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Abstract—A simple figure of merit to describe the performance

of an energy detector is desirable. The area under the receiver
operating characteristic (ROC) curve, denoted (AUC), is such
a measure, which varies between 1

2
and 1. If the detector’s

performance is no better than flipping a coin, then the AUC
is 1

2
, and it increases to one as the detector performance

improves. However, in the wireless literature, the AUC measure
has gone unnoticed. In this paper, to address this gap, we
comprehensively analyze the AUC of an energy detector with no-
diversity reception and with several popular diversity schemes.
The channel model is assumed to be Nakagami-� fading. First,
the average AUC is derived for the case of no-diversity reception.
Second, the average AUC is derived for diversity reception
cases including maximal ratio combining (MRC), square-law
combining (SLC) and selection combining (SC). Further, for
Rayleigh fading channels, the impacts of channel estimation
errors and fading correlations are analyzed. High SNR (signal-
to-noise ratio) approximations and the detection diversity gain
are also derived. The analytical results are verified by numerical
computations and by Monte-Carlo simulations.

Index Terms—Area under the curve, energy detection, receiver
operating characteristic (ROC).

I. INTRODUCTION

DETECTION of the presence or the absence of an un-

known signal has recently received tremendous attention

in view of the development of cognitive radio and ultra-

wideband (UWB) systems. Signal detection based on the

received signal energy, referred to as energy detection, is a

commonly used approach. The energy detector, a non-coherent

detection device, measures the received signal energy over an

observation time period, compares the measured energy level

with a pre-defined threshold, and determines the presence or

the absence of the unknown signal. Since it does not require

channel gains and other parameter estimates, the energy detec-

tor might enable certain wireless devices to become low-cost.

The performance of an energy detector is traditionally char-

acterized through its receiver operating characteristic (ROC)

curves [1]. ROC curves are generated by plotting either

detection probability (��) versus false alarm probability (�� )

or missed detection probability (1 − ��) versus �� (called
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complementary ROC) [2]. Extensive ROC analysis of the

energy detector is available in the wireless literature. For

instance, in [3], �� and �� are derived for Rayleigh, Rice

and Nakagami fading channels. In [4], the analysis focuses

on the no-diversity case under Rayleigh, Rice and Nakagami

fading channels, and in [5] the focus is on different diversity

receptions such as maximal ratio combining (MRC), selection

combining (SC), switch-and-stay combining (SSC), square-

law combining (SLC) and square-law selection (SLS) under

Rayleigh fading channels. The energy detector with equal

gain combining (EGC) reception under Nakagami-� fading

channels is analyzed in [6]. The energy detector performance

is investigated in [7] for relay-based cognitive radio networks

and in [8] for channels with both multipath fading and

shadowing. Finally, looking further afield, we find that ROC

analysis is regularly used, for example, in the health care field

for diagnostic tests, drug testing and others [9], and in machine

learning algorithms [10].

Detection probability ��(�) and false alarm probability

�� (�) depend on the threshold (�) of the energy detector, the

number (�) of samples taken for the decision statistic, fading

parameters of the fading channel, the number (�) of diversity

branches or the number (�) of relays, and average signal-

to-noise ratio (SNR) (�̄) for each branch. When threshold �
changes from 0 → ∞, the ROC curve starts at the upper-

right point (1, 1) and eventually moves to the lower-left point

(0, 0). When �̄, � or � increases and � decreases, the ROC

curves are shifted to the upper left-hand side of the ROC graph

[4]- [8]. Generally, ROC curves are plotted by varying only

one parameter while keeping other parameters fixed, and a

variety of curves can be generated for different combinations

of parameters of interest.

Although the ROC curves fully characterize the perfor-

mance of an energy detector, it is desirable to have a single

figure of merit. Such a measure is the area under the ROC

curve (AUC), which varies between 1
2 and 1. If the detector’s

performance is no better than flipping a coin, then the AUC

becomes 1
2 , and it increases to one as the detector performance

improves. As well, the Area Theorem [11] has shown that

the AUC is a measure of the detection capability. Actually,

in [12], it has been pointed out that the area under the

curve represents the probability that choosing the correct

decision at the detector is more likely than choosing the

incorrect decision. However, as indicated in [13], [14], the

exact computation of AUC is difficult for realistic detection

tasks. Therefore, the previous research efforts mainly focus

on bounds of the AUC [13], [14] or the asymptotic expansion
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and limiting value of AUC [15]. Unlike [13]–[15], our target

is to derive closed-form expressions for the AUC of an energy

detector in several scenarios that are of interest to wireless

researchers.

