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Analysis of bacterial biofilms using NMR-based metabolomics
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Department of Chemistry, University of Nebraska-Lincoln, 722 Hamilton Hall, Lincoln, NE

68588-0304, USA

Abstract

Infectious diseases can be difficult to cure, especially if the pathogen forms a biofilm. After

decades of extensive research into the morphology, physiology and genomics of biofilm

formation, attention has recently been directed toward the analysis of the cellular metabolome in

order to understand the transformation of a planktonic cell to a biofilm. Metabolomics can play an

invaluable role in enhancing our understanding of the underlying biological processes related to

the structure, formation and antibiotic resistance of biofilms. A systematic view of metabolic

pathways or processes responsible for regulating this ‘social structure’ of microorganisms may

provide critical insights into biofilm-related drug resistance and lead to novel treatments. This

review will discuss the development of NMR-based metabolomics as a technology to study

medically relevant biofilms. Recent advancements from case studies reviewed in this manuscript

have shown the potential of metabolomics to shed light on numerous biological problems related

to biofilms.

Biofilms are a natural part of the ecology of the Earth, and correspond to a ‘social structure’

of microorganisms compared with a planktonic state [1–3]. They are a ubiquitous microbial

phenomenon that has been observed for bacteria, fungi, algae, yeasts, protozoa and other

organisms. In a biofilm composed of multiple diverse organisms, the interspecies interaction

can range from neutral to cooperative, to competitive, and finally, to antagonistic [4]. The

diversity of organisms able to self-organize and form biofilms is quite astounding and may

provide clues to the evolution of multicellular organisms [5]. Are biofilms a transitional

state of evolution and the basis for multicellular organisms? Or are biofilms simply a highly

organized state of single-cell organisms? The fact that biofilms provide a significant survival

advantage for adapting to the harsh and distinct environmental conditions probably explains

its broad adaptation.

How bacterial biofilms are related to human disease

The interest in biofilms is not merely a result of scientific curiosity, but is also derived from

practical concerns related to medical science [6], material engineering [7], civil engineering

[8] and others [9]. In the area of medicine, research on biofilms has focused on its

relationship to bacterial infections and drug resistance. Bacterial infections are a serious

disease and major source of deaths worldwide. Especially concerning is the growing

resistance to antibiotics that has become a major medical issue in developing countries.

Between 1980 and 1992, infectious disease deaths increased by 58%; the major contributors
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were HIV infections and AIDS, respiratory disease and bloodstream infection [10]. In 2000,

a US government report identified infectious diseases as a leading cause of death worldwide

and the third leading cause of death in the USA [11]. It has been estimated that 60–80% of

human microbial infections are caused by bacteria growing as a biofilm [12]. Certain

pathogenic biofilms are of particular concern because of the added issue of drug resistance

[13]. Multidrug-resistant pathogens, such as Enterococcus faecium, Klebsiella pneumonia,

Acinetobacter baumanii, Pseudomonas aeruginosa and Enterobacter spp., are currently

infecting the majority of US hospitals [14]. As methicillin-resistant Staphylococcus aureus

(MRSA) and other resistant pathogens capable of biofilm formation continue to emerge and

propagate, understanding and circumventing biofilm resistance to antibiotics is a paramount

necessity [15].

Pathogens can be introduced into the human body through trauma, medical operations,

dental procedures or by other means [16–18]. Many surfaces of organs are heavily colonized

by microbes that have the potential to cause an infection, especially during any invasive

medical procedure. In fact, the ratio of bacteria to mammalian cells living within the human

body is ten to one, providing ample opportunity for inducing a bacterial infection from

medical procedures or trauma [19]. For example, there are over 500 species of

microorganisms identified in typical dental plaque [301]. Correspondingly, dental cavities

(caries) are commonly a result of bacterial biofilm infections [20]. Biofilms are also formed

on our tongues, cheeks, in our intestines, nasal passages, sinuses and on our skin [301].

These human microbial communities are largely unstudied and their role in infections is

largely unknown. But biofilms protect the organisms from both antimicrobials and the host

immune response, making infectious biofilms extremely difficult to treat [21]. For instance,

staphylococcal biofilm infections have a 10–1000-fold increase in antibiotic resistance [22–

24].

A serious source of biofilm infections is heart disease, which is also a major cause of

mortality in the USA [25]. Invasive surgical techniques are inevitably required to treat the

resulting symptoms of heart disease, which may lead to fatal staphylococcal-infective

endocarditis. S. aureus and S. epidermidis [26] infections stemming from implantable

medical devices (e.g., pace makers [27,28], indwelling vascular catheters [29–31], grafts

[32] and left ventricular assist devices [33–37]) are common causes of infective

endocarditis. Biofilms have also been identified on various other medical devices [12,38]

such as contact lenses, endotracheal tubes, central venous catheters, pacemakers and voice

prostheses that account for over 80% of microbial infections in the body. Catheter-

associated urinary tract infection is also a common source of biofilm infections. It has also

been suggested that autoimmune disorders, such as arthritis, chronic fatigue syndrome,

fibromyalgia, Crohn’s disease and ulcerative colitis, are caused by biofilm infections [39]. In

summary, bacterial biofilms pose a serious threat to human health because of the added

protection biofilms provide from an immune response and antibiotic treatments, the ease of

acquiring an infection from trauma and medical procedures and the rapid emergence of drug

resistance among bacteria that form biofilms.

What does a biofilm look like?

The formation and structure of bacterial biofilms have been extensively reviewed and will

only be briefly summarized here [1–3,5,8,9,40–48]. A biofilm (Figure 1) is composed of

three parts: a living or nonliving substance that provides a moist surface for attachment of

the highly organized microbial structure [49–51]; a slim-like matrix made of extracellular

DNA, proteins and polysaccharides (β (1–6)-linked N-acetylglucosamine polymer) [52,53]

that embeds the microorganism [54]; and an aggregate of microorganisms in a community

that exchange fluids, nutrients and chemical signals [46]. The life cycle of the biofilm can be
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divided into approximately three steps: attachment, growth and propagation (Figure 2). First,

a few colonies reversibly adhere to the surface via van der Waals’ forces to create an

initiation site. Attachment involves lipoteichoic acid anchored to the cell membrane [55].

This is followed by an irreversible attachment of the cells through the production of the

exopolysaccaride matrix and cell growth [51]. The cell growth is not uniform and results in

the formation of channels [9]. A combination of cell division and recruitment occurs during

the maturation stage and only biofilm shape and size are changed [9,52,56]. Finally,

detachment of individual cells and dispersion enables the biofilm to spread and colonize new

surfaces or to join another biofilm [57,58].

Biofilms are viewed as layers of bacteria encapsulated within different microenvironments

due to variations in nutrient availability [59] and differing cell densities [45,55]. Bacteria

within the biofilm core exist in a stationary or dormant growth phase [59] and are

physiologically distinct from planktonic bacteria [44,60–62]. Thus, antibiotics that target

cellular mechanisms associated with growing bacteria have diminished activity against

biofilms [63,64]. Biofilms form irregular spatial structures, which are affected by many

different ecological, biological, chemical and physical factors. The effect of these factors on

biofilm formations have been extensively investigated using a variety of computer

simulations [56,57,65–67].

Biofilm formation at the molecular level

There are some general principles regarding biofilm formation that include the need for

metabolically active bacteria for surface adhesion, the need for an adequate nutrient supply

for cell replication and exopolysaccharide production, and the fact that surfaces coated with

organic nutrients stimulate biofilm formation [2,3]. Correspondingly, bacteria biofilms

readily form on the surfaces of plastic or metal medical devices in body fluids. Some

common bacterial biofilm infections include P. aeruginosa in the lung, Escherichia coli in

the urinary tract, Vibrio cholera in the GI tract, S. epidermidis in the heart, S. aureus in

arteries, Enterococcus spp. in the urinary tract, and fungi such as Candida spp. in the GI tract

[58]. The identification of biochemical pathways critical to biofilm formation is an

important first step to being able to prevent these bacterial biofilm infections. Even with our

general understanding of the basic structure and development of bacterial biofilms,

comprehending the underlying processes responsible for inducing the transition from

planktonic cells to a biofilm is still unclear. Correspondingly, the planktonic to biofilm

transition is a complex and highly regulated process that results in a phenotypic change.

Thus, the differential expression and regulation of specific genes are associated with biofilm

formation.

Genomics & bacterial biofilms

Genomics analysis of biofilm formation started in the 1990s by first screening for biofilm-

defective mutants [68,69]. Such efforts identified a diverse number of genes required for

biofilm formation [70–76]. More recently, DNA microarray technology has been used to

identify genes up- or down-regulated in bacterial biofilms [77]. Unfortunately, there does

not appear to be a clear trend in biofilm-related genes. Instead, multiple pathways to biofilm

formation that depend on media, growth conditions and the specific organism are likely [40].

Nevertheless, some broad, common features have been observed, such as the upregulation of

genes for polysaccharide production, for various stress-induced pathways, for stationary

phase-induced genes, for a prevalence of genes of unknown function and new regulatory

pathways [77]. For example, Quoc et al. identified 19 genes in S. aureus associated with

biofilm formation that were not previously observed [74]. Again, this highlights the

difficulty encountered with identifying a uniform set of biofilm-related genes. Besides genes

involved in polysaccharide intercellular adhesion (PIA) or unknown function, the authors
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observe mutations in guanosine-dependent regulation and formation of wall teichoic acid.

The complexity of biofilm formation may be attributed to the fact that the transition from

planktonic cells to a biofilm is influenced by various and diverse environmental factors such

as ethanol [78], oleic acid [79], glucose [80], UDP-N-acetylglucosamine [81], sub-inhibitory

concentrations of some antibiotics [82], anaerobic conditions [83], iron limitation [84–86],

high osmolarity [87] and high temperature [87]. The diversity of these external stimuli

suggests a versatile regulation system.

