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ABSTRACT
In this paper, we consider an M/M/1 queueing system with
impatient customers and a variant of multiple vacation pol-
icy, where we examine the case that customer impatience is
due to the servers’ vacation. Whenever a system becomes
empty, the server takes a vacation. However, the server is
allowed to take a maximum number of vacations, denoted
by K vacations, if the system remains empty after the end of
a vacation. We derive the probability generating functions
of the steady-state probabilities and obtain the closed-form
expressions of the system sizes when the server is in different
states. In addition, we obtain the closed-form expressions for
other important performance measures. Finally, we present
some numerical results.

Keywords
Queue, a variant of multiple vacation, impatience, probabil-
ity generating function, mean system size.

1. INTRODUCTION
Queueing systems with server vacations that can be used
in modeling numerous real world queueing situations have
arisen in systems such as manufacturing systems, communi-
cation systems, and production-inventory systems. There is

∗This work is supported by the National Natural Science
Foundation of China (No. 71071133), and is supported in
part by GRANT-IN-AID FOR SCIENCE RESEARCH (No.
21500086) and MEXT, Japan.

now growing interest in the analysis of queueing systems
with impatient customers. This is due to the potential
application of such communication systems, call centers,
production-inventory systems, and many other related ar-
eas; see for instance [1], [2] and the references therein.

Recently, Altman and Yechiali [3] presented a comprehen-
sive analysis of M/M/1, M/G/1 and M/M/c queueing mod-
els with server vacations and customer impatience, where
customers became impatient only when the servers were on
vacation. They analyzed both the single and the multi-
ple vacation cases, and obtained various closed-form results.
Altman and Yechiali [4] investigated the M/M/∞ queuing
model with impatient customers and vacations. They de-
rived the probability generating function of the number of
customers in the system and calculated values of key per-
formance measures such as the mean queue size, the mean
length of a busy period, and the proportion of customers
being served without abandoning the system. Yue et al. [5]
extended the M/M/1 model in [3] by analyzing an M/M/1
queueing model with customer impatience and working va-
cations.

In this paper, we extend the M/M/1 model in [3] by consid-
ering a variant of the multiple vacation policy which includes
both a single vacation and multiple vacations. For this vari-
ant of multiple vacation policy, the server is allowed to take
at a maximum number K of consecutive vacations if the
system remains empty after the end of a vacation. This va-
cation schedule is the kind proposed by Zhang and Tian [6],
with multiple adaptive vacations, where K is not a random
variable, rather a preassigned fixed positive integer. This
type of vacation is called a variant of the multiple vacation
schedule used by Banik [7]. Literatures related to this type
of vacation can be found in papers by Ke [8], Ke et al. [9]
and references therein.

The rest of paper is organized as follows: In Section 2, we



describe the model. In Section 3, we carry out the station-
ary analysis of the system. We first develop the differen-
tial equations for the probability generating functions of the
steady-state probabilities. Then, by solving the differential
equations, we obtain the closed-form expressions of the mean
system sizes when the server is in different states. We also
obtain the closed-form expressions of other important per-
formance measures. Some numerical results are presented
in Section 4. Conclusions are given in Section 5.

2. MODEL DESCRIPTION
We consider an M/M/1 queueing system with impatient cus-
tomers and a variant of a multiple vacation policy. Cus-
tomers arrive according to a Poisson process at rate λ. The
service is provided by a single server, who serves the cus-
tomers on a first-come first-served (FCFS) basis. The ser-
vice times follow an exponential distribution with a service
rate µ.

When the server finishes serving a customer and finds the
system empty, the server leaves for a vacation. If the server
finds a customer at a vacation completion instant, the server
returns to serve customers immediately. Otherwise, the
server will take vacations consecutively until the server has
taken a maximum number of vacations, denoted by K vaca-
tions, and then the server stays idle and waits to serve the
next arrival. The vacation times are assumed to be expo-
nentially distributed with vacation rate γ.