In this paper, we comprehensively analyze the AUC of an

energy detector with no-diversity reception and with several

popular diversity schemes. The channel model is assumed to

be Nakagami-� fading. First, the average AUC is derived for

the case of no-diversity reception. Second, the average AUC is

derived for diversity reception cases including maximal ratio

combining, square-law combining and selection combining.

Further, for maximal ratio combining under Rayleigh fading

(which is a special case of Nakagami-� fading), the impacts of

channel estimation errors and fading correlations are analyzed.

High SNR approximations and the detection diversity gain are

also derived. The analytical results are verified by numerical

computations and by Monte-Carlo simulations.

The rest of the paper is organized as follows. The system

model is described in Section II. AUC of the energy detector

is analyzed in Section III. The average AUC of the energy

detector with no-diversity and with diversity receptions over

Nakagami-� fading channels is analyzed in Section IV. The

average AUC with maximal ratio combining under Rayleigh

fading is considered in Section V when channel estimation

errors and channel fading correlations exist. The numerical and

simulation results are presented in Section VI. The concluding

remarks are made in Section VII.

II. SYSTEM MODEL

At an energy detector, a two-state model can be used

to represent the received signal. Assuming flat fading, the

received signal at the receiver at time 
 is

�(
) =

{

�(
); 
0,
ℎ�(
) + �(
); 
1,

(1)

where ℎ is the complex channel gain of the channel between

the transmitter and the receiver, �(
) is the transmitted signal

with average power ��, and �(
) is the additive white Gaus-

sian noise (AWGN) signal at the receiver with the single-sided

power spectral density �0. The hypothesis 
0 means that the

signal �(
) is absent, while the hypothesis 
1 means that the

signal �(
) is present. Further, we assume that the channel is

time-invariant during the detection process.

A. Energy Detector

As described in [2], [4], [5], first the energy detector uses a

properly designed ideal bandpass filter with carrier frequency

�� and bandwidth � (Hz) for limiting the noise power and

normalizing the noise variance. Second, the output signal

from the filter is squared and integrated over time duration

� to measure the energy of the received signal at the energy

detector. The collected energy, denoted �, is the test statistic

of the detector. For each component (in-phase or quadrature)

of the received signal, the number of samples is integer �.

Further, according to [5], the value of � could be either ��
or (�� +1), depending on the position of the first sample. In

[4], it is shown that the test statistic � follows a central chi-

square distribution with 2� degrees of freedom when the signal

is absent (i.e., under hypothesis 
0), or follows a non-central

chi-square distribution with 2� degrees of freedom with the

presence of the signal (i.e., under hypothesis 
1). Finally,

the energy detector compares the test statistic � with a pre-

specified threshold � and determines that the signal is present

if � > �, or absent otherwise.

The detection probability (��) and false alarm probability

(�� ) are defined as the probabilities that the test statistic

is larger than the threshold, given that the signal is present

and absent, respectively. By using the cumulative distribution

functions (CDF) of the central chi-square distribution and the

non-central chi-square distribution, the two probabilities ��

and �� can be calculated as [4]

�� (�) = Pr(� > �∣
0) =
Γ(�, �2 )

Γ(�)
(2)

and

��(�, �) = Pr(� > �∣
1) = ��(
√

2�,
√
�), (3)

respectively. Here, ��(⋅, ⋅) is the generalized Marcum-Q

function, Γ(⋅, ⋅) is the upper incomplete gamma function

defined as Γ(�, �) ≜
∫

∞

�

	−1�−
�
, and Γ(�, 0) = Γ(�) ≜

∫

∞

0 
	−1�−
�
, and � is the received instantaneous SNR of the

target signal at the energy detector. The instantaneous SNR

of the received signal through a single diversity branch is

� = ℎ2��/�0.

B. Fading Channel

We assume that the channel undergoes Nakagami-� fading,

a distribution that is widely used to characterize the wireless

channel fading [16], with � being the fading parameter. Let

� denote the instantaneous SNR at the receiver. Given the

assumption of Nakagami-� fading, the SNR � follows a

gamma distribution, denoted ��(�). For a fading channel, the

average AUC can be obtained by averaging the AUC (for

instantaneous SNR value �) by the distribution of �.

III. AREA UNDER THE ROC CURVE (AUC)

The ROC curve is usually illustrated as �� versus �� .

For two energy detectors, it is difficult to compare their

performance based on visual perception of their ROC curves,

since the curves may cross. On the other hand, following the

Area Theorem [11], we introduce the AUC, which is equal

to the area covered by the ROC curve of �� versus �� .

As aforementioned, the AUC is a measure of the detection

capability of the energy detector. Generally, as the threshold

� in the energy detection varies from ∞ to 0, the false alarm

and the detection probabilities vary from value 0 to value 1,

and accordingly, the AUC varies from 0.5 to 1.

