
PROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 61, Number 1, November 1976

ANALYSIS OF AN EXPONENTIAL EQUATION
WITH ORDINAL VARIABLES1

J. L. HICKMAN

Abstract. This paper is concerned with the analysis of the equation

xy = y1, where x, y, z are variables ranging over ordinals, and where both

sides of the equation are transfinite in value. The method used for this

analysis consists in regarding y as a parameter and x as an independent

variable, and determining necessary and sufficient conditions to be placed

upon x so that the resulting equation in z has a solution. Extensive use is

made of normal form, as well as results in ordinal arithmetic by both

Bachmann and Sherman.

0. We are interested in determining the ordinal solutions of the three-

variable equation xy = yz in which each side assumes a transfinite value. Our

procedure consists in taking y = a as a parameter, and then finding those

ordinals B for which Ba > co and the equation Ba = oz has an ordinal

solution. Since the function zh«' is normal for any given a > I, it is

obvious that for any given B, the equation B" = az has at most one solution.

This of course would not be the case if we interchanged the roles of x and z.

The paper is divided into four sections. This first section is devoted entirely

to the introduction of terminology and the statements of a few known results

that will be used extensively throughout the remainder of the paper. In the

second section we list our results concerning the equation xy = yz, and the

last two sections are devoted to the proofs of these results.

Lower case Greek letters always denote ordinals. Whilst we do not pre-

clude these from taking finite values, we shall generally use small Latin letters "/",

"/', . . . , 'V, "f" for finite ordinals (numbers), and such a letter will invari-

ably denote a number. The first transfinite ordinal is denoted by "co", and we

include 0 among the limit ordinals. For any ordinal a, we put 7(a)

= max(w|; co£ < a}, and F(a) = a - 7(a).

For any ordinal a > 0, there is a unique number n, a unique decreasing

n + 1-sequence (ot!)i<„ of ordinals, and a unique n + 1-sequence (p,),<n of

positive numbers such that

n

a = to>0 + co>! + ■ • -  + co>„ = 2 ">,-
i-O

This is the "normal form" of a, and a proof of the Normal Form Theorem

may be found in [4, p. 323]. Because of the continual use made of normal
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form in this paper, we introduce some notation associated with it.

Let a > 0 have the normal form indicated above. The number n + 1 is

called the "length" of a, and is denoted by "/(a)". For each i < n, we denote

a,, Pj by "e((a)", "Cj(a)", respectively-e0(a), c0(a) are generally known,

respectively, as the degree and coefficient of a, and for typographical reasons

we shall usually omit the subscript 0. Finally, since the ordinal <oa" will also

figure prominently in some of our results, we shall denote this by "A (a)". It

is clearly a prime component and the smallest positive remainder of a. To

avoid wearisome repetition, we adopt the convention that whenever any of

these notations are used, it is assumed that a > 0.

The normal form of a could be said to display the "internal structure" of a,

relative to the particular ordinal w. Because of its dependence upon this

special ordinal w, we feel that, if possible, references to the internal structure

of any ordinal concerned should be eschewed in the statements of theorems;

it seems to us that a theorem stated entirely in terms of "intrinsic" properties

of ordinals is better (as a rule) both from the viewpoint of elegance and of

clarity than one which is not. Hence we have tried to formulate our results in

this manner, but unfortunately we cannot claim complete success in this

respect, since occasionally abolition of internal structure references can be

achieved only at the expense of clarity.

In [1, p. 53], Bachmann gives the following theorem.

For any ordinal 8, put ts = 0 if 8 is limit, is = 1 otherwise. Then for any

ordinals a, B, y such that B + a = a, we have (a + B)y = ay + a,M9(F(y)),

where

(i) 9(0) = 0 and 9(I) = B;
(ii) 9(n) = a"-]B + ip ■ C2nk_2a"-kB), for n > 2.

