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Abstract

Background: The replication crisis hit the medical sciences about a decade ago, but today still most of the flaws
inherent in null hypothesis significance testing (NHST) have not been solved. While the drawbacks of p-values have
been detailed in endless venues, for clinical research, only a few attractive alternatives have been proposed to replace
p-values and NHST. Bayesian methods are one of them, and they are gaining increasing attention in medical research,
as some of their advantages include the description of model parameters in terms of probability, as well as the
incorporation of prior information in contrast to the frequentist framework. While Bayesian methods are not the only
remedy to the situation, there is an increasing agreement that they are an essential way to avoid common
misconceptions and false interpretation of study results. The requirements necessary for applying Bayesian statistics
have transitioned from detailed programming knowledge into simple point-and-click programs like JASP. Still, the
multitude of Bayesian significance and effect measures which contrast the gold standard of significance in medical
research, the p-value, causes a lack of agreement on which measure to report.

Methods: Therefore, in this paper, we conduct an extensive simulation study to compare common Bayesian
significance and effect measures which can be obtained from a posterior distribution. In it, we analyse the behaviour
of these measures for one of the most important statistical procedures in medical research and in particular clinical
trials, the two-sample Student’s (and Welch’s) t-test.

Results: The results show that some measures cannot state evidence for both the null and the alternative. While the
different indices behave similarly regarding increasing sample size and noise, the prior modelling influences the
obtained results and extreme priors allow for cherry-picking similar to p-hacking in the frequentist paradigm. The
indices behave quite differently regarding their ability to control the type I error rates and regarding their ability to
detect an existing effect.

Conclusion: Based on the results, two of the commonly used indices can be recommended for more widespread
use in clinical and biomedical research, as they improve the type I error control compared to the classic two-sample
t-test and enjoy multiple other desirable properties.
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Background
In randomised clinical trials (RCT), the two-sample Stu-

dent’s and Welch’s t-test is one of the most popular statis-

tical procedures conducted. The goal often can be defined

to test the efficacy of a new treatment or medication and

investigate the size of an effect. Common settings use

a treatment and control group, and the goal is to mea-

sure differences in a response variable like blood pressure.

The gold standard in medical research for deciding if a

new treatment or drug was more effective than the con-

trol treatment or drug is the p-value. The p-value states

if the researcher can deem the observed difference sig-

nificant, that means unlikely to have occurred under the

assumption of the null hypothesis. The dominance of p-

values when comparing two groups in medical (and other)

research is overwhelming: Nuijten et al. [1] showed in a

meta-analysis that of 258105 p-values reported in journals

between 1985 and 2013, 26% belonged to a t-statistic, see

also Wetzels et al. [2].

In its most restricted setting, the two-sample Student’s

t-test assumes normally distributed data with identical

variances, that is Y1i ∼ N (μ1, σ
2), Y2j ∼ N (μ2, σ

2)

and tests the null hypothesis of no difference at all, that

is H0 : μ2 = μ1, assuming equal sample sizes i, j =
1, ..., n, n ∈ N. Removing the restriction for homoscedas-

ticity – which is the assumption of identical variances

σ 2
1 = σ 2

2 in both groups – and the assumption of iden-

tical sample sizes i = j, the setting leads to the well

known Behrens-Fisher-problem, which remains unsolved

until today. The typical practice is to proceed with an

approximative solution, known as Welch’s two-sample t-

test. These approximative solutions are quite reliable, but

as frequentist testing makes use of sampling statistics,

which only allow rejecting the null hypothesis via the use

of p-values, confirming any research hypothesis is not

possible. The general procedure of null hypothesis sig-

nificance testing (NHST), which uses sampling statistics

to reject a null hypothesis via p-values makes formulat-

ing any reasonable research hypothesis complicated, as

the research hypothesis first has to be rephrased in the

form of a rejectable null hypothesis. In some cases, this

is not possible at all, further limiting the usefulness of

NHST in applied research. Countless papers have criti-

cised the misuse and abuse of p-values in particular in

medical research, and official statements of the American

Statistical Association (ASA) in 2016 and 2019 byWasser-

stein & Lazar [3] and Wasserstein et al. [4] make clear

that tensions have not relaxed by now. The current prac-

tice shows that the p-value as a measure of significance is

still widely used and resilient to the repeated criticism [5],

while being prone to overestimating effects, stating effects

if none exist in reality, and false interpretation by scien-

tists [6]. This problem is especially observed in clinical

research, see Ioannidis [7].

Among the proposed solutions to the problems of

NHST is a shift to Bayesian statistics [4]. It is com-

monly agreed on that a more widespread use of Bayesian

methods can at least partially improve the reliability in

medical research on a statistical basis [8–10]. Recently, the

development of Bayesian counterparts to frequently used

statistical tests in medical and social science – including

Student’s and Welch’s two-sample t-test – has opened up

new possibilities for researchers: Open-source programs

like JASP (https://jasp-stats.org) implement a broad spec-

trum of Bayesian methods and make them available to a

wide range of researchers via a simple point-and-click user

interface similar to SPSS.

Given the general recommendation of a shift towards

the Bayesian paradigm, it is sensible to ask what ben-

efits come with this shift. While NHST focusses on

hypothesis testing via p-values and stating the signif-

icance of an observed effect, the Bayesian philosophy

proceeds by the formulation of a statistical model, the

inclusion of available prior information into the analy-

sis, and the derivation of the posterior distribution of

the parameters of interest, for example, the effect size

in the setting of Student’s two-sample t-test. Employ-

ing the posterior distribution instead of point estimates,

the Bayesian philosophy fosters estimation under uncer-

tainty directly in contrast to NHST, which commonly

uses point estimates like maximum likelihood estimates

with confidence intervals, which are often interpreted

wrong.

In NHST, testing for the significance of an effect is the

standard approach, but the significance of an effect does

not imply that the discovered relationship is also scientifi-

cally meaningful. It only means that the observed effect is

unlikely to be observed under the assumption of the null

hypothesis, no matter how large or small it is. Also, a non-

significant result does not indicate that the null hypothesis

is correct, and together these drawbacks of NHST can be

seen as the reason why multiple measures of significance

and magnitude of an effect based on the posterior distri-

bution have been proposed in the Bayesian literature. In

the Bayesian paradigm, inferences about the parameters

of interest are drawn from the posterior distribution, and

testing is optional. In practice, drawing conclusions from

the posterior distribution is achieved by using different

posterior indices. There are measures which state the sig-

nificance of an effect, and measures which also gauge the

size of it. Among them is the Bayes factor introduced by

Jeffreys [11], the region of practical equivalence (ROPE)

championed by Kruschke [12], the probability of direction

(PD) as detailed in Makowski et al. [13], the MAP-based

p-value proposed by Mills [14], and the Full Bayesian Sig-

nificance Test (FBST) featuring the e-value, which was

introduced by Pereira, Stern and Wechsler [15, 16]. The

appropriateness of these indices is still debated in the lit-

https://jasp-stats.org
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erature, which makes it challenging to choose among the

available indices because by now there is no explicit agree-

ment on which index researchers should use to report the

results of a Bayesian analysis [10, 17–19].