A. AUC for Instantaneous SNR Value �

Consider the ROC curve of �� versus �� . Let �(�) denote

the AUC which is a function of instantaneous SNR value �.

Therefore, �(�) can be evaluated as

�(�) =

∫ 1

0

��(�, �)��� (�). (4)
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Both �� (�) and ��(�, �) are functions of the threshold �.

Therefore, we can apply the threshold averaging method [17]

when calculating the AUC. When the value of �� (�) varies

from 0 → 1, it is equivalent to � ranging from ∞ → 0.
Therefore, Eq. (4) can be re-written as

�(�) = −
∫

∞

0

��(�, �)
∂�� (�)

∂�
�� (5)

where ∂�� (�)/∂� is the partial derivative1 of �� with respect

to �, which is given from (2) as

∂�� (�)

∂�
= −�

�−1�−
�
2

2�Γ(�)
. (6)

After the substitution of (3) and (6) into (5), and the transfor-

mation
√
� = 
, Eq. (5) can be written as

�(�) =
1

2�−1Γ(�)

∫

∞

0


2�−1�−
�2

2 ��(
√

2�, 
)�
. (7)

Using the following identity of the Marcum-Q function

��(�,  ) =1−��( , �) + �−
�2+�2

2

�−1
∑

�=1−�

(

 

�

)�

!�( �)

where !�(⋅) is the "th-order modified Bessel function of the

first kind, Eq. (7) can be re-written as

�(�) =
1

2�−1Γ(�)

∫

∞

0


2�−1�−
�2

2

(

1−��(
,
√

2�)+

�−
2�+�2

2

�−1
∑


=1−�

(


√
2�

)


!
(
√

2�
)

)

�
.

(8)

After some mathematical manipulations and with the aid of

expression (26) in the Appendix, �(�) can be evaluated in

closed-form as (see the Appendix for the detailed derivation)

�(�) =1−
�−1
∑


=0

1

2
 #!
�
�−

�
2

+

�−1
∑


=1−�

Γ(�+ #)

2�+
Γ(�)
�−�

1$̃1

(

�+ #; 1 + #;
�

2

)

(9)

where 1$̃1(⋅; ⋅; ⋅) is the regularized confluent hypergeometric

function of the confluent hypergeometric function 1$1(⋅; ⋅; ⋅)
[18]. Note that Eq. (9) gives the AUC of an energy detector

for a specific value of instantaneous SNR �. Therefore, �(�)
is defined as unfaded AUC. The average AUC in closed-form

under the AWGN channel can be found from expression (9)

after replacing � by �̄, where �̄ is the average SNR.

B. Partial AUC

Although the AUC is a measure of the overall detection

capability, it may not always unambiguously indicate when

one detector is better than another. For example, when two

ROC curves cross, it is possible that the AUC for the two

ROC curves is the same. This situation can arise when

the two associated detectors have different performance in

different regions of detection threshold �. The area of the ROC

1Note that the false alarm probability �� is also a function of �. We omit
variable � from expression of �� for simplicity of presentation.

curve (for � from 0 to ∞) only gives the overall detection

performance, but cannot differentiate the two detectors in a

small region of �, say �1 ≤ � ≤ �2. To remedy this drawback,

the partial area under the ROC curve [19] in region (�1, �2)
can be used to demonstrate the difference, as given by

��	�(�) = −
∫ �2

�1

��(�, �)
∂�� (�)

∂�
��. (10)

Nevertheless, the partial AUC measure appears intractable

for closed-form analysis. It can however be readily evaluated

via numerical integration methods that are available in the

mathematical software packages such as MATHEMATICA

and MATLAB. For the sake of brevity, we do not further

study this measure.

IV. AVERAGE AUC OVER NAKAGAMI-� FADING

CHANNELS

The average AUC, �̄, over Nakagami-� channels can

be evaluated through averaging (9) by the SNR distribution

(��(�)). Therefore, �̄ can be written as

�̄ =

∫

∞

0

�(�)��(�)��. (11)

In this section, we derive closed-form average AUC expres-

sions for no-diversity and diversity receptions, respectively,

over Nakagami-� distribution which is widely employed for

characterizing wireless channel fading. Further, we derive the

expression of the average AUC for the high SNR approxima-

tion (i.e. �̄ → ∞) for each case.

A. No-Diversity Reception

If the signal amplitude follows a Nakagami-� distribution,

then the SNR has a probability density function (PDF) given

by [20]

����	(�) =
1

Γ(�)

(

�

�̄

)�

��−1�−


�̄
�, � ≥ 0 (12)

where �̄ is the average SNR and � is Nakagami fading

parameter. The average AUC for Nakagami-� fading channel

with no diversity, �̄�	
, can be evaluated through averaging

�(�) in (9) by the SNR distribution ����	(�) given in (12).

