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Design problems in structural engineering are often modeled as differential equations. (ese problems are posed as initial or
boundary value problems with several possible variations in structural designs. In this paper, we have derived a mathematical
model that represents different structures of beam-columns by varying axial load with or without internal forces including
bending rigidity. We have also developed a novel solver, the LeNN-NM algorithm, which consists of weighted Legendre
polynomials, and a single path following optimizer, the Nelder–Mead (NM) algorithm. To evaluate the performance of our solver,
we have considered three design problems representing beam-columns. (e values of performance indicators, MAD, TIC, NSE,
and ENSE, are calculated for a hundred simulations. (e outcome of our statistical analysis points to the superiority of the LeNN-
NM algorithm. Graphical illustrations are presented to further elaborate on our claims.

1. Introduction

Most of the problems arising in numerical science and engi-
neering such as physics, biology, economics, mathematics, and
astronomy are modeled as differential equations with initial or
boundary values. (e modeling enables us to analyze and
understand the concept of a particular event in a precise way.
(us, finding an exact and analytical solution for such models
gained immense importance in recent years. Generally, finding
exact solutions to the physical problemsmodeled as differential
equations is a difficult task and, in most cases, the analytic
solution does not exist. (erefore, it becomes necessary to
study numerical methods for finding solutions to the differ-
ential equations representing physical phenomenon.

Among various proposed methods for solving ODE’s, to
solve the two-point Boundary value problem (BVP), a finite
difference method [1] was proposed. For solving fourth-order
and sixth-order BVP’s, the homotopy perturbation method

[2, 3] is proposed. Multipoints’ BVP’s are solved by optimal
homotopy ssymptotic proposed by Ali [4]. Also, for the so-
lution of two-points and multipoints’ BVP’s of higher order, a
domain decomposition method [5–7] was developed. Jacobi
polynomials were used by Doha [8] to propose a spectral
Galerkin algorithm for two-points’ BVP’s of third and fifth
order. For the solution of even order DEs, Chebyshev poly-
nomials are used by Doha [9] to develop spectral Galerkin
algorithm. Shannon wavelet method [10], Haar wavelets
method [11], Saadatmandi andDehghan technique [12], a fifth-
fourth continuous block implicit hybrid method [13], and
spectral Bernstein residual method [14] were proposed for the
solution of higher-order differential equations. To solve higher-
order linear and nonlinear differential equations with two
boundary values, variational methods [15–17] were introduced.
In recent years, many techniques have been developed to solve
nonlinear stiff models, i.e., blood flow of Ree Eyring fluid [18]
and numerical study of the DNA dynamics arising in oscillator
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chain of the Peyrard–Bishop model [19]. Besides the advan-
tages that these methods give a good approximation to the
solution, it is required to have an initial guess near a required
solution and the approximate solution is differentiable and
continuous in the domain, and hence, it seriously affects the
stability of these numerical techniques.

Artificial neural networks are one of the intelligent
techniques in solving different types of differential equa-
tions. (e results obtained by the approximation through
neural networks are close enough to the analytic or exact
solution. In general, neural networks are widely used to solve
fractional differential equations, integro differential equa-
tions (IDEs), partial differential equations (PDEs), and or-
dinary differential equations (ODEs). Feedforward artificial
neural networks are used to solve two-point boundary value
problems (BVP’s) of fourth order. Higher-order ODE’s with
boundary values are solved by the radial basis activation
function in neural networks as presented by Mai-Duy [20].