What is missing are specific investigations which of

the available measures of significance and effect size are

appropriate for a specific statistical method like the two-

sample Student’s and Welch’s t-test. The results of such

studies could guide scientists in the selection of an appro-

priate index to assess the result of a two-sample Student’s

or Welch’s t-test performed in the analysis of clinical trial

data. In order to provide such guidance, this paper investi-

gates the behaviour of common Bayesian posterior indices

for the presence and size of an effect in the setting of the

two-sample Student’s and Welch’s t-test.

Indices of significance andmagnitude of an

observed effect
In this section, we briefly review the existing Bayesian

indices of significance and magnitude of an observed

effect. Reviewing the most commonly used indices will

serve as a firm understanding of the simulation study

reported later in this paper, and also enhance a critical

reflection on each of the indices.

The Bayes factor (BF)

The oldest and still widely used index is the Bayes fac-

tor (BF). Bayesian hypothesis testing often is associated

with the Bayes factor BF01, the predictive updating factor

which measures the change in relative beliefs about both

hypotheses H0 and H1 given the data x:

P(H0|x)
P(H1|x)
︸ ︷︷ ︸

Posterior odds

=
p(x|H0)

p(x|H1)
︸ ︷︷ ︸

BF01(x)

·
P(H0)

P(H1)
︸ ︷︷ ︸

Prior odds

(1)

The Bayes factor BF01 can be rewritten as the ratio of

the two marginal likelihoods of both models, which is

calculated by integrating out the respective model param-

eters according to the prior distribution of the param-

eters. Generally, the calculation of these marginals can

be complex for non-trivial models. In the setting of the

two-sample Student’s t-test, the Bayes factor is used for

testing a null hypothesis H0 : δ = 0 of no effect against

a one- or two-sided alternative H1 : δ > 0, H1 : δ < 0

or H1 : δ �= 0, where δ = (μ1 − μ2)/σ is the effect

size according to Cohen [20, p. 20], under the assump-

tion of two independent samples and identical standard

deviation σ in each group. An often lamented problem

with Bayes factors as detailed in Kamary et al. [21] and

Robert [17] is the dependence on the prior distributions

assigned to themodel parameters. Nevertheless, the Bayes

factor has deep roots in Bayesian thinking and is one

of the most widely used measures for hypothesis test-

ing. Over the years, several authors including Jeffreys

[11], Kass and Raftery [22] or Van Doorn et al. [23]

have offered thresholds for interpreting different values

of it. For example, according to Van Doorn et al. [23],

a Bayes factor BF10 > 3 can be interpreted as moder-

ate evidence for the alternative H1 relative to the null

hypothesis H0, and a Bayes factor BF10 > 10 can be

interpreted as strong evidence in the same way. Note

that the Bayes factor BF10 can be obtained by inverting

BF01 in equation (1), that is: BF10 = p(x|H1)/p(x|H0) =
1/BF01. So, if for example BF01 = 4 states moderate evi-

dence for the null hypothesis H0 : δ = 0, then BF10 =
1/BF01 is obtained as 1/4 for the alternative hypothesis

H1 : δ �= 0.

The region of practical equivalence (ROPE)

The region of practical equivalence was championed by

Kruschke [24], who stresses that such a region is often

observed in different scientific domains under different

names “such as indifference zone, range of equivalence,

equivalence margin, margin of noninferiority, smallest

effect size of interest, and good-enough belt” Kruschke

[19, p. 272]. The essential idea is that in applied research,

parameter values can often be termed practically equiva-

lent if they lie in a given range. Starting from the poste-

rior distribution of the parameter of interest, researchers

should interpret values inside the region of practical

equivalence (ROPE) as equivalent. For example, when

conducting a clinical trial which compares the weight in

kilograms of patients in two groups, one could define that

the difference of means μ2 − μ1 is practically equivalent

to zero if it lies inside the ROPE [−1, 1]. That means a dif-

ference of only one kilogram is interpreted as practically

equivalent to zero. If the posterior distribution of μ2 − μ1

now is entirely located inside the ROPE, the difference

μ2 − μ1 is interpreted as practically equivalent to zero a

posteriori. On the other hand, if the total probability mass

of the posterior distribution μ2 − μ1 is located outside

the ROPE, the null hypothesis μ2 = μ1 of no difference

can be rejected. The same procedure can be applied to

any parameter, θ of interest. If the probability mass of the

posterior lies partially inside and outside the ROPE, the

situation is inconclusive.

There are two versions of the ROPE, one in which the

95% Highest-Posterior-Density-Interval (HPD) is used for

the analysis (95% ROPE), and one in which the full pos-

terior distribution is used (full ROPE). For the effect size

δ, Kruschke [24] proposed to use [−0.1, 0.1] as the ROPE

for the null hypothesis H0 : δ = 0 of no effect, which

is half of the effect size necessary for at least a small

effect according to Cohen [20] (a small effect is defined

as 0.2 ≤ δ < 0.5 or −0.5 < δ ≤ −0.2 according to

Cohen [20]).
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The probability of direction (PD)

The probability of direction is detailed in Makowski et al.

[13] and varies between 50% and 100%. It is defined as

the proportion of the posterior distribution of the param-

eter that is of the median’s sign. Therefore, if the posterior

distribution assigns probability mass to both positive and

negative parameter values, and the median is positive, it

is the percentage of the posterior distributions probability

mass located on the positive real numbers (0,∞).

The MAP-based p-value

The MAP-based p-value was proposed by Mills [14] (see

also Makowski et al. [13]), and can be related to the odds

that a parameter has against the null hypothesis: It is

defined as the ratio of the posterior density at the null

value and the value of the posterior density at the maxi-

mum a posteriori (MAP) value, which is the equivalent of

the mode for continuous probability distributions.

The e-value and the full Bayesian significance test (FBST)

The Full Bayesian Significance Test (FBST) was originally

developed by Pereira and Stern [15] and created under

the assumption that a significance test of a sharp hypoth-

esis had to be conducted. A sharp hypothesis refers to

any submanifold of the parameter space of interest, see

[16], which includes for example point hypotheses like

H0 : δ = 0. Considering a standard parametric statisti-

cal model, where θ ∈ � ⊆ R
p is a (vector) parameter

of interest, p(x|θ) is the likelihood function associated to

the observed data x, and p(θ) is the prior distribution of

θ , the posterior distribution p(θ |x) is proportional to the

product of the likelihood and prior density:

p(θ |x) ∝ p(x|θ)p(θ)

A hypothesis H makes the statement that the parameter θ

lies in the corresponding null set �H then. Following [25]

in notation, the Full Bayesian Significance Test (FBST)

then defines two quantities: ev(H), which is the e-value

supporting (or in favour of) the hypothesis H, and ev(H),

the e-value against H, also called the Bayesian evidence

value against H, see Pereira and Stern [15]. First, the pos-

terior surprise function s(θ) and its maximum s∗ restricted
to the null set �H are denoted as

s(θ) :=
p(θ |x)
r(θ)