During the vacation, customers become impatient. That
is, whenever a customer arrives at the system, it activates
an “impatience timer” T , which is exponentially distributed
with parameter ξ. If the customer’s service has not been
completed before the customer’s timer expires, the customer
abandons the queue, never to return.

Remark 1. If K = 1, the current model reduces to the single
vacation model. If K = ∞, the current model reduces to
the multiple vacation model. Both the single vacation and
multiple vacation models have been studied by Altman and
Yechiali [3].

3. STATIONARY ANALYSIS
In this section, we present a stationary analysis for the model
described in the last section. We first develop the differen-
tial equations for the probability generating functions of the
steady-state probabilities. Then, by solving the differen-
tial equations, we obtain the closed-form expressions of the
mean system sizes when the server is in different states. We
also obtain the closed-form expressions of other important
performance measures.

3.1 Generating Functions
Let L(t) denote the number of customers in the system at
time t, and let J(t) denote the status of the server at time
t, which is defined as follows: J(t) = j denotes that the
server is taking the (j + 1)th vacation at time t for j =
0, 1, ..., K − 1, while J(t) = K denotes that the server is idle
or busy at time t. Then, the process {(L(t), J(t)), t ≥ 0}
defines a continuous-time Markov process with state space
Ω = {(n, j) : n ≥ 0, j = 0, 1, ..., K}.

Let Pnj = limt→∞ P{L(t) = n, J(t) = j}, n ≥ 0, j =
0, 1, ..., K, denote the steady-state probabilities of the pro-
cess {(L(t), J(t)), t ≥ 0}. Then, the set of balance equations
is given as follows:

(λ + γ)P00 = ξP10 + µP1K , (1)

(λ + γ + nξ)Pn0 = λPn−10 + (n + 1)ξPn+10, n ≥ 1, (2)

(λ + γ)P0j = ξP1j + γP0j−1, j = 1, 2, ..., K − 1, (3)

(λ + γ + nξ)Pnj = λPn−1j + (n + 1)ξPn+1j ,

j = 1, 2, ..., K − 1, n ≥ 1, (4)

λP0K = γP0K−1, (5)

(λ + µ)PnK = λPn−1K + µPn+1K + γ

K−1
∑

j=0

Pnj , n ≥ 1 (6)

and the normalizing condition:

∞
∑

n=0

K
∑

j=0

Pnj = 1. (7)

Define the probability generating functions (PGFs) as

Gj(z) =

∞
∑

n=0

Pnjz
n
, 0 ≤ z ≤ 1, j = 0, 1, ..., K.

Define G′

j(z) =
d

dz
Gj(z), j = 0, 1, ..., K.

Then, multiplying each equation for n in Eqs. (1), (2), (3)
and (4) by zn, and summing all possible values of n and
re-arranging terms, we get

ξ(1 − z)G′

0(z) − [λ(1 − z) + γ]G0(z) = −µP1K (8)

and

ξ(1 − z)G′

j(z) − [λ(1 − z) + γ]Gj(z)=−γP0j−1,

j=1, 2, ..., K − 1. (9)

Similarly, using Eqs. (5) and (6) we obtain

(1 − z)(λz − µ)GK(z)=γz

K−1
∑

j=0

Gj(z) + (z − 1)µP0K

−[µP1K + γ

K−2
∑

j=0

P0j ]z. (10)

In next subsection, we solve the differential equations (8)
and (9) by following the method used in Altman and Yechiali
[3] .

3.2 Solutions of the Differential Equations
Eq. (8) can be written as follows:

G
′

0(z) −

[

λ

ξ
+

γ

ξ(1 − z)

]

G0(z) = −
µP1K

ξ(1 − z)
. (11)

In order to solve the differential Eq. (11), we multiply both
sides of Eq. (11) by

e
−

λ
ξ

z
(1 − z)

γ
ξ .