According to no free lunch theorem, researchers are
compelled to hybridize the strengths of two ormore techniques
so that high-quality solutions are calculated with fewer efforts.
In recent times, metaheuristic techniques have gained the
attention of researchers in various fields of science and engi-
neering. Impacts of different crossover operators are investi-
gated for handling multiobjective problems [21]. A plant
propagation algorithm (PPA) and its modified version were
developed to solve design engineering problems [22]. In
electrical engineering, several methodologies are used to solve
complex optimization problems [23]. Optimal design and
temperature distribution of heat fin is solved by using hy-
bridization of artificial neural networks and metaheuristic al-
gorithms [24, 25] and, furthermore, oscillatory behavior of
heart beat [26]. Most of the real-application problems are
highly nonlinear ODEs and provide less information about the
continuity and differentiability of resulting solutions in solu-
tion space. (e authors of this paper are addressing this issue
and hence developed a novel solver that combines weighted
Legendre polynomials and an efficient single path following
optimizer the Nelder–Mead (NM) algorithm. (e outcome of
our experiments dictates that the LeNN-NM algorithm can
handle ODEs and provide quality solutions.

Salient features of this research are summarized as
follows:

(i) We have derived a mathematical model that
represents different structures of beam-columns.
By varying axial load with or without internal
forces including bending rigidity, we have studied
different cases of the problem.

(ii) We have also developed a novel solver, the LeNN-
NM algorithm, which consists of weighted Leg-
endre polynomials and a single path following
optimizer the Nelder–Mead (NM) algorithm.

(iii) A graphical overview of the novel LeNN-NM al-
gorithm is presented in Figure 1.

(iv) (ree versions of the structural designs of beam-
columns are analyzed with the help of LeNN-NM
algorithm, see Problems 1–3.

(v) To examine the quality of solutions calculated by
LeNN-NM algorithm, we have calculated values of
performance indicators mean absolute deviation
(MAD), (eil’s inequality coefficient (TIC), Nash
Sutcliffe efficiency (NSE), and error in Nash Sut-
cliffe efficiency (ENSE).

(vi) Series solutions are presented in equations (30),
(31), and (32), which may be used by researchers
for further investigation.

(vii) Our solutions are in strong agreement with ref-
erence solutions and absolute errors are less than
the reference errors, see Tables 1–3.

(viii) Graphical illustrations for performance indicators
are presented in Figure 2. Lower values of MAD,
TIC, and ENSE show that our solutions are of good
quality.

(ix) We have repeated our simulations for hundred
times and overall performance is depicted in terms
of fitness values, MAD, TIC, and ENSE, for 100
runs, see Figure 3.

(x) (e success rate of the LeNN-NM algorithm is
shown by plotting the frequency graphs of fitness
values, MAD, TIC, and ENSE, with normal dis-
tribution fittings. All these analyses dictate that the
LeNN-NM algorithm is stable, efficient, and
compatible for solving design engineering
problems.

2. Mathematical Model Representing the
Design of Beam-Columns

Most of the problems related to the physical phenomenon are
modeled as differential equations. Higher-order differential
equations appear in mathematical models of the elastic sta-
bility theory. Hence, most of the physical problems are posed
with nonlinear and complex ODEs. To understand and
analyze the design of beam-column, a differential relation
should be developed between the various cross-sections of the
physical problem.

Cross-section analysis of a beam-column problem is
shown in Figure 1. An element at a distance dx, as shown in
the figure, is taken from the cross-section of beam-column
and is subject to both spread load q perpendicular to the axis
and the axial load P, see Figure 1. Internal forces may arise in
the element, and mathematically, it can be written as

q � −
dV

dx
. (1)

Equilibrium equation in y-direction can be written as an
ordinary differential equation given in [29–31]:

− V + qdx +(V + dV) � 0. (2)

(e sum of forces acting on each surface of the cross-
section element will be the same because of the equilibrium
state. Mathematically, it can be written as
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Table 1: Comparison of approximate solutions obtained by LeNN-NM algorithm with the exact solution and RK-5 method [27] along with
absolute errors for Problem 1.

t Exact solution LeNN-NM (n� 11) RK-5 [27] Absolute errors (RK-5 [27]) Absolute errors (LeNN-NM)

