2(θ).

Summarizing the discussions above, we have the following theorem.

Theorem 3 System (1) always has the disease free equilibrium E0. Moreover, apart
from E0 , ifR0 > 1, system (1) exists a unique endemic equilibrium E∗.

3.2 Local stability of the equilibria

Now we consider the linearized system of (1) at an equilibrium Ẽ = (S̃, Ĩ , T̃ ,

ẽ(a), r̃(θ)). Let S(t) = S(t) − S̃, I (t) = I (t) − Ĩ , T (t) = T (t) − T̃ , e(a, t) =
e(a, t) − ẽ(a), r(t, θ) = r(t, θ) − r̃(θ), then removing the bar, we obtain the follow-
ing linearized system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= −β S̃(I + ρT ) − β( Ĩ + ρT̃ )S − μS,

d I (t)

dt
=

∫ +∞

0
σ(a)e(t, a)da +

∫ +∞

0
ω(θ)r(t, a)da

+ (1 − η)ρ1T − (μ + μI + γ )I (t),

dT (t)

dt
= γ I − (μ + μT + α + ρ1)T ,

∂e(t, a)

∂t
+ ∂e(t, a)

∂a
= −(μ + δ(a) + σ(a))e(t, a),

∂r(t, θ)

∂t
+ ∂r(t, θ)

∂θ
= −(μ + ω(θ))r(t, θ),

(9)

with the following boundary conditions

e(t, 0) = β S̃(I + ρT ) + β( Ĩ + ρT̃ )S + ηρ1T ,

r(t, 0) =
∫ +∞

0
δ(a)e(t, a)da + αT .

Let

k1(λ) =
∫ +∞

0
σ(a)e− ∫ a

0 (λ+μ+σ(s)+δ(s))dsda,
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k2(λ) =
∫ +∞

0
ω(θ)e− ∫ θ

0 (λ+μ+ω(s))dsdθ,

k3(λ) =
∫ +∞

0
δ(a)e− ∫ a

0 (λ+μ+σ(s)+δ(s))dsda.

For (9), let S(t) = S0eλt , I (t) = I 0eλt , T (t) = T 0eλt , e(t, a) = e0(a)eλt , r(t, θ) =
r0(θ)eλt , we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λS0 = −β S̃(I 0 + ρT 0) − β( Ĩ + ρT̃ )S0 − μS0,

(λ + μ + μI + γ )I 0=
∫ +∞

0
σ(a)e0(a)da+

∫ +∞

0
ω(θ)r0(a)da+(1−η)ρ1T

0,

(λ + μ + μT + α + ρ1)T
0 = γ I 0,

ė0(a) = −(λ + μ + δ(a) + σ(a))e0(a),

ṙ0h (θ) = −(λ + μ + ω(θ))r0(θ),

(10)

with initial conditions
{
e0(0) = β S̃(I 0 + ρT 0) + β( Ĩ + ρT̃ )S0 + ηρ1T

0,

r0(0) = e0(0)k3(λ) + αT 0.
(11)

We obtain from the system (10) that

(λ + μ + μI + γ )I 0 = k1(λ)e0(0) + k2(λ)(k3(λ)(e0(0) + αT 0) + (1 − η)ρT 0,

e0(0) = (λ + μ)
β S̃(I 0 + ρT 0)

λ + μ + β( Ĩ + ρT̃ )
+ ηρ1T0.

Combined with the third equation of system (10), and by simple calculation, we have

(λ + μ + μI + γ )I 0 = [k1(λ) + k2(λ)k3(λ)]{(λ + μ)
β S̃(1 + ρ

γ
λ+μ+μT +α+ρ1

)

λ + μ + β( Ĩ + ρT̃ )

+ηρ1
γ

λ + μ + μT + α + ρ1
}I 0

+[(1 − η)ρ1 + k2(λ)α] γ

λ + μ + μT + α + ρ1
I 0.

We obtain the characteristic equation of system (1) at an equilibrium Ẽ as follows:

f (λ) = 1,

where

f (λ) =
[k1(λ) + k2(λ)k3(λ)]{(λ + μ)

β S̃(1 + ρ
γ

λ+μ+μT +α+ρ1
)

λ + μ + β( Ĩ + ρT̃ )
+ ηρ1

γ
λ+μ+μT +α+ρ1

}
λ + μ + μI + γ
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+
[(1 − η)ρ1 + k2(λ)α] γ

λ+μ+μT +α+ρ1

λ + μ + μI + γ
.

Next we will analyze the local stability of the equilibria. Rigorous proof of local
stability require more thorough spectral analysis, which be referred to in Liu et al.
(2017). Liu et al. (2017) formulated an age-structured model as an abstract non-
densely defined Cauchy problem, and Lemma 3.4 in Liu et al. (2017) shows that
point spectrum and spectrum are equal. Thus, the growth rate of solutions is given
by the point spectrum, so we only need to study the eigenvalues of the characteristic
equation of system (1).

Theorem 4 (Local stability) (i) The disease-free equilibrium E0 of system (1) is locally
stable ifR0 < 1 and is unstable if R0 > 1.

(ii) The endemic equilibrium E∗ of system (1) is locally stable if it exists.

Proof We first consider the local stability of the disease-free equilibrium E0. The
characteristic equation corresponding to E0 is

f (λ) = [k1(λ) + k2(λ)k3(λ)]
λ + μ + μI + γ

{

β
�

μ

(

1 + ργ

λ + μ + μT + α + ρ1

)

+ ηρ1γ

λ + μ + μT + α + ρ1

}

+ [(1 − η)ρ1 + k2(λ)α]γ
(λ + μ + μI + γ )(λ + μ + μT + α + ρ1)

.

Clearly, we have f (0) = R0, f ′(λ) < 0 and lim
λ→∞ f (λ) = 0. Hence, if R0 > 1,

then f (λ) = 1 has a unique positive real root. That is, if R0 > 1, the disease-free
equilibrium E0 is unstable.

IfR0 < 1, the disease-free equilibrium E0 is locally stable. Otherwise, f (λ0) = 1
has at least one root λ0 = a1 + ib1 satisfying a1 ≥ 0. But

| f (λ0) |≤ R0 < 1.

Hence, ifR0 < 1, all roots of f (λ) = 1 have negative real parts, then the disease-free
equilibrium E0 is locally stable ifR0 < 1.

Next, we consider the local stability of the endemic equilibrium E∗. The charac-
teristic equation corresponding to E∗ is

f (λ) =
[k1(λ) + k2(λ)k3(λ)]

⎧
⎨

⎩
(λ + μ)

βS∗
(
1 + ρ

γ
λ+μ+μT +α+ρ1

)

λ + μ + β(I ∗ + ρT ∗)
+ ηρ1

γ
λ+μ+μT +α+ρ1

⎫
⎬

⎭

λ + μ + μI + γ

+[(1 − η)ρ1 + k2(λ)α] γ
λ+μ+μT +α+ρ1

λ + μ + μI + γ
.

If R0 > 1, the endemic equilibrium E∗ is locally stable. Otherwise, f (λ∗) = 1 has
at least one root λ∗ = a2 + ib2 satisfying a2 ≥ 0. We notice that
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(K1 + K2K3)

{

βS∗
(

1 + ργ

μ + μT + α + ρ1

)

+ ηρ1γ

μ + μT + α + ρ1

}

+ ((1 − η)ρ1 + K2α)γ

μ + μT + α + ρ1

−(μ + μI + γ ) = 0,

and

| f (λ∗) | <
(K1 + K2K3)

{
βS∗

(
1 + ρ

γ
μ+μT +α+ρ1

)
+ ηρ1

γ
μ+μT +α+ρ1

}

μ + μI + γ

+[(1 − η)ρ1 + K2α] γ
μ+μT +α+ρ1

μ + μI + γ
= 1.