Regulating biofilms: σ factors, two-component systems or quorum sensing

After two decades of research, multiple mechanisms of biofilm regulation have been

proposed: σ factors, two-component systems (TCSs) or quorum sensing. σ factors control

the expression of various genes, including virulence factors and global regulators, which are

related to biofilm formation [88–90]. They are activated when bacteria sense environmental

conditions that induce stress (e.g., heat shock, nitrogen-limitation, starvation and high

osmolarity) [91]. TCSs are an alternative stimulus–response coupling mechanism that have

been shown to regulate diverse metabolic processes, such as the bacterial cell cycle, cell–cell

communication, and virulence factors in biofilm formation [92]. In a TCS, a ligand or a

signal molecule can stimulate a histidine kinase sensor protein, which undergoes

autophosphorylation at a conserved histidine residue. The phosphoryl group is then

transferred to the cognate response regulator, which can activate or repress transcription of

the target genes [92,93]. Conversely, quorum sensing uses signal molecules for bacterial

intercellular communication. Quorum sensing enables bacteria to ‘sense’ cell density and

coordinate behavior in response to nutrient availability, toxic compounds, host–immune

response, and defense [94,95]. In Gram-negative bacteria, N-acyl homoserine lactones

(autoinducer-1 [AI-1]) have been identified as the signal molecules [96]. AI-1 is synthesized

and sensed by analogous LuxI and LuxR regulatory proteins. The specific AI-1 molecule

varies between Gram-negative organisms. For Gram-positive bacteria, autoinducer peptides

(with no conserved sequence) have been identified as a signal molecule that involves a two-

component signal-transduction system [97]. Furanosyl borate diester (autoinducer-2 [AI-2])

has been identified as a universal interspecies signal molecule that regulates biofilm

formation in over 55 Gram-positive and -negative species [98]. Figure 3 illustrates some

common regulatory mechanisms of the planktonic to biofilm transition.

Targeting biofilm regulation systems for drug discovery

TCS and autoinducers are promising drug targets for biofilms because of the essential role in

cell growth regulation and the unique mechanisms of action compared with conventional

antibiotics [99–102]. Importantly, proteins from TCS and quorum sensing are absent in

humans, minimizing toxicity concerns. In addition, both biological processes are based on

ligand-receptor interactions, which are typical targets for drug discovery and have a

reasonable likelihood of success. Histidine kinases and response regulators, such as WalK/

WalR, YhcS/YhcR81, HP165/HP166 and MtrB/MtrA, are potential drug targets for bacteria

pathogens [102]. Targeting the kinase domain appears to suffer from poor selectivity, but

targeting the sensor domain may prove more successful. Furthermore, targeting nonessential

TCS proteins that regulate virulence, such as GacS/GacA, PhoQ/PhoP and CorS/CorR, has

demonstrated some initial positive results [102].

Alternatively, quorum sensing may be interrupted by targeting the LuxI, LuxR or LuxS

transcriptional regulators [103,104], AIP receptors [101] or Lsr transporters [98]. A common

approach is to use the three classes of autoinducers as chemical templates to design agonists

or antagonists as a starting point for drug design (Figure 4) [105,106]. For instance, TCS

proteins QseC/QseB from E. coli (EHEC) O157:H7 that responds to AI-3, epinephrine and

norepinephrine, are inhibited by LED209 (N-phenyl-4-[[(phenylamino)thioxomethyl]
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amino]-benzenesulfonamide) [107]. Additionally, the RNAIII-inhibiting peptide (RIP;

YSPWTNF-NH2) is an inhibitor of the staphylococcal TRAP/agr system, which is regulated

by autoinducer RNAIII-activating protein [108]. RIP was shown to be active against MRSA

graft infections. There has also been significant effort in the design of AI-2 analogs as novel

antibiotics because of AI-2’s broad activity against multiple species [109,110]. For instance

Roy et al. explored the activity of C-1 alkyl analogs of AI-2 against multiple bacterial

species [110]. Ethyl-4,5-dihydroxy-2,3-pentanedione (DPD) was found to inhibit quorum

sensing in both E. coli and Salmonella typhimurium. In addition, Rui et al. explored DPD

analogs with a new stereocenter at C-5 (4S, 5R)-DHD [111]. The compound was also shown

to be active against both E. coli and Vibrio harveyi. Conversely, Tsuchikama et al.

synthesized carbocyclic analogues of DPD that were inactive against S. typhimurium and V.

harveyi, suggesting the importance of the linear form of DPD and the heterocyclic oxygen

atom [112]. Similarly, Lowery et al. explored a variety of DPD analogs that resulted in a

uniform lower activity, which highlights the general challenge in evolving a small chemical

template into a drug [113]. Nevertheless, the unique mechanism of action for TCS and

autoinducer targets holds the promise of a valuable new class of drugs that may circumvent

biofilm resistance to antibiotics (Figure 4).

An overview of metabolomics

What is metabolomics?

Metabolomics is the study of metabolites, such as amino acids, carbohydrates and lipids that

are the end products of cellular regulatory processes, as well as intermediates and other

signaling molecules [114,115]. The metabolome is the complete collection of all

metabolites within a biological cell compartment, cell, tissue, organ or organism examined

in the form of a cellular extract or biofluid [116,117]. In general, a molecular weight of 1

kDa is the typical limit that separates metabolites from macromolecules [118].

There are many differences between conventional metabolite measurements and

metabolomics. First, metabolomics focuses on a global or broad-based analysis of

metabolites through a high-throughput detection methodology compared with a limited and

directed analysis of a specific number of individual metabolites [115]. In general,

metabolomics does not require the complete separation of individual metabolites. Instead, it

captures a ‘snapshot’ or ‘fingerprint’ of the state of the metabolome. Thus, metabolomics

simplifies metabolite detection by using a single analytical technique to characterize the

state of the metabolome. In this manner, metabolomics also provides an unbiased view of

changes in metabolism by covering all major pathways. Thus, the systematic analysis of the

ultimate response of a biological system has a better chance of describing pleiotropic effects

[115]. Second, metabolomics uses a combination of multiple methodologies, such as cellular

biology, instrumental analysis, chemometrics and bioinformatics to analyze the biological

system. This combination of techniques provides a better view of the global role that

metabolism plays in cellular functions. Again the analysis of a select set of metabolites does

not provide this sort of global picture of cellular activity. However, in theory, it should be

possible to correlate metabolic changes in a biochemical pathway with the enzymes

involved, and then to the underlying genetic alterations or changes in gene expression or

regulation [115]. A computational simulation could also integrate the experimental data to

create a systematic view of the effected biochemical pathways and, potentially, the relevant

proteins. The identification of specific proteins that are disease-related or, in this case,

related to biofilm formation, is a fundamental and critical step of the drug-discovery process.
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Benefits of metabolomics to drug discovery

Autoinducers are an excellent example of the significant roles that small molecules can play

in bacterial biofilms, where mimicking or inhibiting the mode of action of autoinducers is a

potential drug-discovery target. Other inter- or intra-cellular small-molecular-weight

molecules may have similar roles in the initiation, progression and survivability of bacterial

biofilms. Specifically, biofilms are a spatial distribution of heterogeneous cells, where cells

exist in different metabolic states to maximize survival. Thus, understanding biofilms

requires a comprehensive characterization of the various metabolic states within a complex

cellular community. Correspondingly, metabolomics provides a systematic approach to

explain this complex system [119,120].

Compared with genes and proteins, primary metabolites are highly conserved between

various cells and organisms [121]. In a similar manner to gene expression, some of the key

metabolites, nutrients and signal molecules (autoinducers) have been shown to significantly

influence biofilm formation [122]. Thus, metabolite quantification and the pathway

modeling of complex biological systems is useful for exploring cell behavior in establishing

a biofilm community. Furthermore, metabolomics is an invaluable approach for

investigating antibiotic resistance in biofilms. By generating a network of metabolites

affected by the drug treatment, it is possible to predict the antibiotic’s mechanism of action

[123]. Additionally, the phenotype of antibiotic resistance and biofilm strains can be

characterized through their relative metabolome differences. Similarly, monitoring

metabolic changes can be used to investigate the effects of other environmental stimuli on

biofilm formation [124]. Metabolomics can also be used for detecting disease biomarkers

[125] and as a supplementary tool for proteomics and transcriptomics. The linkage between

metabolomics, mRNA and protein expression makes it possible to visualize the biological

state of an organism [126].

Metabolomics is the bridge between genotype and phenotype [115]. Correspondingly,

metabolomics provides a better understanding of a disease since it links the pathology to

actual changes in the activity of biological processes. Metabolomics provides an approach to

diagnose a disease, monitor its progression, evaluate a response to therapy, and identify

potential novel drug targets. Thus, metabolomics has a wide range of applications in drug

discovery [127], including toxicology [128] and functional genomics [126].

Achievements of NMR-based metabolomics

NMR metabolomics has been applied to identify biomarkers for cardiac disease [129,130],

liver disease [131], respiratory disease [132,133], cancer [134–137] and CNS disorders

[138–141], among others. NMR metabolomics provides a means to differentiate between a

disease and healthy state or between drug treated and untreated. Drug discovery or

chemical-lead identification is then based on observing the metabolome change from a

disease state to a healthy state or by simply observing that a compound changes the

metabolome. For example, Tizianni et al. describes using NMR metabolomics in a high-

throughput screening platform (96-well plates) to identify kinase inhibitors [142]. They

demonstrate that changes in the lactate/pyruvate ratio in human leukemia cells (CCRF-

CEM) and human ovarian cancer cells (SKOV-3) was successful in identifying inhibitors of

eEF-2, NF-kB, MK2, PKA, PKC and PKG kinases. Similarly, Halouska et al. demonstrate

that the in vivo mechanism of action of a chemical lead can be inferred by comparing the

metabolome changes to a known drug [123]. If two or more drugs have a similar impact on

the metabolome then the compounds share a similar target. Additionally, NMR

metabolomics is also widely used for drug development and personalized medicine [143–

145]. The consortium for metabonomic toxicology, an organization of major pharmaceutical

companies, was formed to share metabolomics data from drug studies to characterize
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metabolites associated with kidney or liver toxicity. The overall protocol for toxicity

analysis is comparable to drug discovery and lead identification. Specifically, biofluid (e.g.,

urine, serum and saliva) metabolites from animals or patients undergoing drug treatment are

analyzed by NMR to identify metabolites known to be associated with drug toxicity or

disease biomarkers. If the biofluid metabolites reveal the presence of drug toxicity or the

lack of drug efficacy, then an alternative treatment can be prescribed.

Designing a metabolomics experiment: what information is desired?

Metabolomics is routinely combined with alternative strategies to resolve a biological

problem and to generate a comprehensive analysis. Although different strategies may

require alternative experiments and data analysis, targeted metabolite analysis, metabolic

profiling and metabolic fingerprinting share the same general workflow from sample

preparation to data collection and analysis. Targeted metabolite analysis is the exclusive

study of the direct product of a corresponding enzyme or protein [116]. Metabolic profiling

is the identification and quantification of a set of predefined metabolites in a biological

sample [146]. The metabolites may belong to a specific class of compounds or a particular

metabolic pathway. As an illustration, metabolic fingerprinting can be used to probe

different metabolic phenotypes. Metabolic profiling can then be used to provide a detailed

analysis of specific metabolite changes between the two phenotypes. Metabolomics can also

be referred to as ‘metabolic fingerprinting’ [147], and is generally designed to rapidly

classify biological samples. The combination of different strategies makes metabolomics a

flexible and versatile technique for the analysis of various biological systems, such as

bacterial biofilms [148,149]. The NMR metabolomics methodologies described for drug

discovery are equally applicable to investigating bacterial biofilms, for identifying new drug

targets and chemical leads, and evolving lead candidates into new drugs. Again,

characterizing and comparing the metabolomic differences between planktonic cells and

biofilms provides a means to identify active and relevant biological processes associated

with biofilm formation. Correspondingly, proteins involved in these pathways are potential

drug targets. Identifying and validating drug leads can then be accomplished by observing

chemical-induced changes in the metabolome related to biofilm formation.