Our main use of this theorem will be the determination of the normal form

of xpy in terms of that of xp. For if we put a = o)eW)c(^/) and B — xp — a, then

we have xp = a + B and B + a = a, and so Bachmann's result can be

applied.
The third result that we shall find necessary in our analysis of xy = y *

concerns left-divisors of ordinals, and is due to Sherman [3].

Let a, B be positive ordinals, and put n + 1 = 1(a). Then B is a left-divisor

of a if and only if either

(i)B< A (a), or

(ii) B = ueJia)p + ~2j<k<nue"(a)ck(c<), for some/ < n and some factor/? of

Cj(a).

The following consequence of Sherman's result is almost trivial, but it will

be applied sufficiently often in our work to make its explicit statement

worthwhile.

Lemma. Let a, B be positive ordinals. Then there is a limit ordinal X > 0 such

that BX = a if and only if B < A (a).

Proof. Assume that B > R (a), and that BX = a for some ordinal A. Then

by Sherman's result there is some/ < n and some factor/? of Cj(a) such that

B = we>V +    2    ue"(a)ck(a),

j<k<n
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where we are setting n + 1 = /(a). Define the ordinal 8 by

8 = ( 2 u«k(o)-e>(o)ct(a)J + Cj(a)/p.
\k<j I

Routine calculation then gives B8 = a = BX, and so by left-cancellation of B

we obtain 8 = X. Since it is clear that 8 is successor, this proves our lemma in

one direction.

Now assume that B < R(a): then by Sherman's result we must have

B8 = a for some 8. Now if 8 were successor, then B would be a positive

remainder of a, yielding the contradiction B > R (a). Thus 8 must be limit.

This proves our lemma.

1. In this section, we simply state the four theorems whose proofs comprise

the rest of this paper.

Theorem 1. Let a > I be such that 1(a) = 1.

(1) 7/a < to, then for any given B > oo, the equation Ba = az has an ordinal

solution if and only if B = pa" for some prime component p and some number n,

with p > co.

(2) If a > oo, then for any B > 1, the equation B" =■ az has no ordinal

solution if and only if B + a = a = ek for some epsilon ordinal e and some

number k>l,orB<oo<a< oo2.

Theorem 2. Let a = coo be a limit ordinal with 1(a) > 1.

(1) For any B with 1 < B < to, the equation B" = az has an ordinal solution

if and only if a < ooR(a).

(2) For any B > to, the equation B" = az has an ordinal solution if and only

ifa< BR<a\

Theorem 3. Let a > to be a successor ordinal, let the ordinal B > 1 be given,

and let p be the smallest nontrivial (i.e. =£ 1) right-divisor of B.

Then the equation Ba = az has a limit ordinal solution if and only if B = to"{

for some £ > 0 such that p > a.

Theorem 4. Let a, B be given ordinals, with a > oo and successor, and

B > 1. Put a = 7(a), m = F(a), and define m* to be 1 or m according as B is

limit or successor.

Finally, define the ordinals p and r by

p=R(B),       t = R[e(fl)(o + m - m*) + e(p)].

Then the equation Ba = az has a transfinite successor ordinal solution if and

only if there exists n > 0 such that we have a < ooT and pa" = Bm*.

2. In this section we present the proofs of Theorems 1 and 2, and defer the

proofs of the other two results to our next and final section.

Proof of Theorem 1. (1) We put a = m, and assume that z = y is a

solution of the equation Bm = mz: from B > oo, we deduce that y > to, and

can therefore set y = cof + n for some ordinal t > 0, which gives Bm = my

= maSmn = oo^m". But this tells us that 1(B) = I. For suppose not; thus

B = ooe(P)c(B) + B' for some positive B' < ooeU*\ which yields, via Bach-

mann,
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Bm = coe(/?)mc(fl) + ueW(m-x)c(B)B' + X,

where A < coe(^m_I) Js some ordinal whose precise value depends upon that

of ia. But since m > 1, we see from this that l(Bm) > 2, a contradiction, as

Bm = cofw" and l(oosm") = 1. This establishes our claim that 1(B) = 1, and

so B = coc(/3)c(/3). But nowcofmm = B" = coe(fl)mc(B), whence e(B)m = f

and c(B) = m". Letting p be the prime component toc</?), we see that p > u

and B = pm" = pa", which is the required form.