, s∗ := s(θ∗) = sup
θ∈�H

s(θ)

In the definition of the posterior surprise function s(θ),

the denumerator r(θ) is a reference density. If the

improper flat prior r(θ) ∝ 1 is used, the surprise func-

tion becomes the posterior distribution p(θ |x). Otherwise,

a noninformative prior distribution can be used as a ref-

erence density, see Stern [25]. The next step towards the

e-value is to define

T(ν) := {θ ∈ �|s(θ) ≤ ν}, T̄(ν) := � \ T(ν)

and T(s∗) is then called the tangential set to the hypoth-

esis H, which contains the points of the parameter space

with higher surprise (relative to the reference density r(θ))

than any point in the null set �H . Integrating the poste-

rior p(θ |x) over this set can be interpreted as the Bayesian

evidence against H, the e-value ev(H):

ev(H) := W (s∗), W (ν) :=
∫

T(ν)

p(θ |x)dθ

Of course the e-value ev(H) supporting H is obtained as

ev(H) := 1 − ev(H). In the above, W (ν) is called the

cumulative surprise function, and W (ν) := 1 − W (ν).

Therefore, large values of ev(H) indicate that the hypoth-

esis H traverses low-density regions (or equivalently, that

the alternative hypothesis traverses high-density regions)

so that the evidence against H is large. The theoreti-

cal properties of the FBST and the e-value(s) have been

detailed in Pereira and Stern [16] and Stern [25]. Here,

we focus on the behaviour of the e-value ev(H) against

H : δ = 0 in the context of the Bayesian two-sample t-test.

Note that one can use ev(H) to reject H if ev(H) is suffi-

ciently small (or when ev(H) is large), but not to confirm

H, whichmay be seen as a drawback of the FBST. Note also

that there exist asymptotic arguments using the distribu-

tion of ev(H), which make it possible to obtain critical

values based on this distribution to reject a hypothesis

H, similar to p-values in NHST. In the simulation study

reported later, we do not make use of any asymptotic

argument and solely report the e-value ev(H) against H.

Additional remarks

Makowski et al. [13] also proposed the Bayes factor ver-

sus ROPE index, which does not compare the point null

hypothesis H0 : δ = 0 against an alternative H1 : δ �= 0 as

the normal BF, but used a null H0 : δ ∈[−0.1, 0.1] which

is given by the ROPE and then tests against the alterna-

tive H1 : δ /∈[−0.1, 0.1] which is the complement to the

ROPE. While this approach is highly similar to the tra-

ditional ROPE and shows similar behaviour indeed [13],

it will not be used here. Also, the frequentist p-value is

used as a reference index, which is the probability under

the null hypothesis, to obtain a result equal to or more

extreme than the one observed for the statistical model

used, see Wasserstein & Lazar [3].

Figures 1 and 2 show the different posterior Bayesian

indices for significance and size of an effect for a Bayesian

two-sample t-test. Group one was simulated as N (0.5, 1)

and group two as N (2, 1) each with n = 10 samples and

the true effect size is δ = −1.5. The FBST is visualized

in Fig. 1, where the left plot shows a Cauchy prior C(0, 1)

(dashed line) and the resulting posterior p(δ|x) (solid black
line), which is obtained by the Bayesian two-sample t-test



Kelter BMCMedical ResearchMethodology           (2020) 20:88 Page 5 of 18

Fig. 1 Visualization of the Full Bayesian Significance Test. The e-value and FBST using a flat reference prior r(δ) ∝ 1 (left) and wide Cauchy reference
prior C(0, 1) (right) against H0 for the Bayesian two-sample t-test; the blue area indicates the integral over the tangential set T(0) against H0 : δ = 0,
which is the e-value ev against H0 ; the red area is the integral over T(0), which is the e-value ev(H) in favour of H0 : δ = 0

of Rouder et al. [26]. s∗ is computed as s(0) = 0.1103

(indicated by the blue point) and the integral W (0) over

the set T(0) is shown as the red area under the posterior.

This area is ev(H), which is 0.0418 in this case. The blue

area corresponds to the integral W (0) over the set T(0),

which consists of all parameter values δ attaining a pos-

terior density p(δ|x) larger than p(0) = 0.1103, indicated

by the horizontal dashed blue line. The value of this inte-

gral is the evidence against H0 : δ = 0, ev(H) = 0.9582,

which advises the researcher to reject H0 : δ = 0 if a

threshold of ev(H) > 0.95 is used for making a decision

in light of the obtained evidence. The right plot in Fig. 1

shows the same situation, but now the reference prior r(δ)

used in the surprise function has been changed from the

improper flat prior r(δ) ∝ 1 to the wide Cauchy prior

C(0, 1) actually used when conducting the Bayesian two-

sample t-test of Rouder et al. [26]. Therefore, the surprise

function values differ (see the scaling of the y-axis) and

values of p(δ|x)/p(δ) > 1 indicate that the posterior p(δ|x)
assigns a larger probability to a given parameter value than

the prior p(δ). This can be interpreted as the data having

increased this parameters probability.

The Bayes factor BF10 of H0 : δ = 0 against H1 : δ �= 0

is shown in the upper left plot of Fig. 2 and can be inter-

preted as the ratio of the prior density at the point-null

value δ0 = 0 visualised as the grey lollipop and the pos-

terior density at the point-null value δ0 = 0 visualised as

the red lollipop. After observing the data,H0 becomes less

probable, which is reflected in the Bayes factor of BF10 =
3.38. Thismagnitude indicates onlymoderate evidence for

H1, which is due to the small sample size of n = 10. Note

that the Bayes factor BF01 can be obtained by inverting

the ratio.

TheMAP-based p-value is shown in the upper right plot

and is defined as the ratio of the height of the posterior

density at the null value δ0 = 0 and the MAP-value δMAP,

the maximum a posteriori parameter. As can be seen, the

MAP estimate is near δ = −1, indicating a clear shift away

from the null hypothesis. Still, the MAP-based p-value is

given as pMAP = 0.203, which is not significant.

The lower left plot visualises the 95% and full ROPE,

where the ROPE is defined as [−0.1, 0.1], following the

recommendations of Kruschke [27]. 2.38% probability

mass of the posterior distribution is located inside the

ROPE when using the 95% ROPE and 3.00% is located

inside the ROPE when using the full ROPE. In a test of

practical equivalence, where the null is only rejected if the

posterior is located entirely outside the ROPE, the null

hypothesis H0 cannot be rejected based on the ROPE.

Still, if an estimation-oriented perspective is used, avoid-

ing the classical testing stance, the ROPE-analysis shows

evidence for the alternative H1 for both the 95% and full

ROPE.

