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ABSTRACT 

Financial forecasting has been challenging problem due to its high 

non-linearity and high volatility. An Artificial Neural Network 

(ANN) can model flexible linear or non-linear relations- hip among 

variables. ANN can be configured to produce desired set of output 

based on set of given input. In this paper we attempt at analyzing the 

usefulness of artificial neural network for forecasting financial data 

series with use of different algorithms such as backpropagation, 

radial basis function etc. With their ability of adapting non-linear and 

chaotic patterns, ANN is the current technique being used which 

offers the ability of predicting financial data more accurately. "A x-y-

1 network topology is adopted because of x input variables in which 

variable y was determined by the number of hidden neurons during 

network selection with single output." Both x and y were changed. 
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1. INTRODUCTION 

Forecasting is a process that produces a set of outputs by a given set 

of input variables. The variables are normally historical data [1]. 

Basically, forecasting assumes that future occurrences are based, at 

least in part, on presently observable or past events. It assumes that 

some aspects of the past patterns will continue into the future. Past 

relationships can then be discovered through study and observation. 

The basic idea of forecasting is to find an approximation of mapping 

between the input and output data in order to discover the implicit 

rules governing the observed movements [2]. 

 

Stock market forecasting has always been a challenging problem. The 

source of its difficulty is the complex interactions between the 

market-influencing factors and the unknown random processes like 

unexpected news or other sudden changes in the influencing factors. 

On the other hand, there is some risk to investment in the stock 

market due to its unpredictable behaviors. Thus, an „intelligent‟ 

prediction model for financial data forecasting would be deeply 

desired and would of wider interest. ANNs are relatively recent 

method for business forecasting [3]. The success of ANN 

applications can be qualified of their features and powerful pattern 

recognitions capability. The use of ANN in this field has been 

growing due to their ability to model complex nonlinear systems on 

sample data. An ANN is a new kind of computing tool that is not 

limited by equations or rules. ANN functions by finding correlations 

and patterns in the data which you provide. These patterns become a 

part of the network during training [4]. A separate network might be 

needed for each problem you want to solve, but many networks 

follow the same basic format. 

 

Structure of the network affects the accuracy of the forecast. Network 

configuration mainly depends on the number of hid- den layers, 

number of neurons in each hidden layer, number of input neurons and 

the selection of activation function. No clear cut guide lines exist up 

to date for deciding the architecture of ANN. Mostly it is problem 

dependent. An ANN has to be con- figured such that the application 

of a set of inputs produces the desired set of outputs. Various 

methods to set the strengths of the connections exist. One way is to 

set the weights explicitly, using a priori knowledge. Another way is 

to train the neural network by feeding it teaching patterns and letting 

it change its weights according to some learning rule [5]. The 

learning situations in neural networks may be classified into three 

distinct sorts. In learning, an input vector is presented at the inputs 

together with a set of desired responses, one for each node, at the 

output layer. A forward pass is done, and the errors or discrepancies 

between the desired and actual response for each node in the output 

layer are found. These are then used to determine weight changes in 

the net according to the prevailing learning rule.  These networks 

have self-learning capability and are fault-tolerant as well as noise-

immune, and also have applications in various fields like system 

identification, pattern recognition, classification, speech recognition, 

image processing, etc. 

 

Back propagation is a form of supervised learning for multi-layer 

nets, also known as the generalized delta rule. Error data at the output 

layer is "back propagated" to earlier ones, allowing incoming weights 

to these layers to be updated. It is most often used as training 

algorithm in current neural network applications. The back 

propagation algorithm was developed by Paul Werbos in 1974 and 

rediscovered independently by Rumelhart and Parker. Since its 

rediscovery, the back propagation algorithm has been widely used as 

a learning algorithm in feed forward multilayer neural networks. 

What makes this algorithm different than the others is the process by 

which weights are calculated during the learning network. In general, 

the difficulty with multilayer Perceptrons is calculating weights of the 

hidden layers in an efficient way that result in the least (or zero) 

output error; the more hidden layers there are, the more difficult it 

becomes. To update the weights, one must calculate an error. At the 

output layer this error is easily measured; this is the difference 

between the actual and desired outputs. At the hidden layers, 

however, there is no direct observation of the error; hence, some 

other technique must be used. To calculate an error at the hidden 

layers that will cause minimization of the output error, as this is the 

http://ijcaonline.org/


International Journal of Computer Applications (0975 – 8887) 

Volume 9– No.5, November 2010 

17 

ultimate goal. The backpropagation algorithm is an involved 

mathematical tool; however, execution of the training equations is 

based on iterative processes, and thus is easily implementable on a 

computer. 