Now assume that B = pa" = pm", for some prime component p > co and

some number n. Now p = coe(p) and e(p) > 1; put y = coe(p)m + n. Then we

have

ay = my = m"eWmm" = coe(p)mm" = pmm" = Bm,

and so the equation Ba = az has the solution z = y.

(2) We first deal with the case in which B is finite, say B = m. Now if

a = oo, then of course m" = oo = a1, and so z = 1 is a solution. Suppose that

w < a < co2, whence a = uk for some A: > 1. Then ma = ook, and since

ak~x = ook~xk < ook < ookk = a*, it is clear that the equation Ba = az has

no ordinal solution in this case.

Next we consider the case in which co2 < a < co", i.e. in which a = oo"k for

some n > 2 and some k > 1. Then m" = co10" 'k. If we now set y = u"~xk, we

have

ay = (o>"k)a"~lk= «"""*.

Thus z = y is a solution of the equation /j"" = az.

Finally in the case of /3 being finite, we assume that a > oo". Then we have
ma = co". Thus if z = y is a solution of Ba = az, we must have w" = ay

= to"'0''1'^, where k = 1 or c(a) according as y is limit or successor. Hence in

fact we must have k = 1 and a = e(a)y.

Conversely, if there is an ordinal y such that a = e(a)y, and if a is such

that c(a) = 1 if y is successor, then we have ay = ue{a)y = co" = m", and

thus z = y is a solution of the equation Ba = az.

Thus it suffices to show that there is an ordinal y such that a = e(a)y and

c(a) = 1 if y is successor if and only if a = ek for no epsilon ordinal e and

number k > 1. Now as 1(a) = 1, we have a = ooe(a)c(a), whence A (a)

= we(a). Thus we always have e(a) < A (a), and so by Sherman's result, there

is always an ordinal y such that a = e(a)y. Furthermore, by our lemma, this

ordinal y is successor if and only if e(a) = A (a). Thus our two conditions

reduce to the single condition that if e(a) = coe(a) then c(a) = 1. We now

show that e(a) = toe(a) if and only if a = eh for some epsilon ordinal e and

some number n > 1. This, however, is trivial, for if e(a) = ooe(a), then e(a) is

an epsilon ordinal and a = e(a)c(a); whilst if a = en, then since e = coE, we

must have e(a) = e and thus e(a) = toe(a). This proves (2) for the case in

which B is finite, for in this case we obviously always have B + a = a.

This leaves us with the case in which B > u, i.e. e(B) > 1. Since a > co

and 1(a) = 1, a must be limit, whence Bachmann's theorem tells us that

B" = we(^)a: furthermore, as before we have ay = ooeWyk, k being 1 or c(a),

according as the ordinal y is limit or successor. Thus, assuming that z = y is aLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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solution of the equation B" = az, we see that k = 1 and e(B)a = e(a)y.

Conversely, if a is such that e(B)a = e(a)y for some y and c(a) = 1 if y is

successor, then z = y is a solution of the equation B" = az.

Now as a = coe(a)c(a) for some e(a) > 1, it is not difficult to see that

R(e(B)a)= W»('(r9))+«W    whence   we   obtain   e(a) < e(e(B)) + e(a)

< R(e(B)a), and so by Sherman's result there is always an ordinal y such

that e(B)a = e(a)y. Moreover, by our lemma, this ordinal y is successor if

and only if e(a) = R(e(B)a) = weM/?)> + «(«>. Thus, analogously to the previ-

ous case, we have reduced the condition of Ba = az having a solution to the

condition that if e(a) = (o«<«<«>+'<°>, then c(a) = 1.