Hence, if R0 > 1, all roots of f (λ) = 1 have negative real parts, then the endemic
equilibrium E∗ is locally stable ifR0 > 1. This completes the proof. 	


4 Uniform persistence and global stability

4.1 Uniform persistence

In this subsection, our purpose is to show that system (1) is uniformly persistent when
R0 > 1. Define

M0 = {(x1, x2, x3, x4, x5) ∈ Y : x2 + x3 +
∫ +∞

0
x4(a)da +

∫ +∞

0
x5(a)da > 0},

let ∂M0 = Y \M0. Then, we have Y = M0 ∪ ∂M0.

Theorem 5 The sets M0 and ∂M0 are forward invariant under the semiflow �(t, ·).
Also, the disease-free equilibrium E0 of system (1) is globally asymptotically stable
for the semiflow �(t, ·) restricted to ∂M0.

Proof First we prove M0 is forward invariant under the semiflow �(t, ·). Let
�(0, x0) ∈ M0, U (t) = I (t) + T (t) + ∫ +∞

0 e(t, a)da + ∫ +∞
0 r(t, θ)dθ,

dU (t)

dt
≥ −(μ + μI + μT )U (t),

U (t) ≥ e−(μ+μI+μT )tU (0) > 0.

This implies the fact that �(t, M0) ⊂ M0, i.e. M0 is forward invariant under the
semiflow �(t, ·).
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Next, we will prove ∂M0 is forward invariant under the semiflow �(t, ·). Let
�(0, x0) ∈ ∂M0, we consider the following system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d I (t)

dt
=

∫ +∞

0
σ(a)e(t, a)da +

∫ +∞

0
ω(θ)r(t, θ)dθ + (1 − η)ρ1T − (γ + μ + μI )I (t),

dT (t)

dt
= γ I (t) − (μ + μT + α + ρ1)T (t),

∂e(t, a)

∂t
+ ∂e(t, a)

∂a
= −(μ + δ(a) + σ(a))e(t, a),

∂r(t, θ)

∂t
+ ∂r(t, θ)

∂θ
= −(μ + ω(θ))r(t, θ),

e(t, 0) = βS(I + ρT ) + ηρ1T , r(t, 0) =
∫ +∞

0
δ(a)e(t, a)da + αT ,

e(0, a) = e0(a), r(0, θ) = r0(θ), I (0) = 0, T (0) = 0.

(12)

Since S(t) ≤ �1, where �1 = max{�
μ

, ‖ x0 ‖Y }, it follows that

I (t) ≤ Î (t), T (t) ≤ T̂ (t), e(t, s) ≤ ê(t, s), r(t, s) ≤ r̂(t, s), (13)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d Î (t)

dt
=

∫ +∞

0
σ(a)ê(t, a)da +

∫ +∞

0
ω(θ)r̂(t, θ)dθ + (1 − η)ρ1T̂ − (γ + μ + μI ) Î (t),

dT̂ (t)

dt
= γ Î (t) − (μ + μT + α + ρ1)T̂ (t),

∂ ê(t, a)

∂t
+ ∂ ê(t, a)

∂a
= −(μ + δ(a) + σ(a))ê(t, a),

∂ r̂(t, θ)

∂t
+ ∂ r̂(t, θ)

∂θ
= −(μ + ω(θ))r̂(t, θ),

ê(t, 0) = β�1( Î + ρT̂ ) + ηρ1T̂ , r̂(t, 0) = δ̄

∫ +∞

0
ê(t, a)da + αT̂ ,

ê(0, a) = e0(a), r̂(0, θ) = r0(θ), Î (0) = 0, T̂ (0) = 0.

(14)

By the formulation (6), we have

ê(t, a) =
⎧
⎨

⎩

ê(t − a, 0)k1(a), 0 ≤ a ≤ t,

e0(a − t)
k1(a)

k1(a − t)
, 0 ≤ t < a,

r̂(t, θ) =
⎧
⎨

⎩

r̂(t − θ, 0)k2(θ), 0 ≤ θ ≤ t,

r0(θ − t)
k2(θ)

k2(θ − t)
, 0 ≤ t < θ.

(15)

Substituting (15) into the first two equations of (14) yield
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d Î (t)

dt
=

∫ t

0
σ(a)ê(t − a, 0)k1(a)da +

∫ t

0
ω(θ)r̂(t − θ, 0)k2(θ)dθ + F(t) + (1 − η)ρ1T̂

− (γ + μ + μI ) Î (t),

dT̂ (t)

dt
= γ Î (t) − (μ + μT + α + ρ1)T̂ (t),

Î (0) = 0, T̂ (0) = 0.

(16)

where

F(t) =
∫ +∞

t
σ(a)e0(a − t)

k1(a)

k1(a − t)
da +

∫ +∞

t
ω(θ)r0(θ − t)

k2(θ)

k2(θ − t)
dθ.

Since

F(t) ≤ σ̄

∫ +∞

t
e0(a − t)da + ω̄

∫ +∞

t
r0(θ − t)dθ = σ̄

∫ +∞

0
e0(a)da + ω̄

∫ +∞

0
r0(θ)dθ,

due to �(0, x0) ∈ ∂M0, then F(t) ≡ 0 for t ≥ 0.

∫ t

0
ω(θ)r̂(t − θ, 0)k2(θ)dθ

=
∫ t

0
ω(θ)k2(θ)αT̂ (t − θ)dθ + δ̄

∫ t

0
ω(θ)k2(θ)dθ

∫ t−θ

0
ê(t − θ − a, 0)k1(a)da

+δ̄

∫ t

0
ω(θ)k2(θ)dθ

∫ +∞

t−θ

ê(0,−t + θ + a)
k1(a)

k1(a − t + θ)
da

=
∫ t

0
ω(θ)k2(θ)αT̂ (t − θ)dθ + δ̄

∫ t

0
ω(θ)k2(θ)dθ

∫ t−θ

0
ê(t − θ − a, 0)k1(a)da.

The system (16) can be written

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d Î (t)

dt
=

∫ t

0
σ(a)k1(a)(β�1( Î (t − a) + ρT̂ (t − a)) + ηρ1T̂ (t − a))da

+ (1 − η)ρ1T̂ − (γ + μ + μI ) Î (t) +
∫ t

0
ω(θ)k2(θ)αT̂ (t − θ)dθ

+ δ̄

∫ t

0
ω(θ)k2(θ)dθ

∫ t−θ

0
(β�1( Î (t − θ − a) + ρT̂ (t − θ − a))

+ ηρ1T̂ (t − θ − a))k1(a)da,

dT̂ (t)

dt
= γ Î (t) − (μ + μT + α + ρ1)T̂ (t),

Î (0) = 0, T̂ (0) = 0.

Thus, (16) has a unique solution Î (t) ≡ 0, T̂ (t) ≡ 0 for t ≥ 0.
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From (14), (15), we know that ê(t, s) = 0, r̂(t, s) = 0 for 0 ≤ s ≤ t, thus,

‖ ê(t, a) ‖L1+=
∫ +∞

t
e0(a − t)

k1(a)

k2(a − t)
da ≤‖ e0(s) ‖L1+= 0.