�̄�	
 can be written for integer � in closed-form as (see the

Appendix for the detailed derivation) in (13) on the next page,

where 2$̃1(⋅; ⋅; ⋅; ⋅) is the regularized confluent hypergeometric

function of the confluent hypergeometric function 2$1(⋅; ⋅; ⋅)
[18]. When � = 1, the result in (13) means the average AUC

over a Rayleigh fading channel.

For higher �̄, ��	
 in (13) can be approximated as in

(14) on the next page, where %�	
(�,�) is the term in

the square brackets which depends on parameters � and �.

When � increases, the average AUC converges to 1, and the

convergence speed is with the order of �. So we define � as

the detection diversity gain or detection diversity order.
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�̄�	
 = 1− 1
Γ(�)

(

2�
2�+�̄

)�
∑�−1


=0
Γ(
+�)


!

(

�̄
2�+�̄

)


+
(

�
�+�̄

)�
∑�−1


=1−�
Γ(�+
)

2�+	Γ(�) 2
$̃1

(

�;�+ #; 1 + #; �̄
2(�+�̄)

)

.(13)

�̄�	
 ≈ 1−
[

(2�)�

Γ(�)

�−1
∑


=0

Γ(# +�)

#!
−

�−1
∑


=1−�

��Γ(�+ #)

2�+
Γ(�)
2$̃1

(

�;�+ #; 1 + #;
1

2

)]

�̄−�

= 1− %�	
(�,�)�̄−�. (14)

B. Diversity Reception

Diversity combining techniques are used at the receiver to

increase the receiver SNR. Next we derive the average AUC

under MRC, SLC and SC diversity receptions. The � diversity

paths are independent and identically distributed (&.&.�.) over

Nakagami-� fading channels. And �
 is the SNR in the #th
branch.

1) Maximal Ratio Combining (MRC): MRC is a coherent

combining method, which requires channel estimations. Thus

the use of MRC with energy detection is not desirable. In

this case, the energy detector measures the energy of the

MRC combined signal rather than measuring the energy of

each individual branch before combining (e.g. in square-law

combining). Nevertheless, the use of MRC with energy de-

tection deserves investigation. For instance, the ROC analysis

of the energy detector with MRC reception has been studied

in [4], [21]–[23]. The performance of this setup serves as an

upper bound of the achievable performance by a combination

of energy detection and any other diversity scheme.

In MRC, all the diversity branches are coherently combined,

and the instantaneous SNR at the output of the combiner is

���� =
∑�


=1 �
. The PDF of ���� for &.&.�. Nakagami-�
fading channels is given by [20]

���
�(�) =
1

Γ(��)

(

�

�̄

)��

���−1 �−(


�̄ )�, � ≥ 0.

(15)

Similar to the derivation of (13) in the Appendix, the

average AUC under MRC, �
���

�	
 , can be evaluated through

averaging �(�) in (9) by the SNR distribution in (15), given

as in (16) on the next page. For higher �̄, �
���

�	
 in (16)

can be approximated as in (17) on the next page, where

%���(�,�, �) is the term in the square brackets which

depends on parameters �, � and �. The detection diversity

gain is equal to ��.

2) Square-Law Combining (SLC): In contrast to the MRC,

� diversity branches in SLC are combined after the received

signal from each branch is squared and integrated (over period

� ). The energy detector receives the sum of � decision

statistics. Therefore, the resultant decision statistic follows a

central chi-square distribution with 2�� degrees of freedom

and a non-central chi-square distribution with 2�� degrees

of freedom under hypothesis 
0 and 
1, respectively. The

non-centrality parameter under hypothesis 
1 is ���� =
∑�


=1 �
. The false alarm and the detection probabilities

�� (�) and ��(�
��� , �) under AWGN channel are shown to

be given by (2) and (3) with � and � being replaced by ��
and ���� , respectively [5].

It can be seen that the AUC under SLC for AWGN channel

is equivalent to �(�) in (9), after replacing � by ��. Since

���� and ���� have similar expression (
∑�


=1 �
), the

average AUC under SLC with Nakagami-� fading channels,

�
���

�	
 , can be evaluated as �
���

�	
 in (16) after replacing � by

��. Further, high average SNR approximation can be derived

as

�
���

�	
 ≈ 1− %���(�,�, �)�̄−�� (18)

where %���(�,�, �) is equivalent to %���(�,�, �) after

replacing � by ��. The detection diversity gain is equal to

��.

3) Selection Combining (SC): In SC, the branch with

the strongest SNR among all diversity branches is selected.