The lower right plot in Fig. 2 shows the probability of

direction (PD). It enjoys some desirable properties: First,

it clearly shows that the effect is more likely to be of nega-

tive than positive sign, as 97.70% of the posterior is located

on the negative real numbers. Also, the PD embraces esti-

mation under uncertainty instead of hypothesis testing, in

the same way as the ROPE does when avoiding an explicit

testing stance. The posterior distribution can then be used

in a second step to obtain, for example, the mean and

standard deviation as estimates for the parameter. Still,

hypothesis testing is also possible via rejecting the null

H0 : δ ≥ 0 if at least 95% of the posterior of δ is located on

the negative real axis.
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Fig. 2 Visualization of Bayesian posterior indices. Different Bayesian posterior indices for significance and size of an effect for a Bayesian two-sample
t-test

Methods
A simulation study was performed to analyse the

behaviour of the different measures in the setting of

Welch’s two-sample t-test. Pairs of data were simulated,

consisting of two samples, one for each group, each nor-

mally distributed. Four settings were selected: In the first,

no effect was present, and both groups were identically

distributed as standard normal N (0, 1). In the second, a

small effect was present, and the first group was simulated

as N (2.89, 1.84) and the second as N (3.5, 1.56), resulting

in a true effect size of

δ =
(2.89 − 3.5)

√

((1.842 + 1.562)/2)
≈ −0.357 (2)

In the third simulation setting, a medium effect was

present. The first group was simulated asN (254.08, 2.36)

and the second as N (255.84, 3.04), resulting in a true

effect size of

δ =
(254.08 − 255.84)

√

((2.362 + 3.042)/2)
≈ −0.646 (3)

The last setting usedN (15.01, 3.4) andN (19.91, 5.8) dis-

tributions for the first and second group, yielding a true

effect size of

δ =
(15.01 − 19.91)

√

((3.42 + 5.82)/2)
≈ −1.03 (4)

For each of the four effect size settings, 10,000 datasets fol-

lowing the corresponding group distributions as detailed

above were simulated. This procedure was repeated for

different samples sizes n, ranging from n = 10 to n = 100

in steps of size 10 to investigate the influence of sample

size on the indices. In each case, the traditional p-value,

the Bayes factor BF10, the ROPE 95%, the full ROPE, the

probability of direction, theMAP-based p-value and the e-

value ev(H0), that is the evidence against H0 : δ = 0 were

computed. The Bayes factor was calculated as the Jeffreys-

Zellner-Siow Bayes factor for the null hypothesis H0 : δ =
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0 of no effect against the alternativeH1 : δ �= 0, see Rouder

et al. [26] and Gronau et al. [28]. More precisely, the cal-

culated quantities are (1) the Bayes factor, a single number

that quantifies the evidence for the presence or absence of

an effect and (2) the posterior distribution, which quanti-

fies the uncertainty about the size of the effect under the

assumption H1 : δ �= 0 that it exists. This posterior distri-

bution (2) of the effect size δ was then used to compute the

95% ROPE, the full ROPE, the PD and the MAP-based p-

value as well as the e-value ev(H0). The traditional p-value

was obtained via a two-sample Welch’s t-test.

The above procedure was conducted three times with

the prior on the effect size δ set to three different hyper-

parameters to investigate the influence of the prior mod-

elling: A noninformative Jeffrey’s prior was always put on

the standard deviation of the normal population, while a

Cauchy prior was placed on the standardised effect size.

The Cauchy prior C(0,
√
2/2) was used in the first setting,

C(0, 1) in the second and C(0,
√
2) in the third, corre-

sponding to a medium, wide and ultrawide prior on the

effect size δ. This way, the influence of the prior modelling

on the resulting indices can be measured. To get more

insights about the e-value ev(H0), for each prior setting

ev(H0) was once computed using a flat improper refer-

ence density r(δ) ∝ 1 (that is, the surprise function equals

the posterior distribution), and once using the Cauchy

prior assigned to δ as a reference density in the surprise

function s(δ).

Finally, the above procedure was repeated for the fixed

sample size n = 30 to investigate the influence of noise.

n = 30 samples were simulated in each group to con-

trol for the influence of sample size and Gaussian noise

N (0, ε) was added to the group data x and y, where ε was

selected as ε = 0.5 to ε = 5 in steps of 0.5.

The percentage of significant results was computed for

samples of increasing size n as the number of significant

results divided by 10,000. This number is an estimate for

the type I error probabilities of the indices, a quantity cru-

cial for reproducible research [29]. Significant is defined

here as follows: A Bayes factor BF10 ≥ 3. A posterior dis-

tribution using the 95% ROPE or full ROPE is significant

when it is located completely outside the corresponding

ROPE [−0.1, 0.1] around δ = 0. The MAP-based p-value

is significant when pMAP < 0.05. The p-value is signifi-

cant when p < 0.05. The PD is significant when PD = 1 or

PD = 0, and the e-value is significant when ev(H) > 0.95

(no matter whether a flat reference density or the Cauchy

reference density was used).

The statistical programming language R was used [30]

for the simulations. The Bayes factor was computed via

Gaussian quadrature in the R package BayesFactor

[31], which was also used to obtain the posterior distri-

bution of δ under the alternative H1 of an existing effect.

The package bayestestR [32] was used to compute

the 95% ROPE, full ROPE, PD and MAP-based p-value.

The evidence ev against H0 : δ = 0 in the FBST

was computed with the posterior Markov-Chain-Monte-

Carlo draws of the posterior distribution of δ provided by

the BayesFactor package [31]. These posterior draws

were interpolated to construct a posterior density of δ,

which was then integrated numerically over the tangen-

tial set of H0 as required for ev(H0). For more details, also

about the random number generator seed, a commented

replication script, which can reproduce all results and

figures, is provided at the Open Science Foundation under

https://osf.io/fbz4s/.

Results

Influence of sample size and prior modelling

Figure 3 shows the dependence of the Bayesian indices on

sample size for four different effect sizes using the ultra-

wide prior C(0,
√
2). The four plots in each row show the

succession of the results for no effect, a small effect, a

medium effect and finally a large effect, while the x-axis

shows increasing sample size n = 10 to n = 100 in each

group in steps of 10.

The left plot of the first row shows that the p-value is

distributed uniformly under the null hypothesis H0 : δ =
0. If the alternative H1 : δ �= 0 is true, the three figures

right beneath show that for increasing sample size n, the

p-value becomes significant, where the necessary sam-

ple size for stating significance decreases with increasing

actual effect size δ.

The second row shows the succession for the Bayes fac-

tor BF10. The left plot shows, that under the null hypoth-

esis H0 : δ = 0 the Bayes factor correctly converges to

zero (in contrast to the p-value). This property opens the

possibility of confirming the null hypothesis, which is not

possible via an ordinary p-value. The three figures right of

this plot show the progression of the Bayes factor BF10 for

increasing effect size. Here, the Bayes factor accumulates

more and more evidence for the alternative H1 : δ �= 0 for

small, medium and large effect sizes. For more substan-

tial effect sizes, the Bayes factor requires a much smaller

sample size to state evidence for the alternative. The

plots are limited to a y-range of [ 0, 100] (except for the

first plot) for better visibility, as BF10 becomes very large

quickly.