Similarly, we have ‖ r̂(t, θ) ‖L1+= 0.
By using (13) we can obtain that I (t) = 0, T (t) = 0, ‖ e(t, a) ‖L1+= 0, ‖

r(t, θ) ‖L1+= 0 for t ≥ 0. Thus, ∂M0 is forward invariant under the semiflow �(t, ·).
Finally, we prove the disease-free equilibrium E0 of system (1) is globally asymp-

totically stable for the semiflow �(t, ·) restricted to ∂M0. In ∂M0, system (1) can be
written as follows

dS(t)

dt
= � − μS(t), (17)

Obviously, lim
t→+∞ S(t) = �

μ
. Hence, the equilibrium E0 is globally asymptotically

stable restricted to ∂M0. The proof of Theorem 5 is complete. 	

Theorem 6 IfR0 > 1, then semiflow {�(t, ·)}t≥0 generated by system (1) is uniformly
persistent with respect to the decomposition (M0, ∂M0). Moreover, there is a compact
subset A0 ⊂ M0, which is a global attractor for {�(t, ·)}t≥0 in M0.

Proof Since the disease-free equilibrium E0 is globally asymptotically stable restricted
to ∂M0, applying Theorem 4.2 in Hale and Waltman (1989), we only need to prove

Ws(E0) ∩ M0 = ∅,

where Ws(E0) = {x ∈ Y : lim
t→+∞ �(t, x) = E0}. By way of contradiction, we

assume that there exists a x0 ∈ M0 such that x0 ∈ Ws(E0). Then we can find a list of
{xn} ⊂ M0 such that

‖ �(t, xn) − E0 ‖Y <
1

n
, t ≥ 0.

Denote �(t, xn) = (Sn(t), In(t), Tn(t), en(t, ·), rn(t, ·)). Then for all t ≥ 0, we have

�

μ
− 1

n
< Sn(t) <

�

μ
+ 1

n

and �(t, xn) ⊂ M0. From the system (1), we know that there exists t0 ≥ 0 such that
I (t) > 0 for t ≥ t0 or T (t) > 0 for t ≥ t0, so without loss of generality, we can take
t0 = 0 and I (0) > 0. Since R0 > 1, we can choose sufficiently large n such that
�
μ

> 1
n and

f (n) = β(�
μ

− 1
n )

γ + μ + μI
(K1 + K2K3)
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+γ (αK2 + (1 − η)ρ1 + (βρ(�
μ

− 1
n ) + ηρ1)(K1 + K2K3))

(γ + μ + μI )(μ + μT + α + ρ1)
> 1

Now we construct the following system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d Î (t)

dt
=

∫ +∞

0
σ(a)ê(t, a)da +

∫ +∞

0
ω(θ)r̂(t, θ)dθ + (1 − η)ρ1T̂ − (γ + μ + μI ) Î (t),

dT̂ (t)

dt
= γ Î (t) − (μ + μT + α + ρ1)T̂ (t),

∂ ê(t, a)

∂t
+ ∂ ê(t, a)

∂a
= −(μ + δ(a) + σ(a))ê(t, a),

∂ r̂(t, θ)

∂t
+ ∂ r̂(t, θ)

∂θ
= −(μ + ω(θ))r̂(t, θ),

ê(t, 0) = β(
�

μ
− 1

n
)( Î + ρT̂ ) + ηρ1T̂ , r̂(t, 0) =

∫ +∞

0
δ(a)ê(t, a)da + αT̂ ,

ê(0, a) = e0(a), r̂(0, θ) = r0(θ), Î (0) = i0, T̂ (0) = t0.

(18)

Using similar analysis as in Sect. 2, we can get existence, uniqueness and nonnegative
of solution to system (18). By the comparison principle, we know

I (t) ≥ Î (t), T (t) ≥ T̂ (t), e(t, s) ≥ ê(t, s), r(t, s) ≥ r̂(t, s). (19)

By use of Volterra formulation (6), we have

ê(t, θ) =
⎧
⎨

⎩

ê(t − a, 0)k1(a), 0 ≤ a ≤ t,

e0(a − t)
k1(a)

k1(a − t)
, 0 ≤ t < a,

r̂(t, θ) =
⎧
⎨

⎩

r̂(t − θ, 0)k2(θ), 0 ≤ θ ≤ t,

r0(θ − t)
k2(θ)

k2(θ − t)
, 0 ≤ t < θ.

(20)

Substituting (20) into the first two equations of (18) yield

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d Î (t)

dt
≥

∫ t

0
σ(a)k1(a)[β(

�

μ
− 1

n
)( Î (t − a) + ρT̂ (t − a)) + ηρ1T̂ (t − a)]da

+
∫ t

0
ω(θ)k2(θ)αT̂ (t − θ)dθ + (1 − η)ρ1T̂ (t) − (γ + μ + μI ) Î (t)

+
∫ t

0
ω(θ)k2(θ)

∫ t−θ

0
δ(a)k1(a)[β(

�

μ
− 1

n
)( Î (t − θ − a) + ρT̂ (t − θ − a))

+ ηρ1T̂ (t − θ − a)]dθ,

dT̂ (t)

dt
= γ Î (t) − (μ + μT + α + ρ1)T̂ (t),

Î (0) = i0, T̂ (0) = t0.

(21)
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We can claim that at least one of Î (t), T̂ (t) is unbounded. Otherwise, we can use
Laplace transform in the first two inequations of (21) yield

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− Î (0) + λL[ Î ](λ) ≥ L[u1](λ)L[ Î ](λ) + L[u2](λ)L[T̂ ](λ) − (γ + μ + μI )L[ Î ](λ)

+ (1 − η)ρ1L[T̂ ](λ) + L[ω](λ)L[u3](λ)L[ Î ](λ)

+ L[ω](λ)L[u4](λ)L[T̂ ](λ) + L[ω](λ)αL[T̂ ](λ)

− T̂ (0) + λL[T̂ ](λ) = γL[ Î ](λ) − (μ + μT + α + ρ1)L[T̂ ](λ),

(22)

where

L[ Î ](λ) =
∫ +∞
0

e−λt Î (t)dt, L[T̂ ](λ) =
∫ +∞
0

e−λt T̂ (t)dt,

L[u1](λ) =
∫ ∞
0

σ(a)k1(a)β(
�

μ
− 1

n
)e−λada,L[u3](λ) =

∫ ∞
0

δ(a)k1(a)β(
�

μ
− 1

n
)e−λada,

L[u2](λ) =
∫ ∞
0

σ(a)k1(a)[β(
�

μ
− 1

n
)ρ + ηρ1]e−λada,

L[u4](λ) =
∫ ∞
0

δ(a)k1(a)[β(
�

μ
− 1

n
)ρ + ηρ1]e−λada, L[ω](λ) =

∫ +∞
0

ω(θ)k2(θ)e−λθdθ.

After a simple calculation, we obtain

((λ + γ + μ + μI ) − L[u1](λ) − γ

λ + μ + μT + α + ρ1
(L[u2](λ) + (1 − η)ρ1

+ L[ω](λ)L[u4](λ) + L[ω](λ)α) − L[ω](λ)L[u3](λ))L[ Î ](λ)

≥ Î (0) + L[u2](λ) + (1 − η)ρ1 + L[ω](λ)L[u4](λ) + L[ω](λ)α

λ + μ + μT + α + ρ1
T̂ (0) > 0

(23)

L[ui ](λ) → L[ui ](0), (i = 1, 2, 3, 4),L[ω](λ) → L[ω](0) as λ → 0 by the Domi-
nated Convergence Theorem.