Then, we get

d

dz

[

e
−

λ
ξ

z
(1 − z)

γ
ξ G0(z)

]

= −
µ

ξ
P1Ke

−
λ
ξ

z
(1 − z)

γ
ξ
−1

.

Integrating from 0 to z, we have

G0(z) =

e
λ
ξ

z

{

G0(0) − µ

ξ
P1K

∫ z

0
(1 − x)

γ
ξ
−1

e
−

λ
ξ

x
dx

}

(1 − z)
γ
ξ

. (12)

Since G0(1) =
∑

∞

n=0 Pn0 < ∞ and z = 1 is the root of the
denominator of the right hand side of Eq. (12), we have that
z = 1 must be the root of the numerator of the right hand
side of Eq. (12). So, we obtain

G0(0) =
µ

ξ
CP1K (13)

where

C =

∫ 1

0

e
−

λ
ξ

x
(1 − x)

γ
ξ
−1

dx. (14)

Noting G0(0) = P00, Eq. (13) implies

P1K =
ξ

µC
P00. (15)

Substituting Eq. (15) into Eq. (12), we obtain

G0(z) =
e

λ
ξ

z

(1 − z)
γ
ξ

[

1 −
1

C

∫ z

0

(1 − x)
γ
ξ
−1

e
−

λ
ξ

x
dx

]

P00. (16)

Eq. (9) can be written as

G
′

j(z) −

[

λ

ξ
+

γ

ξ(1 − z)

]

Gj(z) = −
γP0j−1

ξ(1 − z)
. (17)

In a similar manner used for solving Eq. (11), we get

Gj(z)=

e
λ
ξ

z

{

Gj(0) − γ

ξ
P0j−1

∫ z

0
(1 − x)

γ
ξ
−1

e
−

λ
ξ

x
dx

}

(1 − z)
γ
ξ

,

j = 1, 2, ..., K − 1. (18)

Since Gj(1) =
∑

∞

n=0 Pnj < ∞ and z = 1 is the root of the
denominator of the right hand side of Eq. (18), we have that
z = 1 must be the root of the numerator of the right hand
side of Eq. (18). So, we obtain

P0j = Gj(0) =
γ

ξ
CP0j−1, j = 1, 2, ..., K − 1 (19)

where C is defined by Eq. (14). Using Eq. (19) repeatedly,
we obtain

P0j = A
j
P00, j = 1, 2, ..., K − 1 (20)

where A =
γ

ξ
C. Substituting Eq. (20) into Eq. (18), we

obtain

Gj(z)=
e

λ
ξ

z
Aj

(1 − z)
γ
ξ

{

1 −
1

C

∫ z

0

(1 − x)
γ
ξ
−1

e
−

λ
ξ

x
dx

}

P00,

j = 1, 2, ..., K − 1. (21)

Using Eqs. (5) and (20), we obtain

P0K =
γ

λ
A

K−1
P00. (22)

Remark 2. It is easy to check that ξ − γC > 0, see also
Altman and Yechiali [3] (see p. 263). Thus, we have 0 <

A < 1.

For j = 0, 1, ..., K − 1, Eqs. (16) and (21) expres Gj(z)
in terms of P00. Eqs. (15), (20) and (22) show that P1K ,
P0j , j = 1, 2, ..., K are all expressed in terms of P00. Thus,
from Eq. (10), GK(z) can also be expressed in terms of P00.
Therefore, once P00 is calculated, Gj(z), for j = 0, 1, ..., K,
are completely determined.

In the next subsection, we derive the probability P00 and
the mean system sizes when the server is in different states.

3.3 Mean System Sizes
For j = 0, 1, ..., K, let Lj be the system size when the server
is in the state j. Then, E(Lj) is the mean system size when
the server is in the state j, which is defined by

E(Lj) = G
′

j(1) =

∞
∑

n=1

nPnj , j = 0, 1, ..., K.