0 0 0 0 0 7.38E− 06
(π/20) 0.001954 0.001954 0.001838 1.16E− 04 1.86E− 06
(π/10) 0.003738 0.003738 0.003585 1.53E− 04 5.34E− 06
(3π/20) 0.005331 0.005331 0.005210 1.21E− 04 5.12E− 06
(4π/20) 0.006715 0.006715 0.006674 4.18E− 05 2.82E− 06
(5π/20) 0.007881 0.007881 0.007933 5.21E− 05 2.50E− 07
(6π/20) 0.008822 0.008822 0.008938 1.17E− 04 2.98E− 06
(7π/20) 0.009537 0.009537 0.009749 2.12E− 04 4.41E− 06
(8π/20) 0.010031 0.010031 0.010073 4.21E− 05 3.73E− 06
(9π/20) 0.010316 0.010316 0.010311 5.37E− 06 2.68E− 07
(π/2) 0.010407 0.010407 0.010406 4.59E− 07 6.36E− 06
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Figure 1: Cross-sectional presentation of the beam-column design.

Table 2: Comparison of approximate solutions obtained by LeNN-NM algorithm with the exact solution and spline method [28] along with
absolute errors for Problem 2.

t Exact solution LeNN-NM (n� 11) Absolute errors (spline method) [28] Absolute errors (LeNN-NM)

0 0 0 0.00E+ 00 1.62E− 06
0.2 0.195424 0.195424 1.96E− 05 9.08E− 06
0.4 0.358038 0.358038 3.21E− 05 1.32E− 05
0.6 0.437309 0.437308 3.57E− 05 3.32E− 06
0.8 0.356087 0.356086 2.68E− 05 2.69E− 06
1 0 0 0.00E+ 00 3.92E− 06

Table 3: Result comparison of LeNN-NM algorithm with the exact solution and spline Method [28] along with absolute errors for Problem
3.

t Exact solution LeNN-NM (n� 11) Absolute errors (spline method) [28] Absolute errors (LeNN-NM)

0 1 1 0.00E+ 00 0.00E+ 00
0.2 0.755705 0.755705 2.68E− 07 2.72E− 07
0.4 0.54174 0.54174 1.45E− 07 3.53E− 07
0.6 0.349517 0.349517 2.90E− 07 3.02E− 07
0.8 0.17132 0.17132 1.94E− 07 1.71E− 07
1 0 − 2.89E− 06 2.14E− 06 0.00E+ 00
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Figure 2: Performance measures for beam equations presented in Problems 1–3.
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Figure 3: Continued.
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M + qdx
dx

2
+(V + dV)dx − (M + dM) + P

dy

dx
� 0, (3)

whereM is the bending moment that tries to bend the cross-
section element andV is the shear force acting on the surface
of the element.

If we assume that rotations are small and if we neglect the
terms of second order in dx, then equation (3) becomes

V �
dM

dx
− P

dy

dx
. (4)

Since the rotations are assumed to be small and
d2/dx2 � − M/EI, then equation (4) can be written as

− V � EL
d3y

dx3
+ P

dy

dx
, (5)

where bending rigidity is denoted by EL. Taking derivative
on both sides of equation (5) with respect to x, then we get
differential equation of fourth order for the elastic curve and
is given as

EL
d4y

dx4
+ P

dy

dx
� q(x). (6)

3. Approximate Solutions and Weighted
Legendre Polynomials

Higher-order boundary value problems occur in several
areas of applied mathematics, fluid mechanics, elasticity, and
quantummechanics, as well as other branches of science and
engineering.

Consider a general form of fourth-order ODE as

y‴′ � f t, y, y′, y″, y‴( ), a≤ t≤ b,
y(a) � α1,

y′(b) � α2,

y″(c) � α3,

y‴(d) � α4,

(7)

where α1, α2,α3, and α4 are constants, t is the independent
variable, y is the dependent variable, and a and b are bounds
on the independent variable.