The third and fourth row shows the results for the 95%

and full ROPE [−0.1, 0.1] around the effect size δ = 0.

Under the null, in both cases, the percentage of the pos-

terior’s probability mass inside the ROPE increases. As

δ = 0 under the null, for n → ∞, the posterior will

eventually concentrate completely inside the ROPE, but

the necessary sample size can be considerable. From the

figure, it becomes clear that for n = 100, about 50% of

the probability mass of the posterior is located inside the

ROPE [−0.1, 0.1] around δ = 0. For increasing sample

https://osf.io/fbz4s/
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Fig. 3 Influence of the sample size n on Bayesian significance and effect size indices for small, medium, large and no existing effects using an
ultrawide prior C(0,

√
2) on the effect size δ
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size n, this percentage will finally become 100%. Consid-

ering the 95% and full ROPE, even for small sample sizes

like n = 10 the majority of values shows that at least 10%

of the posterior is located inside the ROPE so that hardly

any false-positive statements are produced.

Under the alternative H1 : δ �= 0, both the 95% and full

ROPE show that the percentage of the posterior located

inside the ROPE [−0.1, 0.1] of no effect converges to

zero for increasing sample size n. For increasing effect

size δ, the necessary sample size n needed to reject the

null hypothesis H0 (based on an equivalence test or an

estimation under uncertainty perspective as detailed by

Kruschke [19]) becomes smaller.

The fifth row shows the results for the probability of

direction (PD). Under the null hypothesis H0 : δ = 0,

the PD is not uniformly distributed as was the case for p-

values. The PD concentrates at about 70% here (see the

scaling of the y-axis), which does not reflect the true effect

size of δ = 0, which should yield a PD near 50%. Still,

under the alternative H1 : δ �= 0, the PD converges to

100% if sample sizes grow. The speed of convergence is

faster for larger effect sizes δ �= 0.

The MAP-based p-value shown in the sixth row shows

a behaviour similar to the classic p-value. One difference

is that under the null hypothesis H0, it is much larger on

average than the traditional p-value. Still, this behaviour

is robust to increasing sample size n and a correct inter-

pretation of the MAP-based p-value only allows to state

significance when pMAP is smaller than a significance

threshold. Interpreting large pMAP as evidence for H0 is

not allowed at all. Under the alternative H1, the behaviour

is quite similar to the classic p-value: For increasing sam-

ple size n, the MAP-based p-value becomes significant,

where the necessary sample size n for stating significance

decreases with increasing effect size δ.

The evidence ev(H0) (in the following denoted as ev)

under the flat improper reference density r(δ) ∝ 1 is

shown in the seventh row and concentrates around δ =
0.5 under the null hypothesis H0 : δ = 0. The reason for

this can be seen in the fact that the posterior of δ concen-

trates for n → ∞ around δ = 0 if H0 : δ = 0 is true,

and the posterior density p(δ|x) also concentrates around

δ = 0 with slight fluctuations happening due to the ran-

domness in simulation. The only thing that changes when

increasing sample size n is thus the scaling of the x-axis

of the posterior p(δ|x), so that ev is not influenced at all

by increasing sample size. The support for H0 can easily

be obtained by calculating ev(H0) = 1 − ev(H0), which

in this case also concentrates around 0.5, instead of con-

centrating around 1. If on the other hand H1 : δ �= 0 is

true, ev quickly signals evidence against H0 for increasing

sample size n and increasing effect size δ, as shown by the

three right-hand plots in the seventh row. When using the

medium Cauchy prior C(0,
√
2/2) instead of the improper

reference density r(δ) ∝ 1, the situation is similar, but the

plots in the last row in Fig. 5 show that the evidence ev

against H0 accumulate faster then if H1 is true.

Figure 4 shows the results of the simulation when

using a wide prior C(0, 1) instead of the ultrawide prior

C(0,
√

(2)). The classic p-value is of course not affected at

all from this prior change. The BF10 shown in the second

row is slightly larger under the alternative H1 : δ �= 0,

as the wide prior C(0, 1) becomes more informative com-

pared to the ultrawide prior C(0,
√
2). The probability

mass located around δ = 0 becomes more concentrated

when using the wide C(0, 1) prior instead of the ultrawide

C(0,
√
2) prior, and therefore BF10 is increased (compare

the boxplots in Figs. 3 and 4).

For the same reasons, the percentage of probability mass

inside the 95% and full ROPE increases under the null

H0 : δ = 0, as shown by the third and fourth row in

Fig. 4. More prior mass around δ = 0 due to the nar-

rower C(0, 1) prior on δ leads to more posterior mass

inside the ROPE [−0.1, 0.1] around δ = 0. Under the

alternative H1, the 95% and full ROPE suffer from this

change, as shown in the boxplots for small, medium and

large effects in rows three and four, which are shifted up

slightly. The increase of probability mass near δ = 0 draws

the posterior towards δ = 0, and it becomes harder for

the posterior to concentrate outside of the ROPE. Nev-

ertheless, for increasing sample size, the ROPEs finally

reveal evidence for the alternative H1. Note that due

to the concentration of probability mass around zero

when using the C(0, 1) prior, the boxplots of the ROPEs

are shifted slightly up under the null hypothesis of no

effect.

The same holds for the PD, which also needs a larger

sample size now to achieve the same evidence for the alter-

native when an effect is present. No matter whether a

small, medium or large effect size is present, all boxplots

shift down slightly, indicating that less probability mass is

strictly positive in the posteriors produced. The narrower

prior distribution seems to shrink the complete posterior

distribution towards smaller values, leading in turn to a

smaller PD.

The MAP-based p-value is also influenced by the nar-

rower prior: Due to the increased probability mass near

δ = 0, the MAP-estimate of δ shrinks towards δ = 0. In

combination with the larger value of the prior C(0, 1) at

the point-null value δ0 = 0 compared to the point-null

value of the ultrawide prior C(0,
√
2), the ratio calcu-

lated for the MAP-based p-value decreases, leading to

larger MAP-based p-values and slightly upshifted box-

plots under the alternative H1.

The last two rows show ev under the improper reference

density r(δ) ∝ 1. Barely any change can be observed com-

pared to the setting using the ultrawide prior C(0,
√
2),

which is confirmed in the seventh row. Under the wide
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Fig. 4 Influence of the sample size n on Bayesian significance and effect size indices for small, medium, large and no existing effects using a wide
prior C(0, 1) on the effect size δ
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Cauchy prior reference density r(δ) = C(0, 1), the evi-

dence against H0 : δ = 0 again concentrates around

ev = 0.5, indicating neither strong evidence against H0

nor support forH0. Compared to the ultrawide prior used

in Fig. 3, under the alternative H1 : δ �= 0 the evidence

ev against H0 : δ = 0 also barely changes. These results

show that the e-value is quite robust against variations in

the prior modelling.

Figure 5 shows the results when using a medium prior

instead of a wide one. The classic p-value is again not

affected from this prior, so the results are identical. In con-

trast to Figs. 3 and 4, the Bayes factor now accumulates

evidence even faster, because the medium prior is even

more informative than the wide and ultrawide one.