Since

((λ + γ + μ + μI ) − L[u1](λ) − γ

λ + μ + μT + α + ρ1
(L[u2](λ) + (1 − η)ρ1

+L[ω](λ)L[u4](λ) + L[ω](λ)α) − L[ω](λ)L[u3](λ)) |λ=0= (γ + μ + μI )(1 − f (n)) < 0,

then there exists ε > 0 such that

(λ + γ + μ + μI ) − L[u1](λ) − γ

λ + μ + μT + α + ρ1
(L[u2](λ) + (1 − η)ρ1

+L[ω](λ)L[u4](λ) + L[ω](λ)α) − L[ω](λ)L[u3](λ) < 0,

for all λ ∈ [0, ε). According to (23), we have L[ Î ](λ) < 0 for all λ ∈ (0, ε). But
this contradicts the nonnegative of Î (t)(t ≥ 0). Hence, at least one of Î (t), T̂ (t) is
unbounded. Since I (t) ≥ Î (t), T (t) ≥ T̂ (t), we get that at least one of I (t), T (t)
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is unbounded. This contradicts the Proposition 3. Therefore, Ws(E0) ∩ M0 = ∅.
By Theorem 4.2 in Hale and Waltman (1989) , we get that semiflow {�(t, ·)}t≥0
generated by system (1) is uniformly persistent. By Theorem 3.7 in Magal and Zhao
(2005), we get that there exists a compact subsetA0 ⊂ M0 which is a global attractor
for {�(t, ·)}t≥0 in M0. 	


4.2 Global stablility

Theorem 7 The disease-free equilibrium E0 of system (1) is globally asymptotically
stable ifR0 < 1.

Proof Let g(x) = x − ln x − 1, note that g(x) is non-negative and continuous in
(0,+∞) with a unique root at x = 1. Using similar arguments to the proof of Lemma
4.2 in Browne and Pilyugin (2013), we can get that any solution in A satisfies that
S(t) > 0 for t ∈ R (In Theorem 2, we have proved that A exists). Next, we construct
the following Lyapunov function L = L0 + L1 + L2 + L3+ L4 on the global attractor
A, by the compactness of A, we can easily deduce L is bounded on A, where

L0 = (K1 + K2K3)S
0g(

S

S0
), S0 = �

μ
,

L1 =
∫ +∞

0
F1(a)e(t, a)da, F1(a) =

∫ +∞

a
(σ (u) + K2δ(u))e− ∫ u

a (μ+σ(s)+δ(s))dsdu,

L2 = I , L3 =
∫ +∞

0
F2(θ)r(t, θ)dθ, F2(θ) =

∫ +∞

θ

ω(u)e− ∫ u
θ (μ+ω(s))dsdu,

L4 = AT , A = (K1 + K2K3)(β
�
μ

ρ + ηρ1) + αK2 + (1 − η)ρ1

μ + μT + α + ρ1
.

Calculating the derivative of L0,L1, L2, L3, L4 along solutions of system (1),
respectively. We can deduce

L̇0 = (K1 + K2K3)(−μ
(S − S0)2

S
− (S − S0)β(I + ρT )),

L̇1 = − ∫ +∞
0 F1(a)((μ + σ(a) + δ(a))e(t, a) + ∂e

∂a
)da

= F1(0)e(t, 0) − ∫ +∞
0 (σ (a) + K2δ(a))e(t, a)da

= (K1 + K2K3)(βS(I + ρT ) + ηρ1T ) − ∫ +∞
0 (σ (a) + K2δ(a))e(t, a)da,

L̇2 = ∫ +∞
0 σ(a)e(t, a)da + ∫ +∞

0 ω(θ)r(t, θ)dθ + (1 − η)ρ1T − (γ + μ + μI )I (t),
L̇3 = K2(

∫ +∞
0 δ(a)e(t, a)da + αT ) − ∫ +∞

0 ω(θ)r(t, θ)dθ,

L̇4 = A(γ I (t) − (μ + μt + α + ρ1)T (t)).

Therefore,

dL

dt
= −(K1 + K2K3)μ

(S − S0)2

S
+ I

γ + μ + μI
(R0 − 1).
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Notice that if R0 < 1, then dL
dt ≤ 0 holds. According to the proof of the Theorem

4.3 in Guo et al. (2019), we can easily obtain that A = {E0}. This proves that E0 is
globally asymptotically stable. The proof is complete. 	


If R0 > 1, we have know that the system (1) is uniformly persistent and has a
global attractor A0 in M0. Let x ∈ A0, we can find a complete orbit {�(t, ·)}t∈R
through x inA0. By similar analytical method used in [ Browne and Pilyugin (2013),
subsection 3.2], system (1) can be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= � − βS(I + ρT ) − μS,

d I (t)

dt
=

∫ +∞

0
σ(a)e(t, a)da +

∫ +∞

0
ω(θ)r(t, θ)dθ + (1 − η)ρ1T

− (γ + μ + μI )I (t),

dT (t)

dt
= γ I (t) − (μ + μT + α + ρ1)T (t),

e(t, a) = k1(a)(βS(t − a)(I (t − a) + ρ(t − a)T (t − a)) + ηρ1T (t − a)),

r(t, θ) = k2(θ)

∫ +∞

0
δ(a)e(t − θ, a)da + αT (t − θ),

(S(0), I (0), T (0), e(0, a), r(0, θ)) ∈ A0.

(24)

In order to study the global stability of E∗, we first prove the following lemma.

Lemma 3 There exist ε, M > 0 such that all solutions in A0 for t ∈ R, the following
inequalities are satisfied

ε ≤ S(t), I (t), T (t) ≤ M, (βε2(1 + ρ) + ηρ1ε)k1(a) ≤ e(t, a)

≤ (βM2(1 + ρ) + ηρ1M)k1(a),

((βε2(1 + ρ) + ηρ1ε)K3 + αε)k2(θ) ≤ r(t, θ) ≤ ((βM2(1 + ρ)

+ηρ1M)K3 + αM)k2(θ).

Proof Let (S(t), I (t), T (t), e(t, a), r(t, θ)) ∈ A0. First we prove that S(t) > 0 for
t ∈ R. We assume that there exists t1 ∈ R such that S(t1) = 0. From (24) we have
dS(t1)

dt
≥ � > 0, then ∃ η1 > 0 such that S(t1 − η1) < 0. This contradicts the

A0 ⊂ M0. Thus S(t) > 0 for t ∈ R.
Next we prove that I (t) > 0, T (t) > 0 for t ∈ R. First we assume that there exists

t0 ∈ R such that I (t0) = 0 and T (t0) = 0, then according to I (t), T (t) equations in
(24), we can deduce that I (t) = 0, T (t) = 0 for t ≤ t0. Next, form (24) we know∫ +∞
0 e(t, a)da = 0,

∫ +∞
0 r(t, θ)dθ = 0 for all t ≤ t0. This contradicts theA0 ⊂ M0.

On the other hand, we assume that there exists t0 ∈ R such that one of I (t0), T (t0)
is positive, so without loss of generality we assume that I (t0) = 0, T (t0) > 0. From

(24) we have
d I (t0)

dt
≥ (1 − η)ρ1T (t0) > 0, then ∃ η2 > 0 such that I (t0 − η2) < 0.
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This contradicts the A0 ⊂ M0. Hence, I (t) > 0, T (t) > 0 for all t ∈ R. In addition,
from (24), we deduce that e(t, a) > 0, r(t, θ) > 0 for t ∈ R, a, θ ∈ R+.