Designing a metabolomics experiment: what steps need to be taken?

NMR-based metabolomics generally refers to a comprehensive approach to the analysis of

metabolomic samples that include specific NMR experiments, sample preparation protocols,

and multivariate statistical analysis [150–152]. NMR spectroscopy is used to characterize

the metabolic samples by providing both qualitative and quantitative data [117]. NMR-based

metabolomics of bacterial biofilms consist of the general procedures outlined in Figure 5:

prepare the metabolic samples by culturing the desired bacterial strains under identical

conditions (the only variable should be the specific environmental or genetic factor being

investigated); prepare the NMR samples by lysing the cells, extracting the metabolites and

removing cell debris; detect the metabolites through various NMR techniques; and perform

spectral processing, data normalization, statistical analysis and metabolite identification. The

success of metabolomics largely depends on accomplishing each step in a highly controlled

and uniform manner. Variations in the NMR metabolomics data should result from relevant

biological differences between the samples as opposed to artifacts introduced from sample

or data handling. For example, extracting the metabolites from the lysed cells should occur

quickly and at low temperatures to avoid changes to the metabolome that results from the

process of harvesting the cells. In effect, all potential variables, such as the number of cells,

growth phase, culture media, experimental conditions, bacterial strain and time, need to

remain constant between all bacterial samples [153]. Again, the only difference between the

various bacterial cultures should be the specific environmental or genetic factor being

investigated. Uniformity is the key to a successful metabolomics experiment. It is
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impractical to investigate a heterogeneous sample composed of multiple bacterial organisms

since there is no mechanism to associate the majority of the commonly observed metabolites

to a specific organism. Alternatively, using flow cytometry or other techniques [154] to

separate the cells prior to investigating the metabolome does not solve the problem. The

results would be invalid because the time required and the process of separating the cells

would perturb the state of the cells and, correspondingly, the metabolome.

Designing a metabolomics experiment: what model is used?

Fundamental to a metabolomics study is the identification of the classes or groups of

bacterial cells that will be compared. A straightforward application is the comparison

between two groups, a bacterial strain in its planktonic state (class one) and its biofilm state

(class two). Models of higher complexity include even more classes. For example, Figure 6

illustrates the application of metabolomics to monitor in vivo drug activity. The diagram

illustrates the general analysis of clustering patterns in a principal component analysis

(PCA) scores plot. In a scores plot, the metabolome of four different classes are compared:

wild-type cells; mutant cells in which the drug-target has been genetically knocked-out;

wild-type cells treated with the drug; and mutant cells treated with the drug. The activity and

selectivity of the drug is determined by the relative similarity of the four different

metabolomes as described in Figure 6. As an illustration, a drug is selective and active if the

metabolome of the wildtype cells treated with the drug clusters together with the

metabolome obtained from the mutant cells with and without drug treatment, where this

cluster forms a separate cluster from the wild-type cells without the drug treatment (Figure

6B). These results indicate the protein target in the wild-type cells was chemically

inactivated since the metabolome is identical to the mutant cells where the protein was

genetically inactivated. It also differs from the wild-type cells without the drug treatment

where the protein is still active. The drug is selective because there is no difference between

the metabolomes for the mutant cells with or without drug treatment. This analysis can be

easily generalized. The ‘drug’ in this scenario can also be taken as any environmental

condition, while the ‘mutant’ can be taken as the drug target or any knockout, repressed or

overexpressed gene.

Metabolomics sample preparation

Metabolite sample preparation includes cell quenching, cell harvesting, cell disruption and

metabolite extraction. An important advantage of NMR-based metabolomics is the minimal

and relatively simple sample preparation protocol. Nevertheless, the details of the procedure

influence the accuracy, reliability and reproducibility of the metabolomics data [117].

Different approaches to sample preparation have various advantages in terms of speed,

capability, consistency, efficiency and metabolite recovery yield [155–157]. Since biofilms

can form on a wide range of surfaces or habitats, the experimental conditions for growing

and harvesting cells can be highly variable. Therefore, this review will focus on a general

discussion of sampling methods for biofilm-related planktonic cells.

A proper metabolite extraction technique is critical

A very critical issue in sample preparation is the need to rapidly and efficiently quench all

enzymatic and biological activities in order to capture an accurate ‘snap-shot’ of the

metabolome. This is because metabolites, such as pyruvate, fumarate, oxoglutarate,

phosphoenolpyruvate, fructose-6-phosphate and others, have a rapid turnover rate [158]. In

addition, it is important to avoid inducing a stress response or cell death that would

completely invalidate the study. Thus, a quick quenching step that involves reducing the cell

temperature has been shown to be a useful approach to slow down enzyme activity within a

cell [155]. Methanol is commonly used because of its low freezing point and minimal
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toxicity relative to other organic solvents [156]. However, methanol may only be suitable for

Gram-positive bacteria or fungi due to the possibility of cell leakage and the loss of

metabolites during the quenching and washing steps [158]. Choosing the proper metabolite

extraction protocol is extremely critical since it influences the efficiency and accuracy of the

entire metabolomics experiment.

Improperly removing the cell growth medium and washing the cells is an easy way to

contaminate the metabolomic samples and generate unreliable data. Filtration and

centrifugation are the two main methods of removing the culture medium before collecting

the metabolome. Centrifugation takes longer so there are concerns regarding induced stress

and metabolome changes, but it has a higher consistency in sample preparation. Conversely,

filtration is significantly faster, and it is also easier to quench cells on a filter membrane.

However, there are also practical concerns with uniformly and consistently retrieving all the

frozen cells from the filter paper. Nevertheless, filtration quenching was demonstrated to

have the highest yield for an S. aureus metabolomics study [159]. An NMR-based

metabolomics study of P. pastoris applied a single centrifugation step and demonstrated that

there was no benefit to including an additional washing step in the quenching process [160].

Directly growing E. coli cells on filter paper may provide an efficient and fast approach to

quench cells and extract the metabolome [161]. To date, the choice of technique to separate

and wash cells is still very flexible, which implies a necessary optimization step for any

metabolomics study. An inability to efficiently arrest all cell processes and purify the cells

without inducing leakage or lysis will inadvertently lead to undesirable changes in the state

of the system and the metabolome. Thus, choosing system-appropriate washing, quenching

and cell separation protocols is the first and most critical step of a metabolomic project and

will determine the validity of the entire study.

Cell lysis and metabolite extraction can sometimes be carried out simultaneously. Both

mechanical disruptions, such as the Fast-Prep® system or organic solvent-based methods are

widely used [157,162]. Trichloroacetic acid is a traditional approach for lysing cells from

filter paper, but trichloroacetic acid causes a significant background for metabolomics data

because it also degrades the filter paper [158]. The optimal extraction buffer should: extract

the largest number of metabolites; be nonselective and not exclude molecules with particular

physical or chemical properties; and be nondestructive, as well as not modify metabolites

through chemical or physical means [163]. Since metabolites are normally dissolved in a

D2O buffer or CDCl3 for NMR, choosing alternative extraction solvents is not particularly

beneficial. A common extraction solvent is a 5:2:2 v/v mixture of methanol, chloroform and

water [164]. Other extraction mixtures include a 1:1 v/v mixture of methanol and

chloroform, or water and chloroform for metabolite extractions that include lipids [165].

NMR experiments for metabolomics

There are many practical challenges encountered when studying the bacterial metabolome.

A cellular metabolome can contain upwards of thousands of metabolites, with a 7–9 order of

magnitude range in concentrations (i.e., picomoles to millimoles) [166]. Therefore, it is

generally not possible to analyze all cellular metabolites in a single experiment. Also,

cellular metabolism is very sensitive to environmental changes, in which the measurement

and sampling process can influence the metabolome. Thus, metabolomic measurements are

also perturbed by including separation techniques. Correspondingly, each biological system

requires experimental optimization to accurately study its metabolome.

NMR- or MS-based metabolomics?

MS and NMR are the primary analytical techniques used for metabolite detection. MS

measures the mass-to-charge ratio of charged molecules that can be used to determine the
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elemental composition and elucidate the chemical structure of molecules. While an exact

mass is determined by MS, the limited molecular-weight dispersion of the metabolome

generally requires the use of chromatography [167]. GC, HPLC and CE are common

separation techniques used in MS-based metabolomics [168,169]. Unfortunately, the use of

chromatography to separate metabolites inevitably leads to changes in the metabolome. The

amount that is recovered from the chromatography step will vary for each metabolite, where

some metabolites will be lost or chemically modified. MS also requires ionization of the

molecule for detection with the corresponding uncertainty that a specific metabolite will

ionize. Furthermore, determining a concentration for each metabolite by MS is particularly

challenging.

Conversely, NMR determines a molecular structure by measuring nuclear chemical shifts

within a magnetic field [170]. Three valuable pieces of information are obtainable from a

single peak in an NMR spectrum (Figure 7). The chemical shift is related to the local

chemical environment of that specific nucleus (e.g., 1H, 13C and 15N), and the peak-splitting

(J-coupling) identifies chemically bonded nuclei, which are both used to identify the

chemical structure of the metabolite [170]. Importantly, the peak intensity is directly

proportional to the metabolite’s concentration. Typically, multiple distinct NMR resonances

are observed per molecule, which eliminates the need for chromatographic separation and

increases the accuracy of metabolite identification.

MS is significantly more sensitive than NMR and covers a wider diversity of the

metabolome, although the use of cryogenic probes has significantly increased the sensitivity

of NMR by a factor of four [171]. In effect, NMR only detects the most abundant

metabolites that are present at concentrations greater than 1 to 5 µM. 1H NMR is typically

used for metabolomics since 1H NMR is 64-times more sensitive than 13C NMR.

Nevertheless, NMR cryoprobes can still be used to detect metabolites using naturally

occurring 13C, which has an abundance of only 1.1% (12C is not detectable by NMR)

[172,173]. MS is a destructive technique, but it requires a significantly lower sample amount

(<100 µl) compared with NMR (600 µl). Correspondingly, both approaches are

complementary to each other and contribute inherently distinct information to the analysis of

a metabolome [174]. The complementary nature of MS and NMR has been demonstrated by

a number of metabolomic studies using both techniques [175–179]. In effect, the MS and the

NMR data can be combined to create a 3D scores plot. The added dimensionality from

complementary data may provide the additional resolution necessary to differentiate

between multiple classes or groups.