The 95% and full ROPE boxplots are shifted up even

higher therefore under H0, showing that switching from

the noninformative ultrawide and weakly informative

wide prior to the medium prior yields larger percentages

of the posterior distributions probability mass inside the

ROPE under the null hypothesis H0 as even more prob-

ability mass concentrates around δ0 = 0 now. From a

Bayesian perspective, the null hypothesis is thus faster

confirmed. Under the alternative H1 : δ �= 0, the medium

prior makes it now even harder for the 95% and full ROPE

to reject the null hypothesis. This is again due to the fact

that under the medium prior C(0,
√
2/2) the prior allo-

cates again more probability mass to values near δ0 = 0

than under the ultrawide C(0,
√
2) or wide Cauchy prior

C(0, 1). Therefore, the posterior shifts more slowly away

from the ROPE [−0.1, 0.1] of no effect, and therefore for

the same sample size n, the posterior mass located inside

the ROPE is larger when using the medium prior on δ.

Still, for increasing sample size, this effect vanishes and

even under the medium prior distribution, the concen-

tration of posterior mass inside the ROPE converges to

zero.

The same phenomenon holds for the PD and the MAP-

based p-value. Here too, under the alternative the nar-

rower prior on δ around zero makes it harder for the PD

and MAP-based p-value to accumulate evidence for the

alternative H1. For increasing sample size n, both the PD

and the MAP-based p-value still finally reject the null

hypothesis. For a fixed sample size n, the same is achieved

faster under the ultrawide and wide prior, which have less

prior probability mass near δ0 = 0.

Considering ev in the last two rows, under the improper

reference density r(δ) ∝ 1 again barely any changes can

be observed compared to the setting using the ultrawide

C(0,
√
2) or wide C(0, 1) prior, which is confirmed in the

seventh row of Fig. 5. Under the medium Cauchy prior

reference density r(δ) = C(0,
√
2/2), the evidence against

H0 : δ = 0 again concentrates around ev = 0.5, indicat-

ing neither strong evidence againstH0 nor support forH0.

Compared to the ultrawide and wide priors used in Figs. 3

and 4, under the alternative H1 : δ �= 0 the evidence ev

against H0 : δ = 0 again is barely influenced by shifting to

the medium Cauchy prior, showing strong robustness of

the e-value against the prior modelling.

At this point, the results show that both the MAP-based

p-value, the classic p-value and the e-value ev cannot state

evidence for the null hypothesis in addition to being able

to state evidence for the alternative. These measures can

only reject the null hypothesis H0 and offer no possibil-

ity to confirm the null hypothesis. For practical research,

this is limiting. Also, the PD stabilises at about 75%, which

is the middle of its possible extremes, 50% and 100%. It

would be desirable that the PD converges to 50% under

the null H0 : δ = 0, to show that both a positive and neg-

ative effect are equally possible. Given the behaviour of

the PD under the null, it seems that the PD favours the

directed alternative δ > 0 although the null H0 : δ = 0

is true. Under the alternative, H1 : δ �= 0, the PD as

well as the p-value and MAP-based p-value behave as

expected. Note that Pereira and Stern [15] created the e-

value to test a sharp hypothesis H0, and rejection of H0

was the intended goal of the procedure. In contrast to the

p-value andMAP-based p-value, the e-value enjoys a mul-

titude of highly desirable properties like compliance with

the likelihood principle, being a probability value derived

from the posterior distribution, and possessing a version

which is invariant to alternative parameterisations, see

also [16]. Therefore, the e-value is preferable over the stan-

dard p-value and MAP-based p-value, also because of its

robustness to the prior selection.

The Bayes factor BF10, the 95% and full ROPE have

two desirable properties: Under the null, all three mea-

sures indicate evidence for H0 : δ = 0 while under the

alternative H1 : δ �= 0, they indicate evidence for H1. It

is somehow problematic while not astonishing that both

constructs accumulate evidence faster under the null H0

using amedium prior, thanwhen using a wide or ultrawide

prior. Under the alternative, evidence for H1 accumulates

faster when using a wide or ultrawide prior instead of

a medium one. Thus, when using a medium prior, find-

ing evidence for H0 is easier than finding evidence for H1

both with the BF and the ROPEs. Using a wide or ultra-

wide prior, finding evidence for H1 is easier than finding

evidence for H0 with the BF and the ROPEs. There-

fore, we recommend using the wide prior C(0, 1), which

places itself in the middle between these two extremes.

Using a medium or ultrawide prior needs further justi-

fication, because otherwise, some kind of cherry-picking

could happen by combining Bayes factors or ROPEs with a

medium, wide or ultrawide prior depending on the goal of

rejection or confirmation of the null hypothesis. Note that

the e-value showed strong robustness to the prior selec-

tion. Therefore, if the rejection of a research hypothesis is

the formulated goal of the scientific enterprise, the e-value
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Fig. 5 Influence of the sample size n on Bayesian significance and effect size indices for small, medium, large and no existing effects using a medium
prior C(0,

√
2/2) on the effect size δ
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based on the FBST procedure with the corresponding

Cauchy prior as reference density in the surprise function

may prevent such cherry-picking.

The take-away message regarding the prior modelling

here is that the combination of prior and significance and

effect size measure together can make it easier to find evi-

dence for some hypotheses, which is problematic. Also,

taking into account that the focus of research is to reveal

relevant differences (clinically, in biomedical research for

example), it is recommended to use at least n = 100

patients in each group to ensure that also small effects can

be detected reliably.

Influence of noise

Figure 6 shows the results for the influence of noise

on Bayesian indices of significance and effect size. As

expected and shown in the first row, the influence of

noise on the classic p-value under the null H0 is negligi-

ble. Under the alternative, the p-value gets disturbedmore

and more with increasing noise ε. The number of signifi-

cant p-values reduces for increasing noise as shown by the

boxplots, which are shifted upwards more and more when

noise ε increases.

TheBF10 has the same problems:When the null hypoth-

esis H0 : δ = 0 is true, the Bayes factor is not influenced

much by noise.When on the other handH1 : δ �= 0 is true,

adding noise to the observations makes it more difficult

for the Bayes factor to state evidence for the alternative

H1 : δ �= 0. This behaviour is also revealed when com-

paring Figs. 3 and 6: The boxplots in the fourth plot of the

second row in Fig. 3 show that the Bayes factor achieves

higher values compared to the situation where noise is

present, as shown in the fourth plot of the second row in

Fig. 6.

The 95% ROPE and full ROPE also suffer from increas-

ing noise. Under the null hypothesis, the noise does not

influence the percentage of posterior mass inside the

ROPE, but under the alternative H1 increasing noise ε

causes increasing amounts of posterior mass to be located

inside the ROPE. This behaviour makes it harder for the

ROPE to signal evidence for the alternative H1 : δ �= 0.

The PD suffers from the same problem, as increasing

noise causes the posterior to be more and more symmet-

ric around δ0 = 0, indicated by the boxplots successively

shifted down for increasing noise under H1.