The instantaneous SNR at the output of the combiner is

��� = max{�1, ..., ��}. The PDF of ��� for &.&.�. Nakagami-

� fading channels with integer � is given by [24]

���� (�) =
�

Γ(�)

�−1
∑

�=0

(−1)�
(

�− 1

'

)

�−
(�+1)


�̄
�

�(�−1)
∑

�=0

�(�, ',�)

(

�

�̄

)�+�

��+�−1, � ≥ 0

(19)

where �(�, ',�) is the notation defined in [24]. Similar to the

derivation of (13) in the Appendix, average AUC under SC

with Nakagami-� fading channels, �
��

�	
, can be evaluated

as in (20) on the next page. For higher �̄, �
��

�	
 in (20)

can be approximated as in (21) on the next page, where

%��(�,�, ', �, �) is the term in the square brackets. The

effective detection diversity gain is equal to ��.

V. AVERAGE AUC OF MRC UNDER RAYLEIGH FADING

WITH CHANNEL ESTIMATION ERRORS AND CHANNEL

FADING CORRELATIONS

A. Impact of Channel Estimation Errors

In Section IV, the average AUC of MRC is derived by

assuming that each branch is weighted with its perfect channel

knowledge (i.e. perfect channel estimation). But in practice,

channel estimation errors are inevitable. So it is important

to incorporate the effect of channel estimation errors on the

average AUC. Assuming that the complex Gaussian error is

accumulated to each weighting factor in the combiner, a PDF

of the output SNR is derived in [25] for MRC under Rayleigh

fading channels. By re-arranging the terms of the results in

[25], an alternative form of the PDF of the output SNR of

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on May 18,2010 at 19:54:53 UTC from IEEE Xplore.  Restrictions apply. 



1220 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 3, MARCH 2010

�
���

�	
 = 1 − 1

Γ(��)

(

2�

2�+ �̄

)�� �−1
∑


=0

Γ(# +�)

#!

(

�̄

2�+ �̄

)


+

(

�

�+ �̄

)�� �−1
∑


=1−�

Γ(�+ #)

2�+
Γ(�)
2$̃1

(

��, �+ #; 1 + #;
�̄

2(�+ �̄)

)

. (16)

�
���

�	
 ≈ 1−
[

(2�)��

Γ(��)

�−1
∑


=0

Γ(# +�)

#!
−

�−1
∑


=1−�

���Γ(� + #)

2�+
Γ(�)
2$̃1

(

��;�+ #; 1 + #;
1

2

)]

�̄−��

= 1− %���(�,�, �)�̄−��. (17)

�
��

�	
 = 1−
�−1
∑

�=0

(−1)���(�, ',�)

Γ(�)

(

�− 1

'

)(

�

�̄

)�+� [ �−1
∑


=0

Γ(# +�+ �)

2
 #!

(

2�̄

2�('+ 1) + �̄

)
+�+�

−
�−1
∑


=1−�

Γ(�+ #)Γ(�+ �)

2�+
Γ(�)

(

�̄

�̄ +�(' + 1)

)�+�

2$̃1

(

�+ �;�+ #; 1 + #;
�̄

2(�(' + 1) + �̄)

)]

. (20)

�
��

�	
 ≈ 1−
�−1
∑

�=0

�(�−1)
∑

�=0

[

(−1)���(�, ',�)��+�

Γ(�)

(

�− 1

'

)

(

�−1
∑


=0

2�+�Γ(# +�+ �)

#!

−
�−1
∑


=1−�

Γ(�+ #)Γ(�+ �)

2�+
Γ(�)
2$̃1

(

�+ �;�+ #; 1 + #;
1

2

)

)

]

�̄−(�+�)

= 1−
�−1
∑

�=0

�(�−1)
∑

�=0

%��(�,�, ', �, �)�̄−(�+�). (21)

MRC under &.&.�. Rayleigh fading channels, �����(�), is given

in [26]. Applying the definition of Bernstein polynomials,

(�
� (
) =

(

�
�

)


�(1 − 
)�−� [27], the PDF �����(�) can be re-

written as

�����(�) =

�
∑

�=1

(�−1
�−1 ()2)

1

(' − 1)! �̄�
��−1�−

�
�̄ , � ≥ 0

(22)

where ) is the correlation coefficient between the correct

complex channel gain and the estimated complex channel

gain (0 ≤ ) ≤ 1). So ) represents the channel estimation

accuracy level. The average AUC in this case, �̄���, can

be evaluated through averaging �(�) in (9) by the SNR

distribution �����(�) given in (22). Similar to the derivation

of (13) in the Appendix, �̄��� can be evaluated as in (23) on

the next page.