That is, for j = 0, 1, ..., K − 1, E(Lj) represents the mean
system size when the server is taking the (j +1)th vacation,
and E(LK) represents the mean system size when the server
is busy or idle. We first derive E(Lj) for j = 0, 1, ..., K − 1.

From Eq. (11), using L’Hopital rule, we get

G
′

0(1)= lim
z→1

[λ(1 − z) + γ]G0(z) − µP1K

ξ(1 − z)

=
−λG0(1) + γG′

0(1)

−ξ
.

Thus, we get

(γ + ξ)G′

0(1) = λG0(1). (23)

Similarly, from Eq. (17), we get

(γ + ξ)G′

j(1) = λGj(1), j = 1, 2, ..., K − 1. (24)

Eqs. (23) and (24) imply

E(Lj) =
λ

γ + ξ
Gj(1), j = 0, 1, ..., K − 1. (25)

For j = 0, 1, ..., K, let P.j = Gj(1) =
∑

∞

n=0 Pjn. Then, for
j = 0, 1, ..., K − 1, P.j represents the probability that the
server is taking the (j + 1)th vacation, and P.K represents
the probability that the server is busy or idle.

From Eqs. (16) and Eq. (21), using L’Hopital rule, we get

P.j = Gj(1) = A
j−1

P00, j = 0, 1, ..., K − 1. (26)

Using Eq. (26), Eq. (25) can be written as

E(Lj) =
λ

γ + ξ
A

j−1
P00, j = 0, 1, ..., K − 1. (27)

Remark 3. From Eq. (27) and 0 < A < 1, it is easy to
see that the mean system size E(Lj) is a decreasing convex
function of j for j = 0, 1, ..., K − 1.



Furthermore, the mean system size when the server is on
vacation, denoted by E(LV ), is obtained as follows:

E(LV ) =

K−1
∑

j=0

E(Lj) =
λ

γ + ξ
·

1 − AK

A(1 − A)
P00. (28)

Next, we derive P.K and P00. From Eqs. (15), (20) and (26),
we have µP1K = γP.0 and P0j−1 = P.j , j = 1, 2, ..., K − 1.
Thus, we have

µP1K + γ

K−2
∑

j=0

P0j = γ

K−1
∑

j=0

P.j . (29)

Using Eq. (29), Eq. (10) can be written as

GK(z) =
γz

λz − µ
·

∑K−1
j=0 [Gj(z) − P.j ]

1 − z
−

µP0K

λz − µ
. (30)

Applying L’Hopital rule, we get

GK(1) =
γ

∑K−1
j=0 G′

j(1) + µP0K

µ − λ
. (31)

Noting GK(1) = P.K and G′

j(1) = E(Lj), j = 0, 1, ..., K−1,
from Eq. (31), we obtain

P.K =
γ

∑K−1
j=0 E(Lj) + µP0K

µ − λ
(32)

Substituting Eqs. (22) and (28) into Eq. (32), we get

P.K =
γ

µ − λ

[

λ

γ + ξ
·

1 − AK

A(1 − A)
+

µ

λ
A

K−1

]

P00. (33)

Using the definition of P.j , it is easy to see that the normal-
izing condition (7) can also be written as

K
∑

j=0

P.j = 1. (34)

Substituting Eqs. (26) and (33) into Eq. (34), we get

P00 =

{

µγ + (µ − λ)ξ

(µ − λ)(γ + ξ)
·

1 − AK

A(1 − A)
+

µγ

λ(µ − λ)
A

K−1

}−1

.

(35)

Remark 4. Obviously, from Eq. (32), the inequality P.K > 0
is equivalent to λ < µ. So, λ < µ is a necessary condition for
the stability of our system. Therefore, we assume thereafter
that λ < µ.