1D, 2D & solid-state NMR techniques for metabolomics

The application of NMR spectroscopy for metabolomics can be categorized into one of three

groups, 1D NMR, 2D NMR and solid-state NMR [170]. 1D and 2D solution-state 1H NMR

experiments are commonly used for global metabolomics analysis of bacterial cell extracts

[180]. Conversely, solid-state NMR can be used to analyze intact cells [181–183]. In

addition to 1H, other nuclei are also used in 1D NMR-based metabolomics, such as the

metabolic profiling of the carbohydrate cycle using 1D 13C NMR [184,185], or tissue

metabolism using 1D 31P NMR [186].

A typical 1D 1H NMR spectrum of a bacterial cell lysate may contain thousands of sharp

lines from low-molecular weight metabolites (Figure 7) [117]. The entire 1D 1H NMR

spectrum is used as a ‘fingerprint’ to characterize the state of the bacterial cell. A global

investigation of the metabolome is based on a comparative analysis of the features present or

absent in each 1D 1H NMR spectrum. A global metabolomic analysis is based on how

similar or how different the 1D 1H NMR spectra are between each class or group. It is not

necessary to assign each 1D 1H NMR spectrum to identify and quantify all the metabolites
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present in each sample. Overlapping these relevant NMR resonances and interfering with the

analysis may be broad bands from proteins or other biomolecules, which can be readily

removed by using a Carr–Purcell–Meiboom–Gill (CPMG) spin-echo sequence [187]. The

CPMG pulse sequence takes advantage of the large difference in T2 relaxation times

between small-molecular-weight metabolites and large-molecular weight biomolecules. The

NMR resonances from the biomolecules rapidly decay during the CPMG pulse.

Alternatively, proteins and other biomolecules can be removed by an appropriate choice of

extraction solvents [188,189]. The large interfering signal from water or other buffer

components is also eliminated by the use of appropriate NMR solvent-suppression methods

and a 100% deuterated buffer [190]. The water NMR resonance is set in the center of the

spectrum where selective irradiation and gradient pulses suppress the solvent peak while

leaving all other peaks unaffected. In effect, any resonance in the 1D 1H NMR spectrum that

does not originate from the bacterial metabolome will generate a ‘false feature’ that needs to

be removed. NMR resonances originating from proteins or solvents are likely to be variable

and dominate the spectra relative to metabolite signals. This will lead to an erroneous

interpretation of the 1D 1H NMR spectra and incorrect sample classification. For instance,

replicate samples may not cluster together because of a significant variation in the peak

height and peak shape of the water resonance despite the overall similarity in all the

metabolite NMR peaks.

High-resolution magic angle spinning (HR-MAS) is used to generate in vivo 1D 1H spectra

of solids comparable to solution-state NMR [191]. Thus, small, intact and untreated cells or

tissues can be directly analyzed by HR-MAS by spinning samples at speeds between 4 and

12 kHz at the ‘magic’ angle of 54.7° relative to the external magnetic field. Spinning the

sample significantly reduces NMR line widths by averaging out chemical shift anisotropy,

magnetic susceptibility, and dipolar coupling that are prominent in solid samples [170].

Assigning a 1D 1H NMR spectrum to identify the metabolites present in a sample is

challenging because of the large number of peaks, the significant overlap in peaks, the high

chemical shift degeneracy (multiple metabolites have some chemical shifts in common), and

an incomplete database of NMR reference spectra for metabolites. Again, assigning a 1D 1H

NMR spectrum is not necessary for a global analysis of the metabolome, but identifying the

specific metabolites that are changing and are the main contributors to class distinction is

extremely valuable for understanding the underlying biological differences. Statistical total

correlation spectroscopy (STOCSY) can be used to associate multiple NMR peaks from the

same molecule in a complex mixture [192]. This significantly simplifies the assignment

problem since most, if not all, of the NMR resonances for a given metabolite can be used

together in a database search. A positive identification only occurs when all of the observed

chemical shifts match the metabolite’s known chemical shifts in a database. In STOCSY, a

series of 1D 1H NMR spectra is converted into a pseudo-2D spectrum that is based on a

correlation of peak intensities. NMR peaks from the same metabolite will change together as

the metabolite’s concentration varies across multiple distinct classes. The statistical

heterospectroscopy (SHY) is similar in concept to STOCSY [193]. Instead of correlating

NMR peak intensities, SHY correlates chemical shifts from NMR with m/z data from MS.

Thus, SHY can improve molecular identification by directly cross-correlating NMR

chemical shifts with a molecular weight.

More commonly, 2D NMR spectroscopy improves the accuracy of metabolite assignments

by significantly increasing spectral resolution by extending chemical shift information into a

second frequency dimension. Additionally, 2D NMR experiments can identify the network

of resonances associated with a specific metabolite through J-coupling. 2D correlation

spectroscopy (COSY) and total correlation spectroscopy (TOCSY) experiments identify

spin–spin coupling connectivities that identify chemically bonded pairs of hydrogens,
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carbons or nitrogens [194,195]. To a lesser extent, 2D J-resolved NMR experiments are also

used for metabolomics studies [196]. In a 2D J-resolved NMR experiment, the data are

dispersed into two dimensions based on chemical shifts and the J-coupling pattern [197].

While it is possible to match coupling patterns to identify bonded resonances, this is

generally not practical for a complex metabolomics data set. Therefore, a 2D J-resolved

NMR experiment has significantly less information then a 2D COSY or TOCSY experiment

while requiring the same amount of experimental time. Alternatively, a 1D projection of the

2D J-resolved NMR experiment can be used to simplify the NMR spectra by removing peak

multiplicity due to J-coupling [198]. This dramatically reduces the number of peaks and

correspondingly reduces peak overlap. Removing peak splitting improves the accuracy of

metabolite identification and quantification. Of course, a single 2D NMR experiment may

require 1 h or longer to acquire compared with a few minutes for a 1D NMR experiment.

Why 2D 1H–13C heteronuclear single-quantum correlation experiments are commonly used
for metabolite identification

The 2D 1H–13C heteronuclear single-quantum correlation (HSQC) experiment correlates

the 1H and 13C chemical shifts for each C-H pair in a molecule [199]. This provides unique

information relative to the COSY, TOCSY or J-resolved experiments. In addition,

metabolite assignments are easier with a 2D 1H–13C HSQC experiment because of two

correlated and distinct chemical shift assignments, the large 13C chemical shift dispersion

and the simplified spectrum without splitting from J-coupling. However, due to the low

natural abundance (1.1%) of 13C-labeled compounds, such as 13C-methanol, 13C-CO2

[200], 13C-glycerol [201] and 13C-glucose [202] are required as a bacterial carbon source to

enhance the sensitivity of the NMR spectrum [203]. This significantly simplifies and focuses

the analysis of the metabolome. Only metabolic intermediates and products of the 13C-

labeled materials will be partially or completely enriched with 13C. Correspondingly, only

these metabolites will be observed in a 2D 1H–13C HSQC spectrum, which provides a

means to follow carbon flow through the metabolome and identify the perturbed metabolic

pathways. Standard HSQC experiments are not quantitative because of significant variability

in coupling constants and relaxation times (T1 and T2) between metabolites. Nevertheless,

the newly developed 2D extrapolated time zero 1H–13C HSQC (HSQC0) experiment allows

for the calculation of metabolite concentrations [204]. This experiment collects a series of

2D HSQC spectra with an increasing number of the core NMR pulse sequence or HSQC

block. Typically, this HSQC block is repeated from one- to three-times. The peak intensity

will decrease linearly with the number of HSQC blocks, where a linear fit and extrapolation

back to zero HSQC blocks will determine the true peak intensity and metabolite

concentration. Examples of 2D NMR spectra used to identify metabolites from biological

samples are shown in Figure 8.

Processing NMR data: binning, peak alignment, baseline correction & normalization

For chemometrics (also see the section ‘Chemometrics & bioinformatics analysis of

metabolomics data’), the 1D 1H NMR spectra are transformed into a data matrix of

integrated peak intensities and corresponding chemical shift values. These data are used to

define the classes and to identify NMR spectral features that differentiate the classes.

Unfortunately, subtle instrument, temperature and sample condition variability (e.g., pH and

ionic strength) can result in chemical shift differences between replicate samples.

Correspondingly, misalignments will occur in the NMR data matrix between these replicate

samples that will lead to clustering errors independent of any biological differences. One

approach to normalize NMR metabolomics samples is the inclusion of a known

concentration of chemical shift reference compound, such as the sodium salt of 3-

trimethylsilylpropionic acid. The 3-trimethylsilylpropionic acid peak intensity can also be

used to calibrate the concentrations of the metabolites in the biological sample. However, an
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internal reference only corrects for global differences. It does not correct for individual peak

position and shape variability due to subtle experimental differences. Instead, binning or

bucketing is commonly used to correct for peak variability between replicate samples

[205,206].

In its simplest implementation, bucketing divides the NMR spectrum into equally sized,

nonoverlapping subspectral regions with a width or bin size of 0.025 ppm. A typical 1D 1H

NMR spectrum with a width that ranges from 0 to 10 ppm will have 400 buckets. Bin sizes

typically range from 0.01 to 0.04 ppm. The peak intensity within each bucket is integrated,

and these resulting integrals are then used as input to the chemometrics analysis. In this

manner, the buckets or bins smooth out small peak variability with the expectation that the

same peaks occur in the same bucket. Unfortunately, bin edges create a second problem: the

undesirable splitting of a peak between buckets. Thus, ‘intelligent’ or ‘adaptive’ bucketing

techniques have been developed that vary the individual bin size to avoid dividing peaks

between multiple buckets [207–210]. These methods use a Gaussian function, a recursive

algorithm, optimize an objective function using a dynamic programming strategy, or use

undecimated wavelet transforms to automatically identify bin edges. In all cases, intelligent

bucketing performs significantly better than uniform bucketing, where dynamic adaptive

binning was recently shown to perform the best [210]. The use of intelligent bucketing

results in a significant improvement in replicate clustering in scores plots since it minimizes

spectral differences that are biologically irrelevant. Noise regions of the NMR spectra are

typically zeroed or removed from the bucketing [211]. Similarly, buckets resulting from

solvent or buffer peaks that are unrelated to the bacterial metabolome are also excluded.

Again, this eliminates class distinction, which results from biologically irrelevant data. In

essence, the variables used in the chemometrics analysis should be relevant to real variations

in the metabolome between the classes [153].