Prior to the discussion of the approximate solution in
equation (1) for the differential equation, the weighted
Legendre polynomials are discussed first. Ln(t) denotes the
Legendre polynomials. Here, n denotes order of Legendre
polynomials. (ese polynomials are orthogonal and thus
form a set of orthogonal polynomials on the basis of [− 1, 1].
In Table 4, the first ten Legendre polynomials are given.

(e recursive formula given below generates higher-
order Legendre polynomials:

Ln+1(t) �
1

n + 1
(2n + 1)tLn(t) − nLn− 1(t)[ ]. (8)

Approximate series solution for equation (7) is con-
sidered as

yappox(t) � ∑N
n�0

ζnLn ψnt + θn( ), (9)

where ζn, ψn, and θn are unknown parameters. Since, nth
order continuous derivatives of equation (9) exist, so first,
second, third, and fourth derivative of equation (9) is given
by

Problem 1
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Figure 3: Convergence of performance indices during 100 independent runs for beam equations presented in Problems 1–3.
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yappox
′ (t) � ∑N

n�1

ζnLn′ ψnt + θn( ), (10)

yappox
″ (t) � ∑N

n�4

wnLn″ ψnt + θn( ), (11)

y‴appox(t) � ∑N
n�4

ζnL
‴
n ψnt + θn( ), (12)

y‴′appox(t) � ∑N
n�4

ζnL
‴
n ψnt + θn( ), (13)

where ζn, ψn, and θn are real-valued unknown parameters.
Plugging equations (10)–(13) in equation (7),

y‴′approx � f t, yapprox, yapprox
′ , yapprox

″ , y‴approx( ),
yapprox a1( ) � b1,
yapprox
′ a2( ) � b2,
yapprox a3( ) � b3,
yapprox
′ a4( ) � b4,

(14)

where a≤ t≤ b. Equation (7) is now converted into an
equivalent algebraic system of equations. Equation (14) can
be solved for unknown parameters ζn, ψn, and θn using an
efficient solver such as the LeNN-NM algorithm. All the
symbols and abbreviations used in the paper are defined in
Table 5.

4. Nelder–Mead Algorithm

Nelder–Mead (NM) algorithm is a single-path following
optimizer and is used in this paper to optimize the fitness
function developed for each problem. To reduce a function,
NM algorithm sets up the simplex by using n + 1 points.
Such points are defined as the vector directions on an
n-dimensional search space. In recent times, NM algorithm
is used to find numerical solution of the dynamical model
of Li-ion batteries for electric vehicle [32], nonlinear
Muskingum models [33], economic load dispatch problem
with valve point loading effect [34], optimization of TIG

welding parameters [35], optimization of noisy CNLS
problems [36], and parameter identification of chaotic
systems [37]. Implementation of NM algorithm is based on
four basic operators [38]. Below, we present details of these
operators:

4.1. Reflection. Reflection point is determined by

Xr � X − α Xn+1− X( ), (15)

where X is called centroid and is defined as

X �∑n
i�1

Xi

n
. (16)

Reflection coefficient is denoted by α. “Xr” is accepted,
and iterations are terminated if f(X1)≤f(Xr)<f(Xn).

4.2. Expansion. To calculate expansion point, equation (17)
is used:

Xe � X − β X − Xr( ). (17)

Equation (17) will be evaluated if value of function at Xr

is less then X1. Expansion coefficient is denoted by β. If
f(Xe)≤f(Xr), then we accept “Xe,” and the process of
iteration is terminated. Xr will be accepted if the above
condition is not satisfied.

4.3. Contraction. If f(Xr)≥f(Xn), then the process of
contraction occurs.

(1) Outside contraction is performed by equation (18) if
f(Xr)<f(Xn+1):

Xc � X + c Xn+1 − X( ), (18)

where “c” is coefficient of contraction. We accept
“Xc” if f(Xc)≤f(Xr). Otherwise, NM algorithm
will move to the shrinking step.

(