Assume that e(a) = ue(e(P»+e(a\ Since we have of course e(a) < co',(a)

< dj'Wffl+'W this gives e(a) = coe(a), whence as before a = ek for some

k > 1 and some epsilon ordinal e. Furthermore, e(e(B)) 4- e(a) = e(a), i.e.

w «<«(/»)) < ue(a) =  £^   and   SQ   e(£)c0 = „*(«)„ <  e(a))   which   gives   Ru

= toe(^w < e(a), and thus B + a = a. Conversely, if B + a = a = ek, then

it is clear that e(e(B)) + e(a) = e(a), whence w'<<(/»»+*(«) = w*<«) = e(a).

This completes the proof of (2).

Proof of Theorem 2. (1) We set B = n. Now if z = y is a solution of

«a = az, then we must have y limit (and of course nonzero). For if y is

successor, then a routine calculation using Bachmann's theorem gives l(ay)

> 1(a) > 1, contrary to the fact that /(«") = /(co°) = 1.

Thus we have «a = co" = ay = ooe(a)y, whence a = e(a)y. Conversely, if

the limit ordinal y > 0 is such that a = e(a)y, then z = y is a solution of

na = az. By our lemma, however, there is a limit ordinal y such that

o = e(a)y if and only if e(a) < R(o). Thus the equation «" = az has a

solution if and only if e(a) < R (o).

Assume e(a) < R(o). Then of course coe(o) < co*(o), and so coe(a)+l <

co"(o). And since a < coc(a)+1, we obtain a < ooR(a). Conversely, if a < ooRi"\

then obviously coe(a) < a < ooR<-°\ whence e(a) < R(o). This proves (1).

(2) Take B > co, i.e. e(B) > 1, and assume that z = y is a solution of

Ba = az. Since Bachmann's theorem tells us that l(B") = 1, we can show as

in (1) that y is limit. Thus ooe(-P)a = Ba = ay = ooeia)y, and hence the equation

Ba = az has a solution if and only if e(a) < R(e(B)a). Now a is limit and

a > oo; thus R(a) is limit and R(e(B)a) = coeW/3))7?(a) = e(B)R{a). Thus

our condition for a solution reduces to coe(a) < coe(^)*(a), which, as in (1), is

equivalent to a < u'((*)*("). However, R(a) is limit; thus w'(P)/?(a) = BR(a\

This proves (2).

3. Proof of Theorem 3. Assume that z = y is a limit ordinal solution of
Ba = az. Then ay = ooeWy and B" = B'(a>BF(a) = a'iB)iwBFM This showSj

by the familiar argument on length, that we must have B = ooe(P)c(B),

whereupon, by equating coefficients and remembering that F(a) ^ 0, we

further conclude that c(B)= 1, i.e. B = ooe(l3).

Thus a limit solution of Ba = az exists only if e(B)a = e(a)y, and as the

converse also holds, we deduce in the usual manner that a limit solution exists

if and only if e(a) < R(e(B)a). But as F(a)^0, we have R(e(B)a)

= R(e(B)).

Assume that e(a) < R(e(B)). Thus e(B) = e(a)y for some limit ordinal
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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y > 0, and so e(B) > 0 is limit. That is, B = oo"s for some f > 0, and thus

has the required form. Furthermore, as e(a) < R(e(B)), we have

a<ooeM+x<ooR^P))=ooRM) = p.

Thus our two conditions are necessary for the existence of a limit solution.

Conversely, suppose that B = oo"* for some f > 0, and that a < p. Then

B = ooe(/3) and p = u'(e(ffl, whence from a < p we deduce immediately that

e(a) < R(e(B)). Hence a limit solution exists, and so our conditions are

sufficient. This proves Theorem 3.

Proof of Theorem 4. (a) Suppose that z = y is a successor solution of

Ba = az, and put A = I(y), n = A(y).