B. Impact of Channel Fading Correlations

In the previous sections, we assume that the diversity

branches are independent with each other. However, in prac-

tice, this assumption is not always valid. Therefore, it is im-

portant to analyze the performance of the energy detector with

correlated fading channels. Since there are multiple correlation

scenarios, we do not have space to consider all interesting

cases. Instead, we consider one simple yet instructive case:

a dual-branch MRC receiver under correlated and identically

distributed Rayleigh fading. The PDF of output SNR, ����,

is given as [28]

�����(�) =
1

2
√
*�̄

(

�
−

�
(1+

√
�)�̄ − �

−
�

(1−
√

�)�̄

)

, � ≥ 0

(24)

where * is the power correlation coefficient of dual-branch

signals (0 < * ≤ 1). The average AUC, �̄���, can be eval-

uated through averaging �(�) in (9) by the SNR distribution

�����(�) in (24), which is given in (25) on the next page with

�1 = 1/(1 +
√
*)�̄ and �2 = 1/(1−√

*)�̄.

VI. NUMERICAL AND SIMULATION RESULTS

In this section, we present numerical and Monte-Carlo

simulation results. Since the average AUC depends on pa-

rameters such as �, �, �̄ and � (if diversity reception is

used), several different cases are discussed here. Analytical

expressions in (13), (16), (20), (23) and (25) for average AUCs

are verified by numerical calculations and by Monte-Carlo

simulations using MATHEMATICA and MATLAB software

packages, respectively. Continuous and dashed lines in the

following figures represent numerical values, while discrete

signs represent simulation values.
Fig. 1 shows the analytical and simulation results for

average AUC with no diversity reception under Nakagami-

� fading model. The analytical results are based on (13).
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�̄��� = 1−
�
∑

�=1

(�−1
�−1 ()2)

1

(' − 1)! �̄�

[�−1
∑


=0

2� Γ(# + ')

#!

(

�̄

�̄ + 2

)
+�

−
�−1
∑


=1−�

Γ(�+ #)Γ(')

2�+
Γ(�)

(

�̄

1 + �̄

)�

2$̃1

(

';�+ #; 1 + #;
�̄

2(1 + �̄)

)]

. (23)

�̄��� = 1− 1

2
√
*�̄

[

�−1
∑


=0

Γ(# + ')

2
 #!

(

1
(

�1 +
1
2

)
+1
− 1

(

�2 +
1
2

)
+1

)

−
�−1
∑


=1−�

Γ(� + #)

2�+
Γ(�)
⎛

⎝

2$̃1

(

1;�+ #; 1 + #; 1
2(1+	1)

)

1 + �1
−

2$̃1

(

1;�+ #; 1 + #; 1
2(1+	2)

)

1 + �2

⎞

⎠

]

. (25)
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Fig. 1. Average AUC versus average SNR �̄ with no diversity case (� = 4).

This figure shows the average AUC versus average SNR with

different fading parameter � values. Note that numerical and

simulation results match well. Note also that a higher � leads

to larger average AUC, and thus, higher overall detection

capability. This is because the average AUC converges to unity

faster when the average SNR and the fading index � increase,

as the detection diversity order is equal to � based on (14).

Since the accuracy of expression (13) is verified in Fig. 1

by comparison of numerical and simulation results, to avoid

clutter, simulation results are not shown in Fig. 2, Fig. 3 and

Fig. 4.

Also for the no-diversity case, Fig. 2 shows (by solid

lines) the average AUC versus fading parameter � with

different average SNR values. It can be seen that, between

the average SNR and the fading parameter, the average SNR

is the dominant factor in determining the detection capability,

particularly in the low-SNR region. The average AUC reaches

unity even for the small values of � when the average SNR

is high (e.g. �̄ > 15 dB), as explained in (14). For higher �
values, there is an asymptotic value of the average AUC for

a specific average SNR value. When � → ∞, the fading
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0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Fading parameter (m)

A
v
e

ra
g

e
 A

U
C

 

 
γ̄ = 15 dB

γ̄ = 10 dB

γ̄ = 5 dB

γ̄ = 0 dB

γ̄ = -5 dB

γ̄ = -10 dB

Fig. 2. The Average AUC as a function of fading parameter � (� = 4).

channel is equivalent to the AWGN channel. The average

AUC under the AWGN channel is equivalent to expression

(9) after replacing � by �̄, which is also plotted in Fig. 2 (by

dashed lines) as the asymptotic value of the average AUC of

the Nakagami-� fading channel.