According to the compactness of A0, we know there exist ε, M > 0 such that

ε ≤ S(t), I (t), T (t) ≤ M, (βε2(1 + ρ) + ηρ1ε)k1(a) ≤ e(t, a)

≤ (βM2(1 + ρ) + ηρ1M)k1(a),

((βε2(1 + ρ) + ηρ1ε)K3 + αε)k2(θ) ≤ r(t, θ) ≤ ((βM2(1 + ρ) + ηρ1M)K3

+αM)k2(θ).

The proof is complete. 	

Theorem 8 IfR0 > 1, then endemic equilibrium E∗ of system (1) is globally asymp-
totically stable in M0.

Proof We define the following Lyapunov function V = V1 + V2 + V3 + V4 + V5 on
the global attractor A0 (In Theorem 6, we have proved that A0 exists), using Lemma
3, we can easily deduce V is bounded on A0, where

V1 = (K1 + K2K3)S
∗g( S

S∗ ), V2 =
∫ +∞

0
A(a)e∗(a)g(

e(t, a)

e∗(a)
)da,

V3 = I ∗g( I

I ∗ ), V4 = AT ∗g( T

T ∗ ), V5 =
∫ +∞

0
B(θ)r∗(θ)g(

r(t, θ)

r∗(θ)
)dθ,

and

A(a) =
∫ +∞

a
(σ (u) + K2δ(u))e− ∫ u

a (μ+σ(s)+δ(s))dsda,

B(θ) =
∫ +∞

θ

ω(u)e− ∫ u
θ (μ+ω(s))dsdθ,

A = (1 − η)ρ1T ∗

γ I ∗ + (K1 + K2K3)(βρS∗T ∗ + ηρ1T ∗) + K2αT ∗

γ I ∗ .

Calculating the derivative of V along a solution in A0 . When calculate the time
derivative of V1, we notice that � = βS∗(I ∗ + ρT ∗) + μS∗.

dV1
dt

= (K1 + K2K3)

(

1 − S∗

S
)(βS∗(I ∗ + ρT ∗

)

+ μS∗ − βS(I + ρT ) − μS)

= −(K1 + K2K3)μ
(S − S∗)2

S
+ (K1 + K2K3)βS∗ I ∗

(

1 − SI

S∗ I ∗ − S∗

S
+ I

I ∗

)

+(K1 + K2K3)βρS∗T ∗
(

1 − SI

S∗ I ∗ − S∗

S
+ T

T ∗

)

dV2
dt

= ∫ +∞
0 A(a)(1 − e∗(a)

e(t, a)
)
∂e(t, a)

∂t
da

= − ∫ +∞
0 A(a)(1 − e∗(a)

e(t, a)
)(

∂e(t, a)

∂a
+ (μ + δ(a) + σ(a))e(t, a))da
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By using

∂

∂a
g

(
e(t, a)

e∗(a)

)

= 1

e∗(a)

(

1 − e∗(a)

e(t, a)

) (
∂e(t, a)

∂a
+ (μ + δ(a) + σ(a))e(t, a)

)

,

A′(a) = −(σ (a) + K2δ(a)) + A(a)(μ + σ(a) + δ(a))

we have

dV2
dt

= − ∫ +∞
0 A(a)e∗(a)

∂

∂a
g

(
e(t, a)

e∗(a)

)

da

= A(0)e∗(0)g
(
e(t, 0)

e∗(0)

)

− ∫ +∞
0 (σ (a) + K2δ(a))e∗(a)g

(
e(t, a)

e∗(a)

)

da

= (K1 + K2K3)(βSI + βρST + ηρ1T − βS∗ I ∗ − βρS∗T ∗ − ηρ1T ∗ − (βS∗ I ∗

+βρS∗T ∗ + ηρ1T ∗) ln e(t, 0)

e∗(0)
) − ∫ +∞

0 (σ (a) + K2δ(a))e∗(a)g

(
e(t, a)

e∗(a)

)

da.

When calculate the time derivative of V3, we notice that

γ + μ + μI = 1

I ∗

(∫ +∞

0
σ(a)e∗(a)da +

∫ +∞

0
ω(θ)r∗(θ)dθ + (1 − η)ρ1T

∗)
)

.

dV3
dt

=
(

1 − I ∗

I

)

(
∫ +∞
0 σ(a)e(t, a)da + ∫ +∞

0 ω(θ)r(t, θ)dθ + (1 − η)ρ1T

− I

I ∗ (
∫ +∞
0 σ(a)e∗(a)da + ∫ +∞

0 ω(θ)r∗(θ)dθ + (1 − η)ρ1T ∗))

= ∫ +∞
0 σ(a)e∗(a)(

e(t, a)

e∗(a)
− I

I ∗ − e(t, a)I ∗

e∗(a)I
+ 1)da

+ ∫ +∞
0 ω(θ)r∗(θ)(

r(t, θ)

r∗(θ)
− I

I ∗ − r(t, θ)I ∗

r∗(θ)I
+ 1)dθ

+(1 − η)ρ1T ∗( T

T ∗ − I

I ∗ − I ∗T
I T ∗ + 1).

Notice that μ + μT + α + ρ1 = I ∗

T ∗ γ , we can get

dV4
dt

= Aγ I ∗
(

I

I ∗ − T

T ∗ − T ∗ I
T I ∗ + 1

)

.

dV5
dt

= ∫ +∞
0 B(θ)

(

1 − r∗(θ)

r(t, θ)

)
∂r(t, θ)

∂t
dθ

= − ∫ +∞
0 B(θ)

(

1 − r∗(θ)

r(t, θ)

) (
∂r(t, θ)

∂θ
+ (μ + ω(θ))r(t, θ)

)

dθ

By using

∂

∂a
g(

r(t, θ)

r∗(θ)
) = 1

r∗(θ)

(

1 − r∗(θ)

r(t, θ)

)(
∂r(t, θ)

∂θ
+ (μ + ω(θ))r(t, θ)

)

,

B ′(θ) = −ω(θ) + B(θ)(μ + ω(θ)),
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we have

dV5
dt

= − ∫ +∞
0 B(θ)r∗(θ)

∂

∂θ
g(

r(t, θ)

r∗(θ)
)dθ

= B(0)r∗(0)g(r(t, 0)
r∗(0)

) − ∫ +∞
0 ω(θ)r∗(θ)g(

e(t, θ)

e∗(θ)
)dθ

= K2(−
∫ +∞
0 δ(a)e∗(a)da − αT ∗ + ∫ +∞

0 δ(a)e(t, a)da + αT
−(

∫ +∞
0 δ(a)e∗(a)da

+αT ∗) ln r(t, 0)

r∗(0)
) − ∫ +∞

0 ω(θ)r∗(θ)g(
e(t, θ)

e∗(θ)
)dθ.