 

Several studies relating to ANN and statistical models have been 

conducted in the literature. Traditional forecasting methods are 

limited in their effectiveness as they make assumptions about the 

distribution of the underlying data, and often fail to recognize the 

interrelatedness of variables [6]. Both linear and nonlinear models 

were used to predict stock returns [7] who emphasize the Nonlinear 

Model proving to be more effective. Such studies prove that the 

nonlinear model presents more consistent results for stock exchange 

market. For this reason, ANN applications have been widely used in a 

variety of areas in financial markets [8], [9]. Reference [9] confirmed 

that ANN was used for the solution of numerous financial problems. 

References [10], [11], [12] emphasized that ANN could be used in 

the prediction of financial markets, in particular, the prediction of 

stock market indexes which are considered to be a barometer of the 

markets in many countries. Empirical evidence suggests that although 

these models appear to be capable of explaining the movements of 

major exchange rates in the long run and in economies experiencing 

hyperinflation, their performance is poor when it comes to the short 

run and out-of-sample forecasting [13]. Conventional time series 

models forecasting on global approximation models, employing 

techniques such as linear and non-linear regression, polynom- ial 

fitting and artificial neural networks. Such models are better suited to 

problems with stationary dynamics [14]. In [15] and [16] the 

application of unsupervised clusters for the segmentation of the input 

space, and feed forward neural networks (FNNs) acting as local 

predictors for each identified cluster, was proposed. Neural network 

researchers and developers using the generalized method for 

determining the mini-mum necessary training set size will be able to 

implement neural networks with the highest forecasting performance 

at the least cost [17]. 

2. METHODOLOGY 

We load the given time series dataset (un-normalized) into the system 

for its forecasting. For the loaded dataset, we bifurcate dataset into 

training and testing datasets respectively. A random dataset division 

is followed to result 70% of dataset as training dataset and remaining 

30% as testing dataset. Training dataset is the outcome of random 

method followed to bifurcate the loaded dataset. Training dataset is 

used for defining the architecture of the neural network and train the 

defined neural network based on its data to predict the dataset. 

Testing dataset thus obtained is used for simulating the trained 

network, checking the error or accuracy of the trained network. We 

compare the output data as given by the network with the testing data 

set. The results of these comparisons are dealt in detail in later part of 

the paper. 

 

The training dataset which is the 70% of the dataset is first converted 

into logarithmic form and then are normalized. The datasets are 

normalized using the general normalization formulae. The datasets 

are then fed into the network and are trained through various training 

algorithms which are described later in the paper. During the training 

phase the number of hidden neurons, the epochs, the momentum etc 

are altered and the network weights and biases are set as per these 

alterations. After the network has been trained we perform the testing 

phase on the new defined network. The remaining 30% of the dataset 

which is defined for the testing purpose is fed into the new trained 

network and is simulated accordingly. The block diagram of the 

methodology is shown in figure 1. 

 
Figure1. Flow Chart for Methodology 

 

The above mentioned data sets are taken and are processed through 

the methodology stated above. Each data set is exposed to different 

algorithms and is trained accordingly. The different algorithms used 

are as follows: 

2.1 Back Propagation Algorithm (BPA) 

Backpropagation is the generalization of the Widrow-Hoff learning 

rule to multiple-layer networks and nonlinear differentiable transfer 

functions [20]. Input vectors and the corresponding target vectors are 

used to train a network until it can approximate a function, associate 

input vectors with spec- ific output vectors, or classify input vectors 

in an appropriate way as defined by you. Networks with biases, a 

sigmoid layer, and a linear output layer are capable of approximating 

any function with a finite number of discontinuities. 

 

Standard backpropagation is a gradient descent algorithm, as is the 

Widrow-Hoff learning rule, in which the network weights are moved 

along the negative of the gradient of the performance function. The 

term backpropagation refers to the manner in which the gradient is 

computed for nonlinear multilayer networks. There are a number of 

variations on the basic algorithm that are based on other standard 

optimization techniques, such as conjugate gradient and Newton 

methods. 