Substituting Eq. (35) into Eq. (28), we obtain

E(LV ) =
λ2(µ − λ)

µγ[λ + (γ + ξ)H(K)] + λξ(µ − λ)
(36)

where

H(K) =
AK(1 − A)

1 − AK
. (37)

Remark 5. It is easy to see that H(K) is a decreasing func-
tion of K, which implies that E(LV ) increases with K.

Now, we derive E(LK). From Eq. (30), using L’Hopital
rule, we derive

E(LK)=
γ

2(µ − λ)

K−1
∑

j=0

G
′′

j (1) +
µγ

(µ − λ)2

K−1
∑

j=0

G
′

j(1)

+
λµ

(µ − λ)2
P0K (38)

where G′′

j (1) is obtained by differentiating twice Gj(z) at
z = 1 for j = 0, 1, ..., K − 1. Differentiating twice Eqs. (8)
and (9), respectively, we obtain

−2ξG
′′

j (z) + ξ(1 − z)
d3

dz3
Gj(z) = [λ(1 − z) + γ]G′′

j (z)

−2λG
′

j(z), j = 0, 1, ..., K − 1. (39)

Letting z = 1 in Eq. (39), we get

G
′′

j (1) =
2λ

γ + 2ξ
G

′

j(1), j = 0, 1, ..., K − 1. (40)

Substituting Eq. (40) into Eq. (38), we obtain

E(LK)=
γ

µ − λ

(

µ

µ − λ
+

λ

γ + 2ξ

)

E(LV )

+
λµ

(µ − λ)2
P0K (41)

where E(LV ) is calculated by Eq. (36), and P0K is calcu-
lated by using Eqs. (22) and (35) as follows:

P0K =
γ(µ − λ)(γ + ξ)H(K)

µγ[λ + (γ + ξ)H(K)] + λξ(µ − λ)
(42)

where H(K) is given by Eq. (37).

Let L be the number of customers in the system. Then, the
mean system size E(L) = E(LV )+E(LK) can be calculated
from Eqs. (36) and (41).

3.4 Special Cases
The single vacation and the multiple vacation are two special
cases of the variant vacation policy discussed in this paper.

Case 1. Multiple vacation model. If K = ∞, then H(∞) =
0. From Eqs. (36) and (41), we have

E(LV ) =
λ(µ − λ)

µγ + ξ(µ − λ)

and

E(LK) =
γ

µ − λ

(

µ

µ − λ
+

λ

γ + 2ξ

)

λµ

µγ + ξ(µ − λ)
.

These results agree with the results given by Altman and
Yechiali [3].

Case 2. Single vacation model. If K = 1, then H(1) = A.
From Eqs. (36) and (41), we have

E(LV ) =
λ2(µ − λ)

µγ[λ + (γ + ξ)A] + λξ(µ − λ)



and

E(LK)=
γ

µ − λ

(

µ

µ − λ
+

λ

γ + 2ξ

)

E(LV )

+
λµ

(µ − λ)2
×

γ(µ − λ)(γ + ξ)A

µγ[λ + (γ + ξ)A] + λξ(µ − λ)
.

These results agree with the results given by Altman and
Yechiali [3].

3.5 Other Performance Measures
In this subsection, we derive some other important perfor-
mance measures.

(1) Probability that the server is on vacation

The probability that the server is on vacation is given by

Pv =

K−1
∑

j=0

P.j . (43)

Substituting Eq. (26) into Eq. (43), we obtain

Pv =
1 − AK

A(1 − A)
P00.

Using Eq. (28), we get

Pv =
γ + ξ

λ
E(LV ) (44)

where E(LV ) is given by Eq. (36).

(2) Probability that the server is busy

The probability that the server is busy is given by

Pb =

∞
∑

n=1

PnK = 1 − P0K − Pv. (45)

Substituting Eqs. (42) and Eq. (44) into Eq. (45) and using
Eq. (36), we obtain

Pb =
λγ[λ + (γ + ξ)H(K)]

µγ[λ + (γ + ξ)H(K)] + λξ(µ − λ)
. (46)

Using a continuous variable x instead of the integer K in the
right hand side of Eq. (46), we get a function of x, denoted
by Q(x). Taking the derivative of Q(x) with respect to x,
we obtain

Q
′(x) =

λ2γξ(µ − λ)(γ + ξ)H ′(x)

{µγ[λ + (γ + ξ)H(x)] + λξ(µ − λ)}2
< 0.