Thus,

d
5∑

i=1
Vi

dt
= H1 + H2 + H3 + H4 + H5 + H6 + H7,

where

H1 = −(K1 + K2K3)μ
(S − S∗)2

S
≤ 0

H2 = (K1 + K2K3)βS
∗(I ∗(− S∗

S
+ I

I ∗ − ln
e(t, 0)

e∗(0)
) + ρT ∗(− S∗

S
+ T

T ∗ − ln
e(t, 0)

e∗(0)
))

+(K1 + K2K3)ηρ1(T − T ∗ − T ∗ ln e(t, 0)

e∗(0)
)

= (K1 + K2K3)βS
∗ I ∗(−g(

S∗

S
) + g(

I

I ∗ ) − g(
SI e∗(0)

S∗ I ∗e(t, 0)
) − 1 + SI e∗(0)

S∗ I ∗e(t, 0)
)

+(K1 + K2K3)βρS∗T ∗(−g(
S∗

S
) + g(

T

T ∗ ) − g(
ST e∗(0)

S∗T ∗e(t, 0)
) − 1 + ST e∗(0)

S∗T ∗e(t, 0)
)

+(K1 + K2K3)ηρ1(T − T ∗ − T ∗ ln e(t, 0)

e∗(0)
)

= (K1 + K2K3)βS
∗(I ∗(−g(

S∗

S
) + g(

I

I ∗ ) − g(
SI e∗(0)

S∗ I ∗e(t, 0)
)) + ρT ∗(−g(

S∗

S
) + g(

T

T ∗ )

−g(
ST e∗(0)

S∗T ∗e(t, 0)
))) + (K1 + K2K3)(ηρ1T

∗ − ηρ1T
e∗(0)
e(t, 0)

)

+(K1 + K2K3)ηρ1(T − T ∗ − T ∗ ln e(t, 0)

e∗(0)
)

= (K1 + K2K3)βS
∗(I ∗(−g(

S∗

S
) + g(

I

I ∗ ) − g(
SI e∗(0)

S∗ I ∗e(t, 0)
)) + ρT ∗(−g(

S∗

S
) + g(

T

T ∗ )

−g(
ST e∗(0)

S∗T ∗e(t, 0)
))) + (K1 + K2K3)ηρ1T

∗(g( T

T ∗ ) − g(
e∗(0)T
e(t, 0)T ∗ ))

H3 =
∫ +∞

0
σ(a)e∗(a)(1 + ln

e(t, a)

e∗(a)
− I

I ∗ − e(t, a)I ∗

e∗(a)I
+ 1)da

=
∫ +∞

0
σ(a)e∗(a)(−g(

I

I ∗ ) − g(
e(t, a)I ∗

e∗(a)I
))da

= −
∫ +∞

0
σ(a)e∗(a)g(

e(t, a)I ∗

e∗(a)I
)da − K1(βS

∗ I ∗g( I

I ∗ ) + βρS∗T ∗g( I

I ∗ ) + ηρ1T
∗g( I

I ∗ ))

H4 = K2

∫ +∞

0
δ(a)e∗(a)(ln

e(t, a)

e∗(a)
− ln

r(t, 0)

r∗(0)
)da + K2αT − K2αT

∗ − K2αT
∗ ln r(t, 0)

r∗(0)
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= K2

∫ +∞

0
δ(a)e∗(a)(−g(

e(t, a)r∗(0)
e∗(a)r(t, 0)

) − 1 + e(t, a)r∗(0)
e∗(a)r(t, 0)

)da

+K2α(T − T ∗ − T ∗ ln r(t, 0)

r∗(0)
)

= −K2

∫ +∞

0
δ(a)e∗(a)g(

e(t, a)r∗(0)
e∗(a)r(t, 0)

)da − K2αT
r∗(0)
r(t, 0)

+ K2αT − K2αT
∗ ln r(t, 0)

r∗(0)

= −K2

∫ +∞

0
δ(a)e∗(a)g(

e(t, a)r∗(0)
e∗(a)r(t, 0)

)da + K2αT
∗(g( T

T ∗ ) − g(
Tr∗(0)
T ∗r(t, 0)

))

H5 =
∫ +∞

0
ω(θ)r∗(θ)(− I

I ∗ − r(t, θ)I ∗

r∗(θ)I
+ 1 + 1 + ln

r(t, θ)

r∗(θ)
)dθ

=
∫ +∞

0
ω(θ)r∗(θ)(−g(

I

I ∗ ) − g(
r(t, θ)I ∗

r∗(θ)I
))dθ

= −
∫ +∞

0
ω(θ)r∗(θ)g(

r(t, θ)I ∗

r∗(θ)I
)dθ − K2αT

∗g( I

I ∗ ) − K2K3βS
∗ I ∗g( I

I ∗ )

−K2K3βρS∗T ∗g( I

I ∗ ) − K2K3ηρ1T
∗g( I

I ∗ )

H6 = ((K1 + K2K3)(βρS∗T ∗ + ηρ1T
∗) + K2αT

∗)( I

I ∗ − T

T ∗ − I T ∗

I ∗T
+ 1)

H7 = (1 − η)ρ1T
∗(− I ∗T

I T ∗ − T ∗ I
T I ∗ + 2) ≤ 0

6∑

i=2

Hi = −(K1 + K2K3)βS
∗(I ∗(g( S

∗

S
) + g(

SI e∗(0)
S∗ I ∗e(t, 0)

)) − ρT ∗(g( S
∗

S
) + g(

ST e∗(0)
S∗T ∗e(t, 0)

)))

−(K1 + K2K3)ηρ1T
∗g( e∗(0)T

e(t, 0)T ∗ ) −
∫ +∞

0
σ(a)e∗(a)g(

e(t, a)I ∗

e∗(a)I
)da −

K2(

∫ +∞

0
δ(a)e∗(a)g(

e(t, a)r∗(0)
e∗(a)r(t, 0)

)da + αT ∗g( Tr∗(0)
T ∗r(t, 0)

))

−
∫ +∞

0
ω(θ)r∗(θ)g(

r(t, θ)I ∗

r∗(θ)I
)dθ

+((K1 + K2K3)(βρS∗T ∗ + ηρ1T
∗) + K2αT

∗)(g( T

T ∗ ) − g(
I

I ∗ ))

+((K1 + K2K3)(βρS∗T ∗ + ηρ1T
∗) + K2αT

∗)( I

I ∗ − T

T ∗ − I T ∗

I ∗T
+ 1)

= −(K1 + K2K3)βS
∗(I ∗(g( S

∗

S
) + g(

SI e∗(0)
S∗ I ∗e(t, 0)

)) − ρT ∗(g( S
∗

S
) + g(

ST e∗(0)
S∗T ∗e(t, 0)

)))

−(K1 + K2K3)ηρ1T
∗g( e∗(0)T

e(t, 0)T ∗ ) −
∫ +∞

0
σ(a)e∗(a)g(

e(t, a)I ∗

e∗(a)I
)da −

K2(

∫ +∞

0
δ(a)e∗(a)g(

e(t, a)r∗(0)
e∗(a)r(t, 0)

)da + αT ∗g( Tr∗(0)
T ∗r(t, 0)

))

−
∫ +∞

0
ω(θ)r∗(θ)g(

r(t, θ)I ∗

r∗(θ)I
)dθ

−((K1 + K2K3)(βρS∗T ∗ + ηρ1T
∗) + K2αT

∗)g(T
∗ I

T I ∗ ).
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Table 2 New TB cases from 2007 to 2018 in China (persons)

Year 2007 2008 2009 2010 2011 2012

Cases 1,163,959 1,169,540 1,076,938 991,350 953,275 951,508

Year 2013 2014 2015 2016 2017 2018

Cases 904,434 889,381 864,015 836,236 835,193 823,342

It follows from the non-negativity of g, we know that
dV

dt
≤ 0, and according to the

proof of the Theorem 4.3 in Guo et al. (2019), we can easily obtain that A0 = {E∗}.
This proves that E∗ is globally asymptotically stable. The proof is complete. 	