The MAP-based p-value is also not influenced by noise

under the null hypothesis H0, but the boxplots are shifted

up under the alternative, indicating that increasing noise

leads to larger p-values and less significant ones, which

makes it harder for the MAP-based p-value to reject the

null hypothesis in the presence of noise.

The e-value ev is also barely influenced by noise under

the null hypothesis H0 both when used in combination

with the flat reference density r(δ) ∝ 1 and the wide

Cauchy reference density r(δ) = C(0, 1). Under the alter-

native, increasing noise makes it harder for ev to state

evidence againstH0 as shown in the last two rows of Fig. 6.

Sensitivity and type I error rates

Table 1 shows Monte Carlo estimates for the type I error

rates and the percentage of significant indices based on

the results of the previous simulations. For increasing

sample size n, the type I error rates were estimated as the

number of significant indices divided by 10,000 when no

effect was present.

In the cases where a small, medium or large effect was

present, the percentage shows the number of significant

measures divided by 10,000. Significant was defined as fol-

lows here: p < .05 for p-values, BF10 ≥ 3 for the Bayes

factor, which equals moderate evidence according to Van

Doorn et al. [23], a posterior which is located completely

outside the 95% or full ROPE, and for the PD 100% of the

posterior’s mass needed to be strictly positive or negative.

The e-value ev againstH0 : δ = 0 was required to be larger

than 0.95, both when used with the improper reference

density r(δ) ∝ 1 and the wide Cauchy prior r(δ) = C(0, 1)

in the surprise function.

Figure 7 visualises the results: The left plot corresponds

to the table row of no effect and shows the type I error

rates of the indices. As shown in the figure, the classic p-

value fluctuates around its nominal significance level of

α = .05, although there is no effect present. In contrast,

most Bayesian indices have lower type I error rates about

half the size as the classic p-value. A comparison of the

Bayesian posterior indices reveals three groups: The first

group consists of the Bayes factor BF10, the 95% ROPE

and the MAP-based p-value. These indices concentrate

around a false-positive rate of about 1% for increasing

sample size. Still, the Bayes factor and ROPE make more

type I errors for small sample size, while the MAP-based

p-value makes more for large sample sizes. The second

group consists of the PD and the full ROPE, both of which

make practically no type I error independent of the sample

size n. This fact can be attributed to the quite conserva-

tive behaviour of both indices compared to the indices in

group one. The third group consists of the e-value with

improper or wide Cauchy prior, which achieves type I

error rates slightly smaller than the traditional p-value, but

more massive than the other Bayesian indices.

The second plot corresponds to the small effect part

of Table 1. Now the desired behaviour is that the indices

detect the existing effect for the smallest possible sample

size n. The classic p-value has the most liberate behaviour

in stating that an effect is present, which reflects the often

criticised fact that p-values overstate the significance of

an effect compared to other indices of effect size and sig-

nificance, see Wasserstein and Lazar [3]. The Bayesian

indices signal evidence for the alternative more slowly
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Fig. 6 Influence of noise ε on Bayesian significance and effect size indices for small, medium, large and no existing effects using a wide prior
C(0,

√
2) on the effect size δ and sample size n = 30 in each groups
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Table 1 Percentage of significant Bayesian indices of significance and effect size for varying sample sizes for small, medium, large and
no existing effects using a wide C(0, 1) prior on the effect size δ

Index n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 n = 70 n = 80 n = 90 n = 100

No effect

p-value 0.0483 0.0500 0.0552 0.0508 0.0507 0.0500 0.0491 0.0499 0.0520 0.0529

BF10 0.0221 0.0175 0.0192 0.0124 0.0137 0.0120 0.0104 0.0100 0.0100 0.0094

95% ROPE 0.0145 0.0159 0.0172 0.0127 0.0130 0.0107 0.0088 0.0083 0.0085 0.0069

Full ROPE 0.0002 0.0001 0.0000 0.0001 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000

PD 0.0003 0.0003 0.0000 0.0004 0.0004 0.0006 0.0003 0.0003 0.0004 0.0002

MAP-p-value 0.0060 0.0075 0.0118 0.0096 0.0120 0.0111 0.0107 0.0107 0.0121 0.0117

ev 0.0225 0.0273 0.0311 0.0342 0.0362 0.0383 0.0404 0.0386 0.0393 0.0391

ev with C(0, 1) 0.0490 0.0470 0.0477 0.0459 0.0480 0.0471 0.0487 0.0458 0.0481 0.0474

Small effect

p-value 0.1081 0.1990 0.2807 0.3457 0.4224 0.4890 0.5534 0.6149 0.6655 0.7092

BF10 0.0559 0.1045 0.1490 0.1835 0.2319 0.2682 0.3221 0.3648 0.4150 0.4562

95% ROPE 0.0433 0.0945 0.1423 0.1752 0.2238 0.2526 0.3014 0.3374 0.3831 0.4165

Full ROPE 0.0005 0.0012 0.0024 0.0047 0.0061 0.0107 0.0139 0.0186 0.0235 0.0289

PD 0.0010 0.0034 0.0090 0.0144 0.0265 0.0333 0.0538 0.0747 0.0953 0.1175

MAP-p-value 0.0222 0.0590 0.1082 0.1539 0.2137 0.2593 0.3219 0.3746 0.4369 0.4878

ev 0.0671 0.1417 0.2252 0.2976 0.3720 0.4415 0.5171 0.5659 0.6175 0.6755

ev with C(0, 1) 0.1164 0.1972 0.2763 0.3436 0.4180 0.4835 0.5527 0.5976 0.6459 0.7018

Medium Effect

p-value 0.2762 0.5149 0.6930 0.8193 0.8899 0.9417 0.9717 0.9831 0.9907 0.9951

BF10 0.1709 0.3443 0.5013 0.6519 0.7439 0.8342 0.8928 0.9269 0.9561 0.9741

95% ROPE 0.1392 0.3247 0.4850 0.6389 0.7303 0.8197 0.8779 0.9165 0.9464 0.9685

Full ROPE 0.0017 0.0170 0.0382 0.0752 0.1282 0.1944 0.2769 0.3504 0.4386 0.5050

PD 0.0044 0.0320 0.0801 0.1635 0.2620 0.3830 0.4986 0.6010 0.6878 0.7606

MAP-p-value 0.0694 0.2431 0.4249 0.6039 0.7196 0.8256 0.8930 0.9317 0.9605 0.9779

ev 0.1779 0.4373 0.6244 0.7698 0.8714 0.9256 0.9584 0.9752 0.9882 0.9951

ev with C(0, 1) 0.2773 0.5227 0.6880 0.8083 0.8953 0.9376 0.9663 0.9807 0.9908 0.9960