The inequality follows from the fact that H ′(x) < 0. So,
Q(x) is a decreasing function. Therefore, Pb decreases with
K.

(3) Proportion of customers served

Clearly, the expected number of customers served per unit
of time is µPb, implying that the proportion of customers
served is given by

Ps =
µPb

λ
(47)

where Pb is given by Eq. (46).

(4) Average rate of abandonment due to impatience

When the system is in state (0, n), n ≥ 1, the rate of aban-
donment of a customer due to impatience is nξ. Thus, the
average rate of abandonment due to impatience is given by

Ra =

K−1
∑

j=0

∞
∑

n=1

nξPnj = ξE(LV ) (48)

where E(LV ) is given by Eq. (36).

Remark 6. Clearly, from Eqs. (44) and (48), both Pv

and Ra, as functions of K, have the same monotonicity as
E(LV ). Since E(LV ) increases with K, we have that both
Pv and Ra increase with K.

4. NUMERICAL RESULTS
For multiple vacation policy model, Altman and Yechiali [3]
consider the monotonicity of some performance measures
with respect to the parameter ξ. In this section, we inves-
tigate numerically the effects of the parameter ξ and K on
some performance measures.

We choose parameters: λ = 4, µ = 5, and γ = 2. In Fig.
1 and Fig. 2, the effects of parameters ξ and K on E(LV )
and E(LK) are presented, where E(LV ) is the mean system
size when the server is on vacation and E(LK) is the mean
system size when the server is busy or idle. In Table 1 and
Table 2, the variations of some performance measures with
K are presented for various ξ. In Table 1, the values of ξ are
chosen to be small, i.e., ξ = 0.5, 1.0, and 1.5, and in Table
2, the values of ξ are chosen to be large, i.e., ξ = 2.5, 3.0,
and 3.5.

0.5 1 1.5 2 2.5 3 3.5 4
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
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E
(L

V
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K=1
K=2
K=3
K=∞

Figure 1: Effects of ξ and K on the mean system size
E(LV ) when the server is on vacation.

For multiple vacation policy model, Altman and Yechiali [3]
show that the probability Pv that the server is on vacation
is an increasing convex function of ξ and the probability Pb

that the server is working is a decreasing concave function
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Figure 2: Effects of ξ and K on the mean system size
E(LK) when the server is busy or idle.

of ξ. They also show that E(LV ) behaves similar to Pb with
respect to ξ. These results are also observable from Fig. 1
and Fig. 2.

Table 1: Performance Measures with Variations of
ξ and K for ξ = 0.5, 1.0, 1.5.