5 Study on TB control strategy in China

5.1 Data fitting

In this section, we firstly use the system (1) to simulate the annual new TB cases data
of China from 2007 to 2018, then we predict whether current tuberculosis control
measures in China will be able to achieve the WHO End TB Strategy in 2030. To do
so, we need to estimate the parameters of system (1). Some of the parameters in our
model are distributed, which is different from ODE models, and we believe that the
parameter values may be different due to different research groups and different time
units. According to the WHO (2019) report in 2018, the TB incidence rate is falling,
and the treatment success rate is also falling. Through the analysis of these data, it
can be found that the parameter values in system (1) are related to the time of the
study. Thus, some of parameters are fitted. According to the data from the National
Bureau of Statistics of China (2019), the average birth population and the average
naturalmortality rate between 2007 and 2018 are� = 16,439,333 persons year−1 and
μ = 1/74.83 year−1, respectively, and the number of the initial susceptible population
S(0) = 1,314,480,000 person. The number of new TB cases (Table 2) come from the
Chinacdc (2019).

Next, we estimate the unknown parameters and initial values

θ̂ = (β, δ, ρ, σ1, σ2, δ1, δ2, ω1, ω2, η, ρ1, μI , μT , α, e(0), I (0), T (0), r(0))

of system (1), where we assume δ(a) = δ1e−δ2a , σ(a) = σ1e−σ2a , ω(a) = ω1e−ω2a ,
e0(a) = e(0)δ2e−δ2a , r0(θ) = r(0)ω2e−ω2θ .

Let P(t, θ̂ ) be the number of new TB cases from model (1) at the t th year, then
P(t, θ̂ ) can be written as

P(t, θ̂ ) = X(t) − X(t − 1),
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Table 3 The parameter values of model (1)

Parameter Value Units Source Parameter Value Units Source

β 1.1479 × 10−10 Persons−1 Year−1 Fitting δ1 0.0890 None Fitting

δ2 0.2393 None Fitting σ1 0.1804 None Fitting

σ2 0.2390 None Fitting ω1 0.1861 None Fitting

ω2 0.0710 None Fitting η 0.4027 None Fitting

ρ1 0.0153 Year−1 Fitting μI 0.0056 Year−1 Fitting

μt 0.0225 Year−1 Fitting α 0.0013 Year−1 Fitting

ρ 0.4387 None Fitting γ 1.0363 Year−1 Fitting

e(0) 5221333 None Fitting I (0) 5011912 Persons Fitting

T (0) 8995935 Persons Fitting r(0) 7493719 None Fitting

where X(t) represents the cumulative number of people infected with TB by the t th

year, and satisfies the following equation

dX(t)

dt
=

∫ +∞

0
σ(a)e(t, a)da +

∫ +∞

0
ω(θ)r(t, θ)dθ + (1 − η)ρ1T .

Thus, we use P(t, θ̂ ) to simulate the new TB cases per year. We are attracted by the
advantages of algorithms mentioned in Seyedali Mirjalili (2014) when reading it, and
we find that the convergence was good and the error was small after combining with
the model (1) (the mean absolute percentage error of TB cases is 0.75%). By Grey
Wolf Optimizer (GWO) algorithm, we estimate the optimal parameters and initial
values for model (1) (Table 3).

The comparison between the new TB cases in China from 2007 to 2018 and the
simulation of P(t, θ̂ ) from model (1) is given in Fig. 2. Moreover, we also find the
basic reproduction numbersR0 = 1.0608.

Remark 1 By comparison with Moualeu et al. (2015), it can be found that the trans-
mission rate of the Moualeu et al. (2015) is β3 = 6.33563 × 10−6, while that of this
paper is β = 1.1479 × 10−10. Analysis shows that the Moualeu et al. (2015) studies
the transmission of TB in Cameroon from 1994 to 2010, and the new cases of TB in
Cameroon increased rapidly during this period. In this paper, we used new TB cases
in China from 2007 to 2018, during which the number of new TB cases in China
decreased gradually. Therefore, the transmission rate of this paper is much lower than
that of Moualeu et al. (2015). This is also why some parameters in this paper need
to be estimated. Parameter estimation is very important for studying the transmission
of TB. Arregui et al. (2018) and Dowdy et al. (2013) also provide some methods to
analyze the parameters in tuberculosis models.

Remark 2 The GWO algorithm mimics the leadership hierarchy and hunting mecha-
nism of grey wolves in nature. Four types of grey wolves such as alpha, beta, delta,
and omega are employed for simulating the leadership hierarchy. In addition, the three
main steps of hunting, searching for prey, encircling prey, and attacking prey, are
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Fig. 2 Fitting for the annual new TB cases in China for model (1)

implemented. Twenty nine test functions were employed in order to benchmark the
performance of the proposed algorithm in terms of exploration, exploitation, local
optima avoidance, and convergence. The goal of this paper is to minimize the target
function

min z =
12∑

i=1

(P(t, θ̂ ) − r(t))2

where r(t) represents the actual number of new TB cases at the t th year.

5.2 Uncertainty and sensitivity analysis ofR0

The outputs of system (1) is governed by the system input parameters and the initial
values, but some of these parameters and initial values are obtained by data fitting,
which may exhibit some uncertainty in their selection. The purpose of uncertainty
analysis (UA) (Samsuzzoha et al. 2013; Ghosh et al. 2018; Marino et al. 2008) is
to determine the reliability of parameter estimates. To ensure the reliability of the
estimates of β, ρ1, γ, μI , μt , α, ρ, η obtained through the GWO, we employ Markov
Chain Monte Carlo (MCMC) method with Delayed Rejection and Adaptive Metropo-
lis (DRAM) algorithm (DRAM is an algorithm combining DR and AM in MCMC
method, and the efficiency of the combination is demonstrated with various exam-
ples in Haario et al. (2006)). The convergence of the chain is confirmed by using the
Geweke’s Z-scores (According to the MCMC program (MCMC 2019), the closer the
Geweke’s Z-score is to 1, the better the convergence of Markov Chain) . The mean,
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Table 4 The parameters values and initial values of the model (1)

Parameter Mean Std 95% CI Z-score

β 1.14635 × 10−10 1.32761 × 10−11 [1.14577 × 10−10, 1.14694 × 10−10] 0.99422

ρ1 0.015330451 0.001763365 [0.015322723, 0.015338179] 0.99863

γ 1.035277047 0.119263161 [1.03475436, 1.035799735] 0.99937

μI 0.005602792 0.000652192 [0.005599933, 0.00560565] 0.99368

μt 0.022586015 0.002593855 [0.022574647,0.022597383] 0.97873

α 0.001254131 0.000145602 [0.001253493, 0.001254769] 0.99564

ρ 0.438536591 0.050638075 [0.438314662, 0.438758519] 0.99905

η 0.402338568 0.046376585 [0.402135316, 0.40254182] 0.99973
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Fig. 3 The fitting results of the number of new TB cases reported from 2007 to 2018. The solid black line
represents the fitted data, and the red dots represent the actual data. The areas from the darkest to the lightest
correspond to the 50%, 90%, 95% and 99% posterior limits of the model uncertainty

standard deviation and 95% confidence interval of the estimated parameters are shown
in Table 4, and the fitting result can be seen in Fig. 3.