2.2 Layer Recurrent Network (LRN): 

In the LRN, there is a feedback loop, with a single delay, around each 

layer of the network except for the last layer. The original Elman 

network had only two layers, and used a tansig transfer function for 

the hidden layer and a purelin transfer function for the output layer. 

The original Elman network was trained using an approximation to 

the backpropagation algorithm. The newlrn command generalizes the 

Elman network to have an arbitrary number of layers and to have 

arbitrary transfer functions in each layer. 

2.3 Radial basis network (RBN) 

The function newrb iteratively creates a radial basis network one 

neuron at a time. Neurons are added to the network until the sum-

squared error falls beneath an error goal or a maximum number of 

neurons has been reached. The function newrb takes matrices of input 
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and target vectors P and T, and design parameters goal and spread, 

and returns the desired network. 

2.4 Generalized Regression Networks (GRNN) 

 A generalized regression neural network is often used for function 

approximation. It has a radial basis layer and a spec- ial linear layer. 

The output of the network is in the normalized form, so we first 

denormalize the output and then its exponent is taken. After the 

following process is done the output comes in a form comparable to 

the original dataset. Now the comparison of the input and the output 

dataset is done and the results are explained in details in the later part 

of the paper. 

 

3. RESULTS 

3.1 Research Data 
We have used two different data sets for our research. The data (un-

normalized) have been collected from Prof. Rob J Hyndman‟s 

website http://robjhyndman.com/TSDL/. Data sets analyzed are as: 

Daily closing price of IBM stock, Jan. 01 1980 - Oct. 08 1992. 

Source: [18], Daily S & P 500 index of stocks, Jan. 01 1980 - Oct. 

08 1992. Source: [18]. Table 1 summarizes the stated 

information. 
The first few data indexes of series are used for the research. For 

training, 70% of the data of the series has been used and remaining 

30% is used for testing. 
 

Table 1. Time Series Data Sets 
 

Time Series Standard 

Deviation 

Mean Count 

Daily IBM 5.736916 

 

60.89908 

 

500 

Daily S&P 10.1308 

 

123.3728 

 

500 

 

 

3.2 Data Analysis 
3.2.1 Backpropagation Algorithm (BPA) 
Below is the table for marking efficient artificial neural network 

architecture for different data series with backpropagation as training 

algorithm. We have set the input vector of constant neurons with 

specified value of learning rate and momentum. Epochs are kept 

constant at 3000. We started optimizing architecture by gradually 

increasing the number of hidden neurons. As the number of hidden 

neurons increase the mean square error first decreases gradually and 

then starts increasing. The variation of the network output is depicted 

in the table.  The value of the hidden neuron for which the most 

optimum result is obtained and is taken into consideration for further 

optimizing it with learning rate and momentum.   

 

After the obtained optimized values for hidden neurons, the learning 

rate and momentum are optimized. These values are used for 

obtaining the optimum input vector set. The input vector is gradually 

increased. The mean square error simultaneously increases and then 

decreases. The most optimum neural network architecture for 

backpropagation training algorithm is obtained for the two datasets. 

The analysis for the two datasets is given below. 

 
Table 2 and Table 3 show the analysis for daily IBM. 

 
Table 2. Diff. ANN Arch. for Daily IBM using BPA at 

epochs=3000 

Different ANN 

Architecture 

    

x-y-1 lr mc Mean S.D. 

10-2-1 0.5 0.7 2.79652 0.54519 

10-5-1 0.5 0.7 2.08174 0.346772 

10-10-1 0.5 0.7 2.17914 0.093233 

10-20-1 0.5 0.7 2.17464 0.297468 

10-30-1 0.5 0.7 2.56222 0.246952 

10-5-1 0.3 0.7 1.98028 0.463858 

10-5-1 0.7 0.7 1.95362 0.487149 

 

Table 3. Diff. ANN Arch. varying inputs for Daily IBM using 

BPA at epochs=3000 

 

Different Number Of  

Inputs 

    

x-y-1 lr mc Mean S.D. 