Large Effect

p-value 0.5824 0.8814 0.9746 0.9955 0.9987 1.0000 0.9999 1.0000 1.0000 1.0000

BF10 0.4438 0.7776 0.9254 0.9801 0.9937 0.9986 0.9999 0.9999 1.0000 1.0000

95% ROPE 0.3844 0.7584 0.9185 0.9787 0.9928 0.9984 0.9997 0.9999 1.0000 1.0000

Full ROPE 0.0182 0.1252 0.3133 0.5407 0.7192 0.8535 0.9259 0.9664 0.9851 0.9929

PD 0.0268 0.2052 0.4704 0.7217 0.8597 0.9450 0.9795 0.9933 0.9969 0.9997

MAP-p-value 0.0694 0.2431 0.4249 0.6039 0.7196 0.8256 0.8930 0.9317 0.9605 0.9779

ev 0.4486 0.8367 0.9597 0.9927 0.9990 0.9996 1.0000 1.0000 1.0000 1.0000

ev with C(0, 1) 0.5800 0.8862 0.9743 0.9945 0.9992 0.9998 1.0000 1.0000 1.0000 1.0000

Type I error rates and sensitivity of Bayesian posterior indices

than their frequentist counterparts, and again the three

groups already discovered in the first plot reveal them-

selves here: The BF10, the 95% ROPE and the MAP-based

p-value detect the small effect more often than the indices

of the second group, which again includes the full ROPE

and the PD. The third group consisting of the two versions

of the e-value shows similar behaviour as the p-value:

They signal the existence of an effect more quickly than

their Bayesian competitors, which comes at the cost of

increased type I errors as shown in the left plot previously.
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Fig. 7 Sensitivity of Bayesian significance and effect size indices for small, medium, large and no existing effects using a wide prior C(0, 1) on the
effect size δ and varying sample size n

The third and fourth plot correspond to the medium

and large effect part of Table 1 and confirm the pre-

vious analysis. The p-value and e-value(s) state signifi-

cance more often than every other index, but BF10, the

95% ROPE and the MAP-based p-value yield a similar

behaviour for increasing effect size δ now. Also, from the

succession of the PD and full ROPE, it becomes clear

that the PD more often states the presence of an effect

in contrast to the full ROPE, which is more conservative,

even for increasing effect size. Still, for increasing sam-

ple size, these “slow“ indices eventually state the presence

of the effect, too. Interestingly, the MAP-based p-value

has a similar behaviour for large effect sizes as the full

ROPE and PD, as shown in the right plot of Fig. 7. The

behaviour of the e-value again shows substantial similar-

ity to the behaviour of the p-value under the medium and

large effect setting.

Discussion
This paper studied the behaviour of common Bayesian

significance and effect size indices for the setting of two-

sample Welch’s t-test, which is often applied in the anal-

ysis of clinical trial data. To guide researchers in choos-

ing an appropriate index when the Bayesian counterpart

to Welch’s two-sample t-test as proposed by Rouder et

al. [26] is used instead, an extensive simulation study
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analysed the influence of sample size n, the prior mod-

elling and noise ε. Also, the type I error rates and sensitiv-

ities to detect an existing effect were studied.

The results show that one can split Bayesian significance

and effect size indices into two categories: Indices which

can state evidence for the null hypothesis H0 : δ = 0 and

the alternativeH1 : δ �= 0, and indices which can only state

evidence for the alternative. The first group consists of the

Bayes factor, the 95% and full ROPE. The MAP-based p-

value, the PD and the e-value belong to the second group,

the MAP-based p-value and the e-value showing a sim-

ilar behaviour as the classic p-value. Note that formally

the e-value belongs to the first group, but the simulation

results showed that stating evidence for the null hypothe-

sis H0 is not achieved under the null hypothesis H0 by the

e-value. On the other hand, the e-value showed the best

performance compared to all other indices when H1 was

true, and based on its other properties – for a review see

Pereira, Stern andWechsler [16] – it is preferable over the

MAP-based p-value, PD and classic p-value. The PD suf-

fers from the fact that under H0 it stabilizes at about 0.7,

which is unintuitive and has to be interpreted as a ten-

dency to favour evidence for the alternative when in fact

the null hypothesis H0 is true, see Figs. 3, 4 and 5. Thus,

when rejection of a null hypothesis is the goal, we recom-

mend using the FBST and reporting the e-value based on

the corresponding Cauchy prior as reference density in the

surprise function. Also, the e-value is following the likeli-

hood principle and is robust against the prior modelling,

avoiding cherry-picking.

If the goal of the scientific enterprise is to confirm a

research hypothesis, based on the results, the Bayes factor,

the 95% ROPE or the full ROPE should be considered. All

three indices show similar behaviour regarding increas-

ing sample size n, and state both evidence for H0 and H1

depending on the presence of an effect.

The prior modelling showed that both the ultrawide and

medium prior on δ could lead to cherry-picking by com-

bining a selected index like a ROPE or BF with the prior:

For example, choosing a medium prior when the goal is

to confirm H0, evidence for H0 accumulates faster than

when using a wide or ultrawide prior. If the goal is to find

evidence for the alternative, evidence for H1 accumulates

faster when using a wide or ultrawide prior instead of a

medium one.

Therefore, we recommend using the wide prior C(0, 1)

when the goal is to confirm a hypothesis, as this choice

places itself in the middle between the two other extremes

and prevents cherry-picking in the case where no prior

information is available.

The analysis of the influence of noise showed that all

Bayesian indices suffered from increasing noise under H1

with no apparent patterns or regularities, or one of the

indices being more robust to noise than the others.

The type I error rates, and the sensitivity to detect an

existing effect revealed that all Bayesian indices should

be preferred to the classic p-value, although the e-value

showed only slightly reduced type I error rates compared

to the traditional p-value. This result is essential, as the

control of type I error rates is one of the most critical

aspects in clinical trials, see McElreath [29] and Ioanni-

dis [7]. The results showed further that the full ROPE and

the PD achieve the best control of type I errors. As the PD

cannot transparently state evidence for the null as shown

previously, we recommend using the full ROPE to control

type I errors in clinical trials.

While the Bayes factor, the MAP-based p-value, the e-

value and the 95% ROPE are more sensitive and detect

more effects when using the same sample size n, their type

I error rate control is weaker.

Conclusion
To guide researchers in the selection of an appropriate

index for clinical trials, we recommend to use the full

ROPE in general because of the following reasons: As the

Bayes factor and 95% ROPE, the full ROPE can state evi-

dence for both the null and the alternative hypothesis. The

influence of sample size n, noise ε and prior modelling

is similar for all three indices, but the type I error rate

control is better for the full ROPE. The slightly weaker

sensitivity to existing effects can be overcome by simply

increasing the study sample size n, as shown in Fig. 7: For

sample sizes of n = 100, the sensitivity is nearly equal to

the sensitivity of the Bayes factor and 95% ROPE when

a large effect is present. When medium or small effects

are present, larger sample sizes are required, but as often

multiple hundreds of patients participate in clinical trials,

the benefits of type I error control overshadow the higher

costs incurred by increased sample size.1

Therefore, researchers and clinicians should benefit

from using the full ROPE in the analysis of clinical

trial data when conducting a two-sample Bayesian t-test

through better type I error control and precise effect size

estimation.
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