Peak alignment is a more robust and complex alternative to NMR binning [212–215]. The

goal is to remove the chemical shift variability between the replicate 1D 1H NMR spectra by

individually aligning each NMR peak to a representative spectrum from each class. The

approaches used include fuzzy warping, genetic algorithms, a generalized fuzzy Hough

transform approach, a reduced set mapping (PARS) algorithm, or a recursive segment-wise

peak alignment. Each approach demonstrated acceptable results on test metabolomic

samples and were shown to improve upon the results obtained from bucketing [215].

Nevertheless, intelligent bucketing is still the predominant methodology used in NMR

metabolomics.

An NMR spectrum is experimentally collected as a free induction decay (FID) that requires

further processing to convert the time-domain data into a frequency-domain spectrum

through a Fourier transform. This process can be accomplished using a variety of software

packages (Table 1). All of the software packages can import popular NMR data formats,

such as Bruker, Varian, Jeol Delta, JCAMP-DX, as well as others. Some NMR software can

process both 1D and 2D data, where others only focus on processing 1D (most popular) or

2D data sets. In addition to the Fourier transform step, the processing of NMR data may

include zero-filling, phase correction, baseline correction, applying a window function and

removal of solvent peaks. The inclusion of any of these steps induces changes in the

resulting NMR spectrum that is not biologically relevant. Thus, uniformity in the NMR

processing protocol is essential, where minimizing all spectral manipulation is ideal. In

general, phase correction is essential in order to obtain purely absorption peak shapes.

Uniform zero-filling of the NMR spectra is typically acceptable since it provides a constant

improvement in the digital resolution. Similarly, removing residual solvent peaks by simply

zeroing the corresponding region of the NMR spectrum does not have any detrimental effect

because these solvent regions are not included in the binning process. Conversely, applying
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a window function or incorporating baseline correction should be avoided, if possible, since

these processes induce significant variable changes in the NMR spectrum. The goal of a

window function is to either increase the spectral resolution or the signal-to-noise by

multiplying the FID with a mathematical function. As a result, each NMR peak shape is

artificially changed. Instead, the signal-to-noise and spectral resolution should be improved

experimentally. A baseline correction is required if the baseline for the NMR spectrum is not

flat. A flat baseline is necessary for reliable chemometrics analysis. Distorted baselines may

result from intense solvent or buffer peaks, from phasing problems, errors in the first data

points of the FID, large range of T1 values (short recycle times), or short acquisition times.

Again, baseline problems should be experimentally minimized. Nevertheless, numerous

computational approaches to obtain a flat baseline are available and include a linear or

polynomial (up to six orders) fit of the baseline, FID reconstruction and spectrum averaging.

The choice of a baseline correction method depends on the specifics of the baseline

distortion, which is typically determined by trial and error. Importantly, a single baseline

correction method must be used for an entire metabolomics dataset in order to avoid

inducing class distinctions that are primarily a result of the NMR processing protocol.

Ideally, the overall concentration of the metabolites and the corresponding signal-to-noise of

each replicate 1D 1H NMR spectrum will be essentially identical. Unfortunately, in practice,

there may be a significant variability in the signal-to-noise between replicate NMR spectra

due to random errors in cell lysing, metabolite extraction, or the number of bacterial cells

per sample. Correspondingly, the 1D 1H NMR spectra need to be normalized [216]. Center

averaging is a common normalization technique:

Equation 1

Where X̅ is the average signal intensity, σ is the standard deviation in the signal intensity,

and Xi is the signal intensity within a bin. Other normalization techniques include

normalization to a constant sum, Pareto scaling, mean centering, logarithmic scaling and

probabilistic quotient normalization. A recent analysis of NMR processing procedures by De

Meyer et al. suggests that a combination of intelligent bucketing with probabilistic quotient

normalization yields the best results [217]. Of course, it was not practical to explore all the

possible combinations of the various processing techniques and, as a result, the analysis did

not include center averaging. This highlights a particular challenge with processing NMR

metabolomics data: there is no clear consensus for an optimal protocol because of all the

possible combinations of parameters that need to be evaluated.

Chemometrics & bioinformatics analysis of metabolomics data

For a detailed understanding of a complex biological system, it is essential to follow the

response of an organism to a conditional perturbation at the transcriptome, proteome or

metabolome level [126]. Metabolic products are dependent on genotype, environment, time

and location [218]. Perturbations in any of these factors may lead to a variety of biological

changes that inadvertently affect the metabolome [126]. The primary goal of chemometrics

is to reduce the complexity of the NMR-based metabolomics data to understand these global

correlations. In essence, chemometrics identifies the major features within an NMR

spectrum, the presence or absence of peaks, the change in peak intensity or shape, or the

change in chemical shifts that differ between the various classes. A class definition can be

based on any variable that affects or changes the bacterial cell culture, such as different

bacterial strains (including wild-type and mutant cells) and different experimental conditions

(e.g., growth phase, drug dosage, media composition and pH). Bioinformatics is used to

uncover and characterize all the associated variables and to reveal the underlying
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relationships. Essentially, bioinformatics is used to identify the metabolites that correlate

with the major changes in the NMR spectra and to associate these metabolites with specific

proteins, enzymes, metabolic pathways and other biological processes.

PCA & orthogonal partial least squares discriminant analysis are the most commonly used
chemometrics techniques

For statistical modeling, PCA is the most common multivariate technique for the

comparison of metabolomic data [219]. Each multivariable (chemical shift and intensity)

NMR spectrum is converted into a single point in multidimensional Cartesian space (Figure

9). Each axis (V1, V2, V3 … Vn) corresponds to a specific chemical shift where the peak

intensity is the value along each axis. PCA determines the vector (PC1) corresponding to the

largest variation in the data and fits each NMR spectra to this vector. Each NMR spectrum is

assigned a value – prinicipal component one (PC1) based on its distance to the vector (PC1).

The process is repeated for the next largest variation (PC2) orthogonal to the first vector.

Plotting the resulting principal components (PC1 and PC2) corresponds to a scores plot,

where similar spectra (and metabolomes) cluster together in a scores plot. Spectra (and

metabolomes) obtained from different classes are expected to form separate clusters in the

scores plot. Figure 9 illustrates the hypothetical separation of class 1 from class 2 and the

relatively tight clustering of the class replicates. The class separation is based on differences

in the 1D 1H NMR spectra.

Orthogonal partial least squares discriminant analysis (OPLS-DA) is a related, but

alternative approach to PCA. Unlike PCA, OPLS-DA is a supervised method. This is an

important and significant difference. In PCA, the different classes are not identified and each

1D 1H NMR spectrum follows the protocol described above. Thus, the clustering of each

NMR spectrum in the scores plot is solely determined by the intrinsic differences and

similarities in the features of its NMR spectrum relative to all the other NMR spectra.

However, in OPLS-DA each 1D 1H NMR spectrum is assigned to one of two classes, (e.g.,

biofilm vs planktonic, healthy vs diseased, treated vs untreated, and wild-type vs mutant).

More than two class definitions can be used, but it is generally not recommended. As a

result, OPLS-DA determines the clustering patterns in the scores plot based on the NMR

spectral features and the class definition. OPLS-DA tries to maximize the separation

between the classes based on these manual class assignments, while minimizing the within

class variation. This results in tighter class clustering in the OPLS-DA scores plot relative to

PCA. Fundamentally, if two classes are defined in OPLS-DA then two clusters

corresponding to the two assigned classes will be generated in the resulting scores plot.

OPLS-DA assesses a relationship between an X matrix (NMR data) and Y matrix (the 0 or 1

class designation). Thus, OPLS-DA will only identify all the spectral features that can be

used to distinguish the two classes regardless of any real significance (e.g., noise and small

random variability in peak height). Conversely, the class separation in a PCA scores plot

depends on a combination of all principal component variables. Since OPLS-DA is a

supervised method or biased by the class assignment, it is essential that the model is

validated [153]. Is the class separation due to relevant changes in the 1D 1H NMR spectra

resulting from changes in metabolite concentrations?

The quality of the OPLS-DA model can be evaluated by multiple statistical factors and cross

validation, the goodness of fit (R2) and the quality assessment score (Q2) [220]. A good

OPLS-DA model has R2 values ≥0.5 (range of 0–1) that is conceptually similar to simple

linear regressions. Similarly, a typical value for Q2 for a biological model is ≥0.4. The leave-

one-out cross-correlation technique is commonly used to calculate Q2, where a sub-set of the

NMR spectra are left out to calculate a model that is then used to predict the left-out data

[221,222]. Q2 is the consistency between the predicted and original data. Importantly, Q2

and R2 values should only be used as a figure of merit and not validation of the model. A
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permutation tests is one approach to validate the model [221,222]. The NMR spectra

classifications are randomly assigned creating, in principle, a random data set that should

have poor class separation and low Q2 scores. The process is repeated numerous times

(>1000 permutations) until a Gaussian distribution of Q2 scores is obtained for the random

data set. The statistical significance of the model with the correct NMR spectra classification

can then be obtained by comparing the model Q2 with the random Q2 scores and calculating

a p-value. In addition to Q2, a similar validation can be achieved by using the area-under-a-

receiver-operating-characteristic curve or the number of misclassifications.

Further validation of the OPLS-DA model can be assessed by determining if the NMR

features that determine the class separation are biologically relevant. S-plots and loading

plots are additional outcomes of an OPLS-DA model. An S-plot identifies the relative

contribution of each bin (chemical shift and metabolite) to the clustering in the

corresponding scores plot, each bin with a covariance of >0.10 or <−0.10 are identified as

major contributors to the class separation [223]. Similarly, a loadings plot displays the

relative contribution of each bin to the principal components. Thus, a valid OPLS-DA model

is supported by being able to assign metabolites to the bins that are associated with the class

separation. The model is further validated if multiple bins assigned to the same metabolite

are all major contributors to the class separation. Additionally, the identification of multiple

correlated metabolites, members of the same metabolic pathway for instance, that are all

major contributors to the class separation would further strengthen the reliability of the

OPLS-DA model. Again, the overall goal of NMR-based metabolomics is to identify major

changes in the NMR spectra that can be associated to a specific set of metabolites with a

relationship to a biological process, such as bacterial biofilm formation.

A number of metabolomics software packages have been developed to automate the

chemometrics analysis by combining data normalization, data reduction, model prediction

and validation, and even metabolite identification, into a single work flow. These programs

include: Automics [224], HiRes [225], MetaboAnalyst [226] and the R-package

Metabonomic [227]. Among these, Automics is the most versatile and extensive package

and includes nine different statistical methods applicable to metabolomics data: feature

selection (Fisher’s criterion), data reduction (PCA, LDA and ULDA), unsupervised

clustering (K-Mean) and supervised regression and classification (PLS/PLS-DA, KNN,

SIMCA and SVM). Automics also incorporates processing tools to generate a STOCSY

spectrum.