Sensitivity analysis (SA) is to identify critical parameters that have significant
impact on the basic reproduction numbers R0 and to quantify how parameters
uncertainty impact R0. Now, a global sensitivity analysis is usually implemented
by using sampling-based methods. We will use partial rank correlation coef-
ficient (PRCC) method to study SA. For the parameters in Table 3, we fix
σ1, σ2, δ1, δ2, ω1, ω2, e(0), I (0), T (0), r(0), other parameters are considered to obey
normal distribution, their mean and standard deviation are shown in Table 4. The
sampling method is Latin hypercube sampling(LHS). We draw 1000 samples and
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obtain distribution histogram of the basic reproduction numberR0 (see Fig. 4). From
Fig. 4, we know that the distribution of the basic reproduction number in the range
[0.6838, 1.5672], and the average is 1.0660. Combined with the analysis in Sect. 4, we
can conclude that under current control measures, the possibility of extinction of TB
is small. We calculate the PRCC between the parameters and the basic reproduction
number R0 (see Fig. 5).

From the PRCC values, we can know that β, μt , ρ have the most important impact
onR0,β represents the transmission rate coefficient of TB, andβ is in direct proportion
to bc, b represents the number of times an infected person has contact with other person
per unit time, c represents the probability of infection per contact. ρ represents reduce
the rate of transmission due to treatment.μt represents the death rate due to treatment.
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Fig. 6 The LHS scheme

The major software packages we used for our analysis were GWO, LHS, PRCC
and MCMC, all of which can be found on the websites GWO (2019), LHS (2019),
MCMC (2019).

Remark 3 We explain the specific steps of the LHS-PRCC scheme by studying the
relationship between parameters parameters x1, x2, x3 and output y = f (x1, x2, x3).

Step 1 Take uniform distribution as an example, the parameter distributions are
divided into N equal probability intervals, which are then sampled. N represents the
sample size (see Fig. 6).

xi ∼ Uni f (ximin, ximax ), i = 1, 2, 3.

Step 2We set up the LHS matrix by assembling the samples from each probability
density functions. Each row of the LHS matrix represents a unique combination of
parameter values sampled.

X =

⎛

⎜
⎜
⎜
⎜
⎝

x11 x21 x31
x12 x22 x32
x13 x23 x33
x14 x24 x34
x15 x25 x35

⎞

⎟
⎟
⎟
⎟
⎠

−→ Y =

⎛

⎜
⎜
⎜
⎜
⎝

y1 = f (x11, x21, x31) = 2.1
y2 = f (x12, x22, x32) = 3.2
y3 = f (x13, x23, x33) = 2.4
y4 = f (x14, x24, x34) = 1.7
y5 = f (x15, x25, x35) = 2.2

⎞

⎟
⎟
⎟
⎟
⎠

Step 3Next, X and Y are rank transformed to XR and YR in order from small to large.

XR = (XR1, XR2, XR3) =

⎛

⎜
⎜
⎜
⎜
⎝

5 3 1
1 2 3
2 1 2
4 5 4
3 4 5

⎞

⎟
⎟
⎟
⎟
⎠

−→ YR =

⎛

⎜
⎜
⎜
⎜
⎝

y1 = f (x11, x21, x31) = 2
y2 = f (x12, x22, x32) = 5
y3 = f (x13, x23, x33) = 4
y4 = f (x14, x24, x34) = 1
y5 = f (x15, x25, x35) = 3

⎞

⎟
⎟
⎟
⎟
⎠

Step 4 We calculate the residuals X1 = XR1 − X̂ R1 and Y1 = YR − ŶR , where X̂ R1
and ŶR are the following linear regression models:

X̂ R1 = c0 + k2XR2 + k3XR3, ŶR = b0 + p2XR2 + p3XR3.

Then

rx1y = Cov(X1,Y1)√
Var(X1)Var(Y1)
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is the PRCC between x1 and y. In the same way, we can calculate the PRCC between
x2 and y, and the PRCC between x1 and y.

5.3 Feasible measures of reachingWHO End TB strategy

Over the past few decades, China has made great efforts to control the spread of
TB, such as vaccination of newborns with BCG and active treatment of tuberculosis
patients and so on. However, based on the above theoretical analysis and numerical
simulation results, by using the current TB control measures, China may not reach the
WHO’s goal by 2030. To do so, China should give more feasible control measures.
In the above analysis, we know that β, μt , ρ are the most important factors for TB
control. Next, we adjust β, ρ to predict whether an optimal control measure can be
given to achieve the WHO’s goal by 2030.

We use the parameter values in Table 2 as the baseline to compare the following
control effects. First, we only consider changing the value of parameter β (see Fig. 7),
we can find that the value of β needs to be reduced by 90% to reach the WHO 2030
target. Next, we only consider changing the value of parameter ρ (see Fig. 8), we can
find the value of ρ needs to be reduced by 95% to reach theWHO 2030 target. Finally,
we consider changing both parameter β and parameter ρ (see Fig. 9), we can find
that if we can reduce parameter β by 70%, and reduce parameter ρ by 70%, then we
will reach the WHO 2030 target. Parameters β and ρ represent the TB transmission
coefficient and the reduction of infectiousness of treated individuals infected with TB,
respectively. Some researchers mentioned that media coverage and public education
campaigns can reduce the transmission coefficient β of disease (Barbara et al. 2020).
Barbara et al. (2020) suggests that the following measure can accelerate progress
toward TB elimination: maintaining awareness of both the incidence of TB disease for
the public through news releases and posting of information online. Take the COVID-
19 pandemic as an example,media coverage and public education campaigns play very
important role in the process of controlling the pandemic. People know more about
the COVID-19 and enhance their self-protecting awareness by the media report about
the COVID-19, and will change their behaviours and take correct precautions such as
frequent hand-washing, wearing masks, reducing the party, keeping social distances,
and even quarantining themselves at home to avoid contactingwith others (CDC2021).
Therefore, if the media strengthen the publicity of tuberculosis and COVID-19, it will
certainly have a good effect (Saunders andEvans 2020; TheLancet InfectiousDiseases
2021). Reducing the contact between treated patients and susceptible individuals can
reduce the parameter ρ.

Currently, the treatment of TB patients in China includes hospitalization and home
treatment, and they are not forced to be hospitalized, so these people may still infect
susceptible individuals. Based on the above analysis, China should strengthen the
publicity of tuberculosis knowledge so that susceptible people can know how to avoid
being infected. Also, patients who are treated with TB should be given longer hospital
stays to reduce their chances of contact with susceptible people. By using these control
measures, China may reach the WHO End TB Strategy in 2030.
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Fig. 7 Prediction of the new TB case with different values of β
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Fig. 8 Prediction of the new TB case with different values of ρ
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Fig. 9 Prediction of the new TB case with different values of β and ρ

6 Discussion

In this study,we used an age-structuredmathematicalmodelwith treatment and relapse
to study the transmission dynamics of TB. Sufficient conditions were derived for the
global asymptotic stability of TB-free equilibrium and the endemic equilibrium. We
estimated model parameters by fitting the annual new TB cases data of China, and
concluded that, by using current tuberculosis control measures, China may not reach
theWHO’s goal by 2030. In order to achieve theWHO’s goal, China needs to develop
more practical control measures. PRCC values of the basic reproduction number,
R0, with respect to some important model parameters demonstrate that the control
measures for the spread of TB include reduction of the TB transmission coefficient
β and reduction of the TB transmission coefficient βρ of treated individuals infected
with TB. These can be achieved through media coverage, public education campaigns
and increased hospital stays for TB patients.

TB is prevalent in many countries including China (Creswell et al. 2014). The
transmission mechanism of TB in different countries is the same, so the TB model
in this paper can be used in the research of TB in other countries, and some feasible
measures to control the transmission of TB can also be put forward by using local data
of TB and some population data such as birth rate and death rate.
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