05-5-1 0.3 0.7 2.08604 0.378809 

08-5-1 0.3 0.7 2.20682 0.386111 

10-5-1 0.3 0.7 1.98028 0.463858 

15-5-1 0.3 0.7 2.68886 0.433932 

20-5-1 0.3 0.7 2.4397 0.332563 

 

Table 4 shows the most optimal structure for daily IBM data series. 

 

Table 4. Optimum table 

  

x-y-1 lr mc Mean S.D. 

10-05-1 0.3 0.7 1.98028 0.463858 

 
Table 5 and Table 6 show the analysis for daily S&P. 

 

 

Table 5. Diff. ANN Arch. for Daily S&P using BPA at 

epochs=3000 

 

Different NN 

Architecture 

    

x-y-1 lr mc Mean S.D. 

10-2-1 0.5 0.7 6.28158 2.078473 

10-5-1 0.5 0.7 3.6688 0.745425 

10-10-1 0.5 0.7 3.52292 0.555277 

10-20-1 0.5 0.7 3.43212 0.792911 

10-30-1 0.5 0.7 5.19912 0.861521 

10-20-1 0.3 0.7 4.59012 0.697043 

10-20-1 0.7 0.7 3.73926 0.768024 

10-20-1 0.8 0.7 3.15062 0.592651 

10-5-1 0.8 0.5 3.5666 0.692245 

10-5-1 0.8 0.9 3.91194 0.80667 

 

Table 6. Diff. ANN Arch. varying inputs for Daily S&P using 

BPA at epochs=3000 

 

Different Number Of  

Inputs 

    

x-y-1 lr mc Mean S.D. 

05-20-1 0.8 0.7 3.51574 1.119034 

08-20-1 0.8 0.7 3.03788 0.629401 

10-20-1 0.8 0.7 3.15062 0.592651 

15-20-1 0.8 0.7 3.78 0.944653 

20-20-1 0.8 0.7 4.06736 0.833488 
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Table 7 shows the most optimal structure for daily S&P data series. 

 

Table 7. Optimum Table 

 

x-y-1 lr mc Mean S.D. 

8-20-1 0.8 0.7 3.03788 0.629401 

 

3.2.2 Layer-Recurrent Network (LRN) 
Below are the tables for marking efficient artificial neural network 

architecture for different data series with Layer-Recurrent Network as 

training algorithm. We have set the input vector of constant neurons 

with specified value. Epochs are kept constant at 30. We started 

optimizing architecture by gradually increasing the number of hidden 

neurons. As the number of hidden neurons increase the mean square 

error first decreases gradually and then starts increasing and again 

decreases. It shoes abrupt changes in the rmse. The variation of the 

network output is depicted in the table.  The value of the hidden 

neuron for which the most optimum result is obtained and is taken 

into consideration for further optimizing it with learning rate and 

momentum.   

 
After the obtained optimized values for hidden neurons, the input 

vector set is optimized. The input vector is gradually increased. The 

mean square error decreases and then increases. The most optimum 
neural network architecture for Layer-Recurrent Network training 

algorithm is obtained for the two datasets. The analysis tables for the 

two datasets are given below. 

 
Table 8 and Table 9 show the analysis for daily IBM. 

 

Table 8. Diff. ANN Arch. varying hidden neurons for Daily IBM 

using LRN 

Different NN architecture   

x-y-1 RMSE S.D. 

10-1-1 0.96118 0.10258995 

10-3-1 0.92746 0.08610867 

10-5-1 2.13334 2.02196345 

10-8-1 1.93962 2.18422513 

10-10-1 0.9874 0.06050483 

10-15-1 2.74854 2.54473861 

 

Table 9. Diff. ANN Arch. varying inputs for Daily IBM using 

LRN 

Different Number Of Inputs   

x-y-1 RMSE S.D. 

5-3-1 1.04054 0.07314635 

8-3-1 0.90856 0.09027615 

10-3-1 0.92746 0.08610867 

15-3-1 2.91092 2.73857886 

20-3-1 5.52258 0.63822251 

 

Table 10 shows the most optimal structure for daily IBM data series. 

 

Table 10. Optimum Table 

 

x-y-1 RMSE S.D. 

8-3-1 0.90856 0.09027615 

 

Table 11 and Table 12 show the analysis for daily S&P. 