Interpreting a PCA or OPLS-DA scores plot is fundamentally a cluster analysis. If two or

more classes cluster together in the scores plot, then the NMR spectra and the corresponding

metabolome are considered statistically similar. Conversely, two or more classes that form

distinct clusters indicate the samples are significantly different metabolomes. For a simple

metabolomics study that involves only two or three different types of samples, the cluster

analysis is generally straightforward. An ellipse that corresponds to the 95% confidence

limits from a normal distribution for each cluster can be used to define each class in the 2D

scores plot to visually determine class separation. Alternatively, Werth et al. [228] recently

demonstrated the application of metabolomic tree diagrams combined with standard boot-

strapping techniques [229] as a more robust statistical analysis of clustering patterns in

scores plots. Each PC value (PC1 and PC2) is treated as an axis in a Cartesian coordinate

system. An average position is calculated for each class cluster, which is then used to

calculate a Euclidean distance between each class to create a distance matrix. The cluster

centers and distances between clusters are re-calculated by randomly selecting data points

from each class. The process is repeated until 100 different distance matrices are generated,

which are then used to generate 100 tree diagrams using Phylip 3.68b [230]. A consensus

tree is created, where the bootstrap number is simply the number of times each node appears
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in all 100 trees. Bootstrap values below 50% imply a statistically insignificant separation.

Further analysis to identify the metabolic processes that led to class separation may require

bioinformatics [231]. An example 2D OPLS-DA scores plot and associated metabolomics

tree diagram is shown in Figure 10.

Metabolic pathway reconstructions have been widely employed with five major goals:

contextualization of high-throughput data; guidance of metabolic engineering; directing

hypothesis-driven discovery; interrogation of multispecies relationships; and network

property discovery [232]. NMR-based metabolomics are routinely used to generate these

metabolic networks for a particular biological system (Figure 11). The first step of the

process is to deconvolute and decode the NMR spectra. This is a difficult and time-

consuming process because the high degeneracy of NMR chemical shifts makes

unambiguously assigning an NMR resonance to a specific metabolite extremely challenging.

This is further complicated by the incompleteness of metabolomics data and by several

technical problems that include proper peak assignment [180], peak alignment [233,234],

absolute concentration determination [204,235] and intensity normalization [236]. A number

of metabolomics databases that contain NMR and MS spectra with the associated

assignments are available: Metabominer [237], Madison Metabolomics Consortium

Database [238], BioMagResBank [239] and Human Metabolome Database [240]. Some

efforts to automate the process have also been made [180,224].

The next critical step is to analyze the identified metabolites and find all possible

correlations. The presence of metabolites and metabolic pathways in a particular organism

can be verified by the KEGG [241] and MetaCyc databases [242]. A metabolic network map

can then be generated using Cytoscape [243], and there are many metabolome simulators

that are useful for predicting the networks involving hundreds of metabolites [244].

Additionally, Cell Designer is a valuable diagram editor for drawing biochemical networks

[245].

Analysis of biofilms with NMR-based metabolomics

An obvious application of NMR-based metabolomics has been used to characterize the

difference in the metabolome between planktonic and biofilm cells. Gjersing et al.

applied 1H HR-MAS to study the metabolome difference between P. aeruginosa chemostat

planktonic and biofilm cells [149]. There was no apparent difference in the extracellular

metabolite composition when planktonic and biofilm cells were grown under continually

feed chemostat mode. Conversely, the 2D PCA scores plot of the intracellular metabolome

indicated a clear distinction between the batch and chemostat planktonic and biofilm cells

(Figure 12A). The corresponding loadings plot suggests major and complex differences

between the two metabolomes (Figure 12B). The metabolite differences were not analyzed

in detail, but it was noted that biofilm metabolites were generally lower in concentration,

possibly due to the cells closer to the substrate operating at a lower metabolic rate. Similarly,

Workentine et al. also used 1H NMR to characterize the phenotype of different biofilm

colonies of Pseudomonas fluorescens [246]. PCA of the 1D 1H NMR spectra yielded a 3D

PCA scores plot with distinct clustering for the four different P. fluorescens colonies (Figure

13A). The class distinction was attributed to changes in amino acids (Asp, Glu, Gly, Met,

Phe, Pro, Trp and Val) and central metabolites (acetate, glutathione and pyruvate). This is

suggestive of changes in exopolysaccharide production, response to oxidative stress, and an

impaired amino acid metabolism. Interestingly, the four different P. fluorescens phenotypes

exhibited distinctly different metal sensitivity (Figure 13B). Unfortunately, it was not

possible to determine whether the metabolome differences were a result of the different

metal sensitivity. Booth et al. also analyzed P. fluorescens cells under metal stress, but

compared planktonic to biofilms cells [148]. 1D 1H NMR was combined with GC-MS to
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obtain a detailed analysis of metabolite changes caused by the addition of copper (Figure

14). Planktonic cells responded differently to copper stress compared with biofilms.

Planktonic cells experienced an oxidative stress response as indicated by changes in the

tricarboxylic acid (TCA) cycle, glycolysis, pyruvate, nicotinate and niacotinamide

metabolism. Conversely, biofilms exhibited changes in exopolysaccharide-related

metabolism suggestive of a protective response instead of the reactive changes that occurred

in planktonic cells.

Demonstrating a difference between planktonic cells and biofilms by NMR is an important

step towards an application in drug discovery. Does a chemical lead inhibit metabolic

pathways associated with biofilm formation? Does drug treatment result in a metabolome

more similar to planktonic cells despite conditions that induce biofilm formation?

Comparing the metabolome of planktonic cells with and without drug treatment may

provide an answer to these key questions. Furthermore, the comparative analysis of

planktonic cells and biofilms has already identified changes in the activity of specific

cellular process correlated with biofilm formation. Thus, proteins essential to

exopolysaccharide production and the response to oxidative stress may be novel targets for

disrupting biofilm formation. Additionally, the metabolome differences between planktonic

cells and biofilms can be used as a diagnostic tool and in the design of treatments. As an

illustration, Hall-Stoodley et al. describe the application of microbiological culture,

polymerase-chain reaction-based diagnostics, direct microscopic examination, fluorescence

in situ hybridization and immunostaining to characterize middle-ear mucosa biopsy

specimens for biofilm morphology [247]. The authors concluded that chronic otitis media in

children that require tympanostomy tube placement is biofilm related. NMR metabolomics

could provide a similar analysis of biopsy samples. The treatment of biofilm infections that

have colonized on medical implants often requires the removal of the infected device [149].

Investigating changes in bacterial metabolomes in response to the different surfaces (e.g.,

metals and polymers) may contribute to the development of novel materials resistant to

biofilm formation [248,249]. Coating or embedding medical devices with antibiotics is a

common approach to prevent biofilm infections, but the overuse of antibiotics incurs the risk

of inducing the rapid development of resistance [250,251].

Besides characterizing cellular differences through metabolomics, NMR can also be used to

explore the overall structure and function of biofilms. Vogt et al. used NMR to describe

differences in metabolite diffusion within a biofilm [252]. Pulsed-field gradient NMR was

used to measure diffusion coefficients for slowly moving water and other components in a P.

aeruginosa biofilm. Five groups of components including water, glycerol, and

polysaccharides, were observed with diffusion coefficients ranging from 1.8 × 10−9 to 5 ×

10−13 (m2s−1) that indicate locations in the biofilm pores or the extracellular polymeric

substance. Correspondingly, the complicated structure of a biofilm is a major obstacle to

successful treatment with antibiotics. As the above NMR experiment suggests, a biofilm is a

diffusion barrier that hinders the infusion and dispersion of antibiotics within a biofilm

[253]. This also suggests that the in vivo activity of a chemical lead is determined by both its

efficient dispersion throughout the biofilm in addition to its intrinsic inhibitor activity.

A recent study by Rogers et al. analyzed the synergistic activity of 2-aminoimidazole-

derived compounds, a new class of antibiofilm agents that disperse biofilms [254].

Combining a 2-aminoimidazole-derived compound with known antibiotics resulted in a two-

to eight-fold reduction in MICs against biofilms of P. aeruginosa, Acinetobacter baumannii,

Bordetella bronchiseptica and S. aureus. Importantly, the antibiofilm agent actually

resensitized MRSA. Walencka et al. observed a synergy between salvipisone and

aethiopinone from Salvia sclarea hairy roots with β-lactam antibiotics. Improved activity

was observed against MRSA and multiresistant S. epidermidis (i.e., MRSE) [255].
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Salvipisone and aethiopinone are postulated to function by altering cell surface

hydrophobicity and cell wall/membrane permeability.

NMR metabolomics has also been used to investigate the mechanism by which S.

epidermidis and S. aureus respond to a diverse set of environmental signals to induce the

planktonic to biofilm transition. Bacteria have been shown to form biofilms in response to

variations in ethanol, oleic acid, glucose, UDP-N-acetylglucosamine, subinhibitory

concentrations of some antibiotics, anaerobic conditions, iron limitation, high osmolarity

and high temperature. Instead of numerous distinct signaling pathways, a series of detailed

NMR and molecular biology experiments has demonstrated the presence of a single flexible

metabolic signaling pathway centered on the TCA cycle [124,202,256]. 1D 1H NMR

combined with OPLS-DA was used to compare the metabolome of wild-type S. epidermidis

1457 and an aconitase mutant strain 1457-acnA::tetM under various environmental stressors

known to induce biofilm formation (Figure 10). The change in the metabolome of wild-type

S. epidermidis 1457 in the presence of 4% ethanol, 2% glucose, Fe-limitation and 0.06 µg/

ml of tetracycline was shown to be essentially identical to the aconitase mutant with an

inactive TCA cycle. No change in the metabolome was observed for the aconitase mutant

with or without the addition of environmental stress factors. 2D 1H–13C HSQC experiments

combined with bacteria grown in the presence of 13C-glucose were used to generate a

detailed analysis of the changes in the S. epidermidis metabolome (Figure 11). Consistent

with the global changes in the metabolome, wild-type S. epidermidis in the presence of the

environmental stressors induced the downregulation of metabolites associated with the TCA

cycle and the upregulation of metabolites related to PIA production. These results suggest

that biofilm formation is regulated by the activity of the TCA cycle. Inactivating the TCA

cycle allows the shuttling of key metabolites into PIA production, which is generally

necessary for biofilm formation. Similarly, White et al. compared the metabolome of wild-

type Salmonella and a CsgD deletion mutant that prevents production of an extracellular

matrix [257]. GC–MS and NMR were used to analyze the metabolome along with an

analysis of gene expression. Metabolites associated with glucogenesis and major

osmoprotectants were upregulated in wild-type Salmonella; whereas metabolites associated

with the TCA cycle were upregulated in the mutant. Again, this is consistent with the TCA

cycle activity regulating biofilm formation. These results suggest that agonists of the TCA

cycle would interfere with biofilm formation. Diets or drugs that modulate the nutrient

environment may be an approach to prevent bacterial biofilm. As an example, iron limitation

downregulates the TCA cycle and induces biofilm formation [258]. The major source of

morbidity and mortality in cystic fibrosis patients is P. aeruginosa biofilms formed in the

lung. High iron concentrations inhibit P. aeruginosa biofilms, where chelated sources of iron

combined with antibiotics hold promise as a treatment for cystic fibrosis [259,260].