The influence of the number of samples � on the AUC

performance is investigated in Figs. 3 and 4. When the fading

parameter is fixed at � = 2, Fig. 3 shows the average AUC

versus the average SNR for different � values, while Fig. 4

shows the average AUC versus � with different average SNR

values. Somewhat paradoxically, a higher number of samples

� tends towards a lower detection capability. The reason is as

follows. When the value of � increases, the detection and false

alarm probabilities both increase. However, the false alarm

probability increases faster than the detection probability, thus

leading to a lower overall detection capability. Nevertheless,

in the high SNR region (� > 15 dB), the differences among

different AUC values for different � values peter out.

For diversity reception case, when � is fixed at � = 4 and

fading parameter is fixed at � = 2, Fig. 5 shows the analytical

and simulation results for the average AUC as a function
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Fig. 3. Average AUC versus average SNR for different � with no diversity
(� = 2).
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Fig. 4. Average AUC versus the number � of samples for different average
SNR �̄ with no diversity (� = 2).

of the average SNR for different values of diversity branch

number �, while Fig. 6 shows the analytical and simulation

results for the average AUC as a function of the number of

branches � for different average SNR. As can be expected,

Figs. 5 and 6 show that MRC always outperforms SLC and

SC. For a specific AUC value, say 0.75, the MRC scheme

with five diversity branches gains about 8 dB in terms of the

average SNR. Moreover, it can be seen that, with the increase

of �, the average AUC in MRC and SLC approaches unity

much faster than the average AUC in SC. The reason is the

difference of the SNR after the combiners, for which we have

���� > ���� > ��� . Note that the detection diversity gains

of the three combiners are all ��. A similar observation is

also found in [4] for dual-branch MRC and SC.

Note that the cost of using MRC is the requirement of

high-quality channel estimates. The performance of MRC is
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Fig. 5. Average AUC versus average SNR with different � in diversity
receptions (� = 4 and � = 2).
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Fig. 6. Average AUC versus branch number for different average SNR in
diversity receptions (� = 4 and � = 2).

likely to deteriorate with poor channel quality estimates. Since

high-quality estimates are unlikely to be present for energy-

detection-type applications, an interesting question is how

good the quality of channel estimates should be in order for

MRC to outperform SLC (which does not require channel

estimates). This question is answered in Fig. 7, which shows

the analytical and simulation results for the average AUC (for

MRC) versus the average SNR with different level of channel

estimation accuracy ()). It can be seen that the simulation and

analytical results match well. The average AUC degrades as

) changes from 1 (perfect channel estimation) to 0.5. As a

comparison, the performance with SLC is also presented in

Fig. 7 by a dashed line. In this particular example, we can see

that if ) is less than 0.6, it is better to implement SLC receiver

rather than implementing a post-detection MRC receiver.

Fig. 8 shows the average AUC versus the average SNR
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Fig. 7. Average AUC versus average SNR for MRC with different � (� = 4

and � = 1).
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Fig. 8. Average AUC versus average SNR for dual-branch MRC with
different � (� = 4 and � = 1).

with different channel correlation coefficient (*) for dual-

branch MRC. The average AUC is seen to degrade as the

correlation between the two branches increases. If channels

are fully correlated (* = 1) and fully uncorrelated (* = 0),
it corresponds to the single-branch case and the independent-

dual-branch MRC case, respectively. Since expression (25) is

valid for 0 < * < 1, in Fig. 8 we plot numerically calculated

average AUC for * → 1 and *→ 0. Both curves match well

with fully correlated (* = 1) and fully uncorrelated (* = 0)
Monte-Carlo simulation results, respectively.

VII. CONCLUSIONS

A simple figure of merit characterizing the performance of

an energy detector is the AUC. The AUC is simply the area

under the ROC curve. No AUC results appear to be available

in the wireless literature. In this paper, the average AUC of

an energy detector is derived for Nakagami-� fading channels

with no-diversity based on threshold averaging technique. The

average AUC derivation is then extended to diversity reception

cases such as selection combining, square-law combining,

and maximal ratio combining with Nakagami-� fading diver-

sity branches. The impacts of channel estimation errors and

channel fading correlations are also investigated. High SNR

approximations and detection diversity gain are also derived.

We anticipate that the AUC measure will also be useful for

characterizing the performance of other numerous detection

algorithms.

APPENDIX

A. Necessary Integrations

Some integrations necessary for the rest of the derivations

are presented below.

First, we define

,1(�, -, ", .) ≜

∫

∞

0

�	−1�−��2

!�(.�) �� (26)

with parameters �, -, ", ., where Re[�] > 0 ∧ Re[-] > 0 2.

Although a closed-form solution for ,1(�, -, ", .) is available

in [29, eq. (2.15.5.4)], it can not be applied for negative integer

values of ". Therefore, we present an alternative method for

any integer ", as follows.
After applying series expansion of !�(.�) in (26), and with

transformation 
 = �2, ,1(�, -, ", .) can be written as

,1(�, -, ", .) =

∞
∑


=0

(

�
2

)2
+�

Γ(# + " + 1)#!