 

Table 11. Diff. ANN Arch. varying hidden neurons for Daily S&P 

using LRN 

Different NN architecture   

x-y-1 RMSE S.D. 

10-1-1 1.13512 0.08749358 

10-3-1 1.15496 0.17080976 

10-5-1 1.05572 0.05598077 

10-8-1 1.18746 0.04093053 

10-10-1 1.05518 0.09418026 

10-15-1 1.0931 0.12033027 

 

Table 12. Diff. ANN Arch. varying inputs for Daily S&P using 

LRN 

Different input   

x-y-1 RMSE S.D. 

5-10-1 1.19688 0.11266555 

8-10-1 1.1948 0.17505239 

10-10-1 1.05518 0.09418026 

15-10-1 1.20526 0.19910125 

20-10-1 1.1028 0.07104798 

 

Table 13 shows the most optimal structure for daily S&P data series. 

 

Table 13. Optimum Table 

x-y-1 RMSE S.D. 

10-10-1 1.05518 0.09418026 

 

3.2.3 Radial Basis Network (RBN): 
Below are the tables for marking efficient artificial neural network 

architecture for different data series with Radial basis network as 

training algorithm. We have set the input vector of constant neurons 

with specified value. We started optimizing architecture by gradually 

increasing the spread. As the value of spread increase the mean 

square error first increases gradually and then starts decreasing. The 

variation of the network output is depicted in the table.  The value of 

the spread for which the most optimum result is obtained and is taken 

into consideration for further optimizing it with learning rate and 

momentum.   

 

After the obtained optimized values of spread, the input vector set is 

optimized. The input vector is gradually increased. The mean square 

error simultaneously increases and then decreases. The most optimum 

neural network architecture for Radial basis network training 

algorithm is obtained for the two datasets. The analysis tables for the 

two datasets are given below.  

 
Table 14 and Table 15 show the analysis for daily IBM. 

 

Table 14. Diff. ANN Arch. varying spread for Daily IBM  using  

RBN 

Different NN 

Architecture 

   

x-y-1 Spread RMSE S.D. 

10-y-1 2 1.18628 0.203878 

10-y-1 5 1.20408 0.234053 

10-y-1 8 1.10316 0.084471 

10-y-1 10 1.18188 0.176929 

10-y-1 15 1.02964 0.079143 
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Table 15. Diff. ANN Arch. varying inputs for Daily IBM using 

RBN  

Different Input    

x-y-1 Spread RMSE S.D. 

5-y-1 15 1.15466 0.104459 

8-y-1 15 1.30836 0.481532 

10-y-1 15 1.02964 0.0791143 

15-y-1 15 1.13186 0.147249 

20-y-1 15 1.23578 0.256903 

 

Table 16 shows the most optimal structure for daily IBM data series. 

 

Table 16. Optimum Table 

 

x-y-1 Spread RMSE S.D. 

10-y-1 15 1.02964 0.0791143 

 

Table 17 and Table 18 show the analysis for daily S&P. 

 

Table 17. Diff. ANN Arch. varying spread for Daily S&P using 

RBN 

  

Different NN 

Architecture 

   

x-y-1 Spread RMSE S.D. 

10-y-1 2 1.66626 0.23091078 

10-y-1 5 1.5653 0.25426902 

10-y-1 8 2.18502 0.96924005 

10-y-1 10 1.79984 0.87878396 

10-y-1 15 1.99958 0.67472272 

 

Table 18. Diff. ANN Arch. varying inputs for Daily S&P using 

RBN 

 

Different input    

x-y-1 Spread RMSE S.D. 

5-y-1 5 1.68234 0.23684954 

8-y-1 5 1.9791 0.56714218 

10-y-1 5 1.5653 0.25426902 

15-y-1 5 1.81382 0.16263172 

20-y-1 5 1.76686 0.19976665 

 

Table 19 shows the most optimal structure for daily S&P data series. 

 

Table 19. Optimum Table 

 

x-y-1 Spread RMSE S.D. 

10-y-1 5 1.5653 0.25426902 

 

3.2.4 Generalized Regression Networks (GRNN): 
Below are the tables for marking efficient artificial neural network 

architecture for different data series with Generalized Regression 

Networks as training algorithm. The input vector is gradually 

increased due to which the rmse decreases. The most optimized input 

set is taken into consideration for the network architecture. The 

analysis tables for the two datasets are given below. 