Metabolomics can also be used to construct metabolic pathways, with contributions from

proteomics and genomics information. Liebeke et al. provided a time-resolved analysis of S.

aureus during the transition from exponential growth to glucose starvation [261]. The

activity of more than 500 proteins and the concentration of 94 metabolites were followed.

1D 1H NMR was used for the quantification of compounds in the media before inoculation,

and at defined time points during cell growth. Intracellular metabolites were measured by

GC–MS/LC–MS. In general, changes in the metabolome correlated with changes in the

proteome, where the metabolome displayed a larger dynamic range. The most dramatic

changes were observed for amino acids. During initial cell growth, glycolysis and protein

synthesis were highly active, but as glucose was exhausted gluconeogenesis and the TCA

cycle were activated. Again, this is consistent with the TCA cycle activity regulating biofilm

formation due to variations in glucose concentrations [80]. Metabolomics is a valuable

approach to characterize the state of a system. Nevertheless, incorporating additional

complementary data, such as proteomics, significantly enhances the reliability of the
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information. Observing a correlation between a metabolite’s concentration and a protein’s

expression level further substantiates the importance and relevance of the protein to the

system, such as biofilm formation. From a drug-discovery perspective, this provides

substantial corroboration of a potentially new drug-discovery target.

Conclusion

NMR metabolomics can be used to characterize different cell phenotypes, to investigate the

underlying biology of biofilm formation, explore the impact of various environmental stress

factors on cell biology, analyze the effect of gene mutations, investigate the spatial and

temporal structure of a biofilm, and even to generate a 3D image. Notably, the NMR

metabolomics methodologies used to study the biochemistry of bacterial biofilms are

directly applicable to a drug-discovery effort. NMR metabolomics has been used to identify

disease biomarkers and diagnose a disease, to screen for drugs, to evaluate drug activity and

toxicity, to identify new therapeutic targets and design new treatments. While the

application of NMR for the analysis of changes in the metabolomics is a relatively new

endeavor, the technique has already made some significant contributions to our

understanding of bacterial biofilms. More importantly, NMR metabolomics holds great

promise to significantly contribute to the diagnosis and treatment of biofilm-related diseases,

where it may play an important role in personalized medicine.

Future perspective

NMR-based metabolomics is a relatively new technology for systems biology and,

correspondingly, has only had a limited use in the investigation of bacterial biofilms.

Nevertheless, the application of NMR-based metabolomics to the investigation of bacterial

biofilms is only limited by the creativity of the scientific community. In the near future, the

further development of the technology will be a primary focus. While NMR-based

metabolomics is straightforward in concept, there are numerous practical considerations that

can severely complicate the routine application of the technique. A primary issue is our

incomplete knowledge of the metabolome; extensive effort is still required to characterize

the metabolome from all organisms and populate databases with reference NMR and MS

spectra. Similarly, while some progress has been made, a metabolomics software package is

still needed that automates and standardizes the processing of metabolomics data,

chemometric analysis and model validation, and metabolite identification. Also, the efficient

and accurate extraction of metabolites from cell lysates requires continued optimization, and

varies depending on the organism under investigation. Developing these protocols is

extremely critical to the future success of metabolomics. Additional methodology

advancements that will benefit metabolomics include the routine integration of MS and

NMR data, and the efficient quantitation of metabolite concentrations from MS and 2D

NMR experiments.

Our understanding of bacteria cell biology is far from complete, where NMR-based

metabolomics will be an invaluable addition to the study of biofilms and related processes

such as programed cell death, inter-/intra-species communication and pathogenesis. The

systematic analysis of the bacterial genome, transcriptome, proteome and metabolome will

enable the construction of a detailed network to describe the regulatory and metabolic

pathways associated with biofilm formation, progression, evolution and survivability. In

addition to enhancing our basic understanding of bacterial biofilms, NMR-based

metabolomics will be an invaluable tool for drug discovery, disease diagnosis and

personalized medicine. NMR-based metabolomics can be used as part of a drug-discovery

screening protocol. Observing an induced change in the bacterial metabolome due to a drug

treatment would further validate a chemical lead identified from standard high-throughput

Zhang and Powers Page 20

Future Med Chem. Author manuscript; available in PMC 2013 April 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



screens [262,263]. In fact, Halouska et al. recently demonstrated how NMR-based

metabolomics can be used to identify the in vivo mechanism of action of a chemical lead

[123]. This addresses a major challenge with drug discovery: identifying new drugs with

activity against novel therapeutic targets that also avoid common mechanisms of resistance

or toxicity. Similarly, characterizing the metabolome of various pathogenic bacterial strains

with a correlation to drug susceptibility provides a means to personalize patient treatments.

In essence, the identification of characteristic metabolites from the biofluids of infected

patients would identify the bacterial strain and preferred form of treatment.
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Key Term

Metabolome The complete set of small-molecular-weight compounds (<1 kDa)

or metabolites found within bacterial cells other cellular organisms

tissues or biological samples.

Chemometrics Application of multivariate statistics to extract information and

describe a chemical or biological system. Chemometrics is used to

identify spectral features that differentiate a set of NMR spectra to

identify changes between two or more metabolomes.

Classes or groups Collections of NMR spectra obtained from replicate bacterial cell

cultures where one experimental variable differs from the other sets

of spectra.

Scores plot Each NMR spectrum is represented as a single point in a scores plot

where its relative location is dependent on the spectrum’s fit to a

predictive model. The resulting clustering pattern identifies the

relative similarity and differences between the NMR spectra.

2D 1H–13C

heteronuclear

single-quantum

correlation

spectrum

An NMR experiment that correlates the chemical shift of a proton

(1H) with the chemical shift of a carbon (13C) where the proton and

carbon are chemically bonded.
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Executive summary

▪ Bacterial biofilms are a health concern because they increase antibiotic

resistance and protect the bacteria from the host immune response system,

which may lead to a serious and untreatable infection.

▪ Bacterial biofilms can attach to a variety of surfaces that include numerous

medical devices, which is a primary source of biofilm infections.

▪ A biofilm is a highly organized microbial structure that contains a slim-like

matrix that embeds the microorganism, but allows for the exchange of fluids,

nutrients and chemical signals for cellular communication.

▪ The three main stages of a biofilm life cycle are attachment, growth and

propagation. Biofilm formation depends on the bacteria’s response to

changing environmental conditions, which is regulated by quorum sensing,

two-component systems or σ factors.

▪ Quorum sensing enables bacteria to ‘sense’ cell density and coordinate

behavior in response to nutrient availability and environmental conditions

through signal molecules. These signal molecules are prime targets for

developing drugs that inhibit biofilm formation.

▪ Metabolomics is the global analysis of small-molecule concentration changes

within a cell using NMR spectroscopy or MS. It provides a direct means of

monitoring changes in the state of the cell resulting from activities such as

drug treatments or biofilm formation.

▪ Metabolomics provides a better understanding of a disease since it links the

pathology to actual changes in the activity of biological processes. Any

observed change in the metabolome is a direct consequence of a change in

protein activity.

▪ The process of monitoring the metabolome includes rapidly quenching all

cell activities, efficiently lysing the cell, and quickly extracting the

metabolites. Speed and consistency are essential to a successful metabolic

study. The goal is to avoid perturbing the state of the metabolome during the

collection process.

▪ 1D 1H NMR, 2D 1H–13C HSQC and 2D 1H–1H TOCSY are the NMR

experiments commonly used for metabolomics. The goal of the 1D 1H NMR

experiments is to generate a ‘fingerprint’ of the state of the cellular

metabolome. The primary goal of the 2D NMR experiments is metabolite

identification.

▪ MS is also used for metabolomics, where NMR and MS are complementary

techniques.

▪ There are many considerations for the proper processing of NMR data for a

metabolomics study. These include binning, peak alignments, baseline

corrections and normalization.

▪ Chemometrics is commonly used to analyze NMR metabolomics data with

the principal goal of class discrimination. The metabolomics data are

interpreted by a simple cluster analysis, NMR spectra that yield distinct

clusters in a scores plot have different metabolomes.
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▪ A primary challenge with metabolomics is validating that the clustering

pattern in a scores plot is biologically relevant as opposed to experimentally

induced changes to the metabolome or the NMR data.

▪ A number of examples illustrating the application of NMR-based

metabolomics to the investigation of bacterial biofilms are presented.
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Figure 1. Horizontal optical thin sections (0–2.6 µm) of the Pseudomonas aeruginosa biofilm
obtained by scanning confocal laser microscopy

The biofilm was negatively stained with 0.1% fluorescein. The horizontal sections show the

removal of out-of-focus information and reveal aspects of the internal structure of the

biofilm.

Reprinted with permission from [45] © American Society for Microbiology (1991).
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Figure 2. Bacterial biofilm formation and growth

(A) The four-step process involved in the formation of biofilms. (B) The lipoteichoic acid is

anchored to the cell membrane and extends out past the edge of the cell wall; it is the initial

molecular contact between the bacterium and other materials. (C) The chemical structure of

lipoteichoic acid.

Reprinted with permission from [46] © Elsevier (2008).
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Figure 3. Regulatory networks controlling the transition between planktonic and biofilm lifestyle

The external frames illustrate the bacterial envelope with one or two membranes according

to (C) Gram-positive and (A, B & D) Gram-negative bacteria, respectively. (A) Control of

biofilm formation in Pseudomonas aeruginosa through the two-component system GacS

(HK)/GacA (RR) mediated by sRNA rsmY and rsmZ gene transcription and modulated by

RetS and LadS, two additional HK in P. aeruginosa. (B) Control of exopolysaccaride

alginate in P. aeruginosa, which further impacts biofilm architecture by the system ECF σ
factor AlgU–anti-σ MucA–AlgP (IM)–AlgW (periplasmic) complex: (1) activation of

AlgW/AlgP; (2) cleavage of MucA; (3) release of AlgU; (4) activation of the alg
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UmucABCD operon. (C) Control of Staphylococcus aureus biofilm formation through the

Agr QS system: (1) AgrD autoinducer production; (2) AgrD autoinducer accumulation in

the extracellular medium where it reaches a threshold; (3) activation of the two-component

system AgrCA by AgrD at the threshold concentration; (4) AgrA-dependent activation of

the sRNA RNA III expression repressing expression of genes involved in biofilm formation

together with amplification loop of agrABCD. (D) Control of P. aeruginosa biofilm

formation through the intracellular second messenger c-di-GMP level controlled by the

FimX protein having DGC and PDE domains, a RR domain, and a PAS domain. Note that in

FimX protein, only PDE activity is detectable (continuous arrow), whereas DGC activity is

undetectable (dotted arrow).