1

2

∫

∞

0



+
�+�
2 −1�−�
 �
.

Further, ,1(�, -, ", .) can be shown to be

,1(�, -, ", .) =
.�

2�+1
-−

�+�
2 Γ

(

�+ "

2

)

∞
∑


=0

(

	+�
2

)



-−


Γ(# + " + 1) #!

(

.2

4

)


where (�)
 is the Pochhammer symbol defined as (�)
 =
Γ(�+
)
Γ(�) [30].

Given a hypergeometric or generalized hypergeometric

function �$�(�1, ..., ��; /1, ..., /�; 0), the corresponding reg-

ularized hypergeometric function is defined as [18, eq.

07.32.02.0001.01]

�$̃�(�1, ..., ��; /1, ..., /�; 0) ≜
�$�(�1, ..., ��; /1, ..., /�; 0)

Γ(/1)...Γ(/�)

=

∞
∑


=0

∏�
�=1 (��)
 0




#!
∏�

�=1 Γ(# + /�)
.

(27)

Therefore, ,1(�, -, ", .) can be evaluated as

,1(�, -, ", .) =
.�-−

�+�
2 Γ

(

	+�
2

)

2�+1 1$̃1

(

�+ "

2
; " + 1;

.2

4-

)

.

(28)

Next, we define

,2(�, -, /, �, .) ≜

∫

∞

0

�	−1�−��
1$̃1 (/; �; .�) �� (29)

2Here ∧ stands for AND.
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with parameters �, -, /, �, ., where Re[�] > 0 ∧ Re[-] > 0.
Using the definition of the regularized hypergeometric func-

tions �$̃� in (27), ,2(�, -, /, �, .) can be solved as

,2(�, -, /, �, .) =
∞
∑


=0

(�)
 .



#! Γ(/ + #)

∫

∞

0

�
+	−1�−�� ��

=
∞
∑


=0

(�)
.



#! Γ(/ + #)

Γ(# + �)

-
+	
.

With the relationship of Γ(# + �) = (�)
Γ(�) for integer

values of �, ,2(�, -, /, �, .) is shown to be

,2(�, -, /, �, .) = -−	Γ(�)2$̃1

(

�; /; �;
.

-

)

. (30)

B. Derivation of �(�) in (9)

Eq. (8) can be written as

�(�) =
1

2�−1Γ(�)
(!1 − !2 + !3) (31)

where !1, !2 and !3 are defined as follows

!1 ≜

∫

∞

0


2�−1�−
�2

2 �
 = 22�−1Γ(�)

!2 ≜

∫

∞

0


2�−1�−
�2

2 ��(
,
√

2�) �


=22�−1(�− 1)! �−
�
2

�−1
∑


=0

1

#!

(�

2

)


!3 ≜�−�

�−1
∑


=1−�

(

1

2�

)
	
2
∫

∞

0


2�+
−1�−
2!


(

√

2�

)

�


=�−�

�−1
∑


=1−�

2−(1+
)Γ(�+ #) 1$̃1

(

�+ #; 1 + #;
�

2

)

where the second equality of !2 is from [31, eq. (28)], and the

second equality of !3 is from (26) and (28). 1$̃1(⋅; ⋅; ⋅) is the

regularized confluent hypergeometric function of 1$1 [18].

After replacing !1, !2, and !3 by the above definitions, Eq.

(31) is exactly (9).

C. Derivation of �̄�	
 in (13)

With (9), (11), (12) and the fact
∫

∞

0
��(�) = 1, �̄�	
 can

be written as

�̄�	
 = 1− 1

Γ(�)

(

�

�̄

)� �−1
∑


=0

1

2
 #!
!4

+
1

Γ(�)

(

�

�̄

)� �−1
∑


=1−�

Γ(� + #)

2�+
Γ(�)
!5

(32)

where !4 and !5 are defined as

!4 ≜

∫

∞

0

��+
−1�−(


�̄
+ 1

2 )� ��

=Γ(# +�)

(

�

�̄
+

1

2

)

−(
+�) (33)

and

!5 ≜

∫

∞

0

��−1�−(


�̄
+1)�

1$̃1

(

�+ #; 1 + #;
�

2

)

��.

Using the transformation � = 2� and based on (29) and (30),

!5 can be evaluated for integer � as

!5 =
Γ(�)

(

�
�̄
+ 1

)� 2$̃1

(

�;�+ #; 1 + #;
�̄

2(�+ �̄)

)

. (34)

After replacing !4 by (33) and replacing !5 by (34), Eq. (32)

is exactly Eq. (13).
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