Table 20 shows the analysis for daily IBM. 

 

Table 20. Diff. ANN Arch. for Daily IBM  using  GRNN 

  

Different NN   

architecture 

x-y-1 RMSE S.D. 

5-10-1 5.87704 0.13995588 

8-16-1 5.85182 0.19353296 

10-20-1 5.8453 0.29619885 

15-30-1 5.62394 0.1269295 

20-40-1 5.5722 0.10498417 

Table 21 shows the most optimal structure for daily IBM data series. 

 

Table 21. Optimum Table  

 

x-y-1 RMSE S.D. 

20-40-1 5.5722 0.10498417 

 

Table 22 shows the analysis for daily S&P. 

 

Table 22. Diff. ANN Arch. for Daily S&P  using  GRNN 

 

Different NN 

architecture 

  

x-y-1 RMSE S.D. 

5-10-1 9.98948 0.30826209 

8-16-1 10.10648 0.30243149 

10-20-1 9.72556 0.26012198 

15-30-1 9.55536 0.48860856 

20-40-1 10.3707 0.89469728 

 

Table 23 shows the most optimal structure for daily S&P data series. 

 

Table 23. Optimum Table  

 

x-y-1 RMSE S.D. 

15-30-1 9.55536 0.48860856 

 

3.3 Comparison 
3.3.1 Daily IBM 
The most optimum ANN architecture and input parameter for 

different types of ANN used is analyzed. Table XXIV shows the 

comparative analysis of different ANN with respect to the Daily IBM 

time series. Table 24 shows comparative analysis for daily IBM. 

 

Table 24. Comparison Table for Daily IBM 

 

Method Architecture Mean Standard 

Deviation 

BPA 10-5-1 1.98028 0.463858 

LRN 8-3-1 0.90856 0.09027615 

RBN 10-y-1 1.02964 0.0791143 

GRNN 20-40-1 5.5722 0.10498417 

 

3.3.2 Daily S&P 
The most optimum ANN architecture and input parameter for 

different types of ANN used is analyzed. Table XXV shows the 

comparative analysis of different ANN with respect to the Daily IBM 

time series. Table 25 shows comparative analysis for daily S&P. 

 

Table 25. Comparison Table for Daily S&P 

 

Method Architecture Mean Standard 

Deviation 

BPA 8- 20- 1 3.03788 0.629401 
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LRN 10-10-1 1.05518 0.09418026 

RBN 10-y-1 1.5653 0.25426902 

GRNN 15-30-1 9.55536 0.48860856 

 

 

 

4. GRAPHICAL ANALYSIS 

 

 
      Figure 2. Graph for actual and predicted values for Daily IBM 

using BPA 

 
 

 
Figure 3. Graph for actual and predicted values for Daily S&P 

using  BPA 

 
 

  

 

 

 
 

Figure 4. Graph for actual and predicted values for Daily IBM 

using  LRN 
 

 
 

Figure 5. Graph for actual and predicted values for Daily S&P 

using  LRN 

 

  

Figure 6. Graph for actual and predicted values for Daily IBM 

using  RBN 
  

  
 

 

 

 

 
 

 

 

Figure 7. Graph for actual and predicted values for Daily S&P 

using  RBN 
 

 

 

 
 

 

 
 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 

Figure 8. Graph for actual and predicted values for Daily IBM 

using  GRNN 
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Figure 9. Graph for actual and predicted values for Daily S&P 

using GRNN 
 
 

5. CONCLUSIONS 
This paper attempts at analyzing the usefulness of artificial neural 

network for forecasting financial data series with use of different 

algorithms such as backpropagation, radial basis function etc. A x-y-1 

network topology is adopted because of x input variables in which 

variable y was determined by the number of hidden neurons during 

network selection with single output." Both x and y were changed. 

Following conclusions could be drawn from the empirical results and 

comparison graph plotted between actual and predicted index value. 

 Time series prediction probability over all datasets can be 

analyzed reasonably by number of neurons as          

compared to other problems.  

 Increasing the number of hidden neurons first decreases 

rmse and then increases it.  

 Increasing number of input neurons first decreases and then 

increases the rmse.   

 Results may be generalizable to all the data sets. 
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