DGC: Diguanylatecyclase; IM: Inner membrane; OM: Outer membrane; RR: Response

regulator.

Reprinted with permission from [264] © Springer (2011).
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Figure 4. Autoinducers and analogs

(A) Autoinducer-1 chemical structure and its analogs homocysteine derivative [105] and 3-

oxopentanoyl HSL [106].

(B) Autoinducer-2 chemical structure, its precursor DPD and its analogs ethyl-DPD [265]

and DHD (4S, 5R)-4 [266].

DPD: 4,5-dihydroxy-2,3-pentanedione.
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Figure 5. General protocols for an NMR metabolomics study

BMRB: Biological Magnetic Resonance Data Bank; HMDB: Human Metabolome Database;

HSQC: Heteronuclear single-quantum correlation; KEGG: Kyoto Encyclopedia of Genes

and Genomes; MMCD: Madison Metabolomics Consortium Database; OPLS-DA:

Orthogonal partial least squares discriminant analysis; PCA: Principal component analysis;

TOCSY: Total correlation spectroscopy.
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Figure 6. Hypothetical principal component analysis scores plot for several scenarios

(A) Inactive compound; (B) active and selective inhibitor; (C) active, nonselective inhibition

of target and secondary protein; and (D) active, nonselective preferential inhibition of

secondary protein.

PC: Prinicipal component.

Reprinted with permission from [267] © American Chemical Society (2006).
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Figure 7. 1H NMR spectra of the intracellular metabolic profiles of aqueous extract of MCF-7
cells

The sample used for spectrum contained approximately 6 × 105 cells. The spectra shown in

the inset were also plotted using the same expanded x-axis scale.

Ace: Acetate; Bet: Betaine; Cho: Choline; For: Formate; GSH: Glutathione; Lac: Lactate;

Myo: Myo-inositol; PCh: Phosphocholine; Pyr: Pyruvate; Suc: Succinate; TMAO:

Trimethylamine N-oxide; TSP: 3-trimethylsilylpropionic acid.

Reprinted with permission from [268] © Springer (2009).
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Figure 8. 2D NMR spectra obtained from metabolomics samples

(A) Overlay of 2D 1H–13C heteronuclear single-quantum correlation spectra comparing

wild-type Staphylococcus epidermidis strain 1457 (red) and aconitase mutant strain 1457-

acnA::tetM (black) grown for 6 h in standard tryptic soy broth media augmented with

0.25% 13C-glucose. NMR resonances corresponding to specific metabolites are labeled and

citrate is circled. (B) Overlay of 2D 1H–1H total correlation spectroscopy spectra comparing

wild-type S. epidermidis strain 1457 (red) and aconitase mutant strain 1457-acnA::tetM

(black) grown for 6 h in standard tryptic soy broth media.

Reprinted with permission from [124] © American Chemical Society (2011).
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Figure 9. Conceptual illustration of the principal component analysis of NMR-spectral data

Each 1D 1H NMR spectrum is converted into a single point in multidimensional space. Each

axis (e.g., V1, V2 and V3) corresponds to a chemical shift (ppm) and the value along the axis

is the peak intensity or bin integral. A vector (PC1) corresponds to the largest variation in

the data. The second vector (PC2) is orthogonal to the first vector and corresponds to the

second largest variation in the data. The scores correspond to the fit of each point (spectrum)

to each PC vector, where the resulting 2D scores plot identifies the relative similarities and

differences between the NMR spectra based on the clustering pattern.

PC: Prinicipal component; PCA: Principal component analysis.
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Figure 10. Staphylococcus epidermidis biofilm formation, regulated by the tricarboxylic acid
cycle

(A) 2D orthogonal partial least squares discriminant analysis (OPLS-DA) comparing wild-

type Staphylococcus epidermidis 1457 cells grown 6 h in standard tryptic soy broth media,

with S. epidermidis 1457 cells grown 6 h in iron-depleted media (DTSB), with the addition

of 4% ethanol, with the addition of 2% glucose, with the addition of 0.06 µg/ml tetracycline,

with the addition of 5% NaCl, and 6 h growth of aconitase mutant strain 1457-acnA::tetM in

standard tryptic soy broth media. The ellipses correspond to the 95% confidence limits from

a normal distribution for each cluster. For the OPLS-DA scores plot, the 6 h growth of wild-

type S. epidermidis 1457 was designated the control class and the remainder of the cells

were designated as treated. The OPLS-DA used one predictive component and four

orthogonal components to yield a R2X of 0.637, R2Y of 0.966 and Q2 of 0.941. (B)

Metabolomic tree diagram generated from the the 2D OPLS-DA scores plot depicted in (A).

Each node is labeled with the bootstrap number, where a value above 50 indicates a

statistically significant separation.

Reprinted with permission from [124] © American Chemical Society (2011).
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Figure 11. Cytoscape network depicting the metabolite concentration changes caused by the
inactivation of the tricarboxylic acid cycle

Nodes colored red correspond to metabolites with an increase in concentration due to

inactivated TCA cycle. Nodes colored green correspond to metabolites with a decrease in

concentration due to TCA cycle inactivation. Nodes colored blue correspond to metabolites

that are not observed in the NMR spectra, do not have a reference NMR spectrum (or

assignment) or did not exhibit a significant concentration change. Metabolic pathways are

labeled on the network.

ACA: Acetaldehyde; ACE: Acetate; ACP: Acetyl-P; AKG: α-ketoglutarate; ALAAc:

Acetyl-alanine; AMI: 4-aminobutanoate; CIR: Citrulline; CIT: Citrate; ETH: Ethanol; F6P:
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Fruc-6P; G1P: Gluc-1P; G6P: Gluc-6P; GAL: Galacturonic acid; GAL1P: R-D-gala-1P;

GLR: Glucuronate; GLS: D-glucosamine; GLS6P: Glucosamine-6P; GLSAc: N-Ac-D-

glucosamine; GLSAc6P: Acetyl-glucosamine-6P; GLUAc: Acetyl-glutamate; GLY:

Glyceraldehyde; ICI: Isocitrate; INO: Ino, Ade, Xan; LAC: Lactate; MANAc: N-acetyl-D-

mannosamine; MIN: Myo inositol; MSE: Selenomethionine; NEUAc: N-Ac-neuraminate;

ORN: Ornithine; ORNAc: Acetyl-ornithine; PEP: Phosphoenolpyruvic acid; PRO: Proline;

RIB: D-ribose; SAM: S-adenosyl-methionine; SER: Homoserine; SUCSER: O-Succinyl-L-

homoserine); TCA: Tricarboxylic acid; UDPGLR: UDP-glucoronate; UDPGLSAc: UDP-

NAc-D-glucosamine; VAL: Valine.

Reprinted with permission from [124]. © American Chemical Society (2011).
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Figure 12. Metabolome difference between Pseudomonas aeruginosa planktonic and biofilm cells

(A) PC analysis score plot for chemostat planktonic and biofilm cell samples for

Pseudomonas aeruginosa. (B) Loading plot of the first PC.

PC: Principal component.

Reprinted with permission from [149] © American Chemical Society (2007).
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Figure 13. NMR characterization of different Pseudomonas fluorescens biofilm cultures

(A) Partial least squares discriminant analysis (PLS-DA) scores plot of the metabolite

concentrations of Pseudomonas fluorescens CHA0 (black), CHA19 (red), SCV (green) and

WS (blue). Each data point represents a single extract and the position determined as a linear

combination of 32 metabolite concentrations obtained from the 1H NMR spectra. The four

strains could be separated along three components. (B) Killing curves of P. fluorescens

CHA0 (open squares), CHA19 (filled squares), SCV (closed circles) and WS (open circles).

Biofilms of each of the strains were exposed to a series of metal concentrations for 4 h

followed by viable cell counting. Shown are the log killing values, which are the number of

cells killed following the exposure to metal. Error bars represent standard deviation

calculated from four replicates. Average cell counts for the initial unexposed controls were

5.38 ± 0.47, 4.89 ± 0.45, 5.23 ± 0.39, 5.17 ± 0.47 log10 cfu peg−1 for CHA0, CHA19, SCV

and WS, respectively.

SCV: Small colony variants; WS: Wrinkly spreaders.

Reprinted with permission from reference [246]. © Wiley-Blackwell (2010).
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Figure 14. Hierarchical clustering analysis of control and copper-exposed biofilm and planktonic
culture metabolite concentrations

Identified metabolites were analyzed for any apparent patterns. Clustering was performed

using Pearson correlation as the distance metric. The cluster tree shows how the samples and

metabolites divide. The samples are shown across the top of the figure, labeled by their

class, and the metabolites are shown on the side. These were colored according to the

grouping pattern that they showed: green metabolites were only changing in the planktonic

cultures, red only in biofilms and blue were changing in both cultures in response to copper

exposure.

Reprinted with permission from reference [148]. © American Chemical Society (2011).
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Table 1

NMR software packages.

Software Operating system Source Dimension Ref.

ACDLab Win Commercial 1D and 2D [302]

CCPNmr Win/Mac/Unix Academic 2D [269,303]

Felix Win/Unix Commercial 2D [304]

FERCH Win Commercial 1D [305]

Gifa Unix Academic 1D and 2D [270,306]

iNMR Mac Commercial 1D and 2D [307]

matNMR Win/Mac/Unix Academic 1D and 2D [271,308]

MestreNova Win/Mac/Unix Commercial 1D and 2D [309]

NMRPipe Win/Mac/Unix Academic 2D [272,310]

NMRViewJ Win/Mac/Unix Commercial 2D [311]

NUTS Win Commercial 1D and 2D [312]

RMN Mac Academic 1D and 2D [313]

rNMR Win/Mac/Unix Academic 2D [273,314]

Sparky Win/Mac/Unix Academic 2D [315]

SpinWorks Win/Mac/Unix Academic 1D and 2D [316]

TARQUIN Win/Mac/Unix Academic Solid state [274,317]

WIN-NMR Win Commercial 1D [318]
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