(1) Assume that B is successor, whence we have m* = m. Now Ba

= ooe(l3)°Bm and ar = toe(a)V: thus, as Bm and a" are both successor, we

must have e(B)o = e?(a)y and Bm = a". Since in this case p = 1, this last

equation immediately gives us Bm' = pa".

Furthermore, as e(p) = 0, we have t = R(e(B)o), and the equation e(B)o

= e(a)y tells us, via our lemma, that e(a) < t, and hence (as usual) a < oor.

(2) Assume B limit, so that m* = 1. By expanding both B" - ooe(0)aBm and

ay = ooe(a)Xa" into normal form and equating, we see in particular that

e(B)o + e(B)(m - 1) + es_x(B) = e(a)A + er_x(a),

where r = 1(a), s = 1(B). Since a is successor and B is limit, we have

es-X(B) > 0 = er_x(a); thus e(B)o < e(a)X. It follows that if we define the

ordinal 8 by 8 = e(a)X - e(B)o, then 8 > 0, 8 is limit, and Bm = oosa".

We now expand Bm and oosa" into normal form and equate. This gives us,

for each i < s, the equations

Cj(B) = Cj(a"),    e(B)(m - 1) + et(B) = 8 + ei(a").

We know, however, that

8 = e(a)X - e(B)o = e(B)(m - 1) + es_x(B),

and hence we obtain, for each ; < s,

ej(B) = es_x(B) + ej(a").

Thus we see that B = we*-l(/S)a". But obviously p = toej-|(/J) which, since

m* = 1, establishes the condition Bm' = pa". Returning now to the equation

e(B)o + e(B)(m - 1) + es_x(B) = e(a)A,

we see that this is in fact

e(a)A = e(B)(o + m — m*) + e(p),

and the inequality a < ooT is derived from this in the usual manner.

(b) We now assume the existence of a number n > 0 such that Bm* = pa"

and a < ooT. From this latter condition we deduce that e(a) < t, and hence

that there is a limit ordinal A > 0 such that e(a)X = e(B)(o + m — m*) +

e(p). We put y = A + n, and show that ay = Ba.

(1) Assume B successor. Then m* — m and p = 1, and so Bm = a" and

e(a)X = e(B)o. Thus we have

ay = ooeMxa" = ooe^)aBm = Ba.
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(2) Assume B limit: then m* = 1, and since p > oo and is a prime comr

ponent, our first condition can be written as B = co^a". But now, if we set

B' = B - ooei/3)c(B), we have

ay = to*(«>V  = ue(P)aue(P)(m-l)^e(p)an  = ^(/Oo^etf )(«- 0 R )

= co^>"[(co^)c(/i))m + (oo^c(B))m-XB'][.

However, since B is limit, it is easily seen that

(oo^)c(B))m+ (oo^c(B))n-1B' = (co^>c(/i) + B')m = Bm.

Thus we have ay = ooe(^"Bm = B". This concludes the proof of Theorem 4.

We end this analysis of the equation xy = yz with the simple observation

that if a is transfinite and successor and B > 1, then the equation Ba = az

has no finite solution, since B" is limit whilst for any n, a" is successor.

General criteria for one ordinal to be a root of another are given in [2].

References

1. H. Bachmann, Transfinite Zahlen, Ergebnisse der Mathematik und ihrer Grenzgebiete, N.F.,

Heft 1, Springer-Verlag, Berlin, 1955. MR 17, 134.
2. Ph. W. Carruth, Roots and factors of ordinals, Proc. Amer. Math. Soc. 1 (1950), 470-480. MR

12, 166.
3. S. Sherman, Some new properties of transfinite ordinals, Bull. Amer. Math. Soc. 47 (1941),

111-116. MR 2, 255.
4. W. Sierpihski, Cardinal and ordinal numbers, 2nd rev. ed., Monografie Mat., vol. 34, PWN,

Warsaw, 1965. MR 33 #2549.

Department of Mathematics, Institute of Advanced Studies, Australian National

University, Canberra, Australia

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