K ξ E(LV ) E(LK ) E(L) Pv Pb Ra

1 0.5 0.3147 4.6818 4.9964 0.1967 0.7685 0.1573

1.0 0.2892 4.2892 4.5784 0.2169 0.7422 0.2892

1.5 0.2660 4.0266 4.2926 0.2328 0.7202 0.3991

2 0.5 0.3611 4.7823 5.1434 0.2257 0.7639 0.1805

1.0 0.3397 4.3397 4.6794 0.2548 0.7321 0.3397

1.5 0.3196 4.0320 4.3515 0.2796 0.7041 0.4793

3 0.5 0.3743 4.8109 5.1852 0.2339 0.7626 0.1871

1.0 0.3551 4.3551 4.7102 0.2663 0.7290 0.3551

1.5 0.3370 4.0337 4.3707 0.2949 0.6989 0.5055

4 0.5 0.3786 4.8204 5.1990 0.2366 0.7621 0.1893

1.0 0.3605 4.3605 4.7209 0.2704 0.7279 0.3605

1.5 0.3436 4.0344 4.3779 0.3006 0.6969 0.5153

5 0.5 0.3801 4.8236 5.2038 0.2376 0.7620 0.1901

1.0 0.3624 4.3624 4.7249 0.2718 0.7275 0.3624

1.5 0.3461 4.0346 4.3807 0.3029 0.6962 0.5192

∞ 0.5 0.3810 4.8254 5.2063 0.2381 0.7619 0.1905

1.0 0.3636 4.3636 4.7273 0.2727 0.7273 0.3636

1.5 0.3478 4.0348 4.3826 0.3043 0.6957 0.5217

From Table 1 and Table 2, we observe that E(LK) and the
mean system size E(L) all decrease with ξ for any finite K.
However, from Table 2, we observe that Pv and Pb neither
increase nor decrease with ξ when K = 2 and K = 3. That
means that Pv and Pb are not monotone functions of ξ when
K 6= ∞.

From Remark 5 in Subsection 3.3, we know that E(LV ) is a
increasing function of K. This property can also be observed
from Fig. 1. However, Fig. 2 shows that E(LK) increases
initially with K and then decreases with K. So, a threshold
value ξ0 may exist such that E(LK) increases with K if

Table 2: Performance Measures with Variations of
ξ and K for ξ = 2.5, 3.0, 3.5.

K ξ E(LV ) E(LK ) E(L) Pv Pb Ra

1 2.5 0.2248 3.6949 4.9197 0.2529 0.6876 0.5620

3.0 0.1989 3.6022 3.8011 0.2486 0.6807 0.5967

3.5 0.1596 3.5833 3.7429 0.2195 0.6883 0.5586

2 2.5 0.2818 3.6175 4.8994 0.3170 0.6591 0.7045

3.0 0.2568 3.4864 3.7432 0.3210 0.6459 0.7703

3.5 0.2130 3.4439 3.6569 0.2928 0.6509 0.7454

3 2.5 0.3032 3.5885 4.8917 0.3411 0.6484 0.7580

3.0 0.2814 3.4372 3.7186 0.3517 0.6312 0.8442

3.5 0.2394 3.3749 3.6143 0.3292 0.6324 0.8379

5 2.5 0.3164 3.5705 4.8870 0.3560 0.6418 0.7911

3.0 0.2998 3.4003 3.7002 0.3748 0.6201 0.8995

3.5 0.2651 3.3077 3.5728 0.3646 0.6144 0.9279

7 2.5 0.3192 3.5668 4.8860 0.3591 0.6404 0.7980

3.0 0.3052 3.3896 3.6948 0.3815 0.6169 0.9156

3.5 0.2773 3.2760 3.5533 0.3813 0.6059 0.9705

∞ 2.5 0.3200 3.5657 3.8857 0.3600 0.6400 0.8000

3.0 0.3077 3.3846 3.6923 0.3846 0.6154 0.9231

3.5 0.2963 3.2263 3.5226 0.4074 0.5926 1.3070

0 < ξ < ξ0 and decreases with K if ξ > ξ0. We also observe
that E(L) increases with K when ξ is less than a threshold
value and then decreases with K when ξ is larger than this
threshold value. That is, E(L) as a function of K behaves
similar to E(LK).

From Table 1 and Table 2, it is observed that Pv and Ra

increase with K, while Pb decreases with K. This agrees
with the results we obtained in Subsection 3.5.

5. CONCLUSIONS
In this paper, we have studied an M/M/1 queueing system
with impatient customers and a variant of multiple vacation
policy, where the customer impatience is due to the server’s
vacation. We have obtained the closed-form expressions of
the system sizes when the server is in different states. We
have also obtained the closed-form expressions for other im-
portant performance measures. The effects of the param-
eters ξ and K on some performance measures have been
investigated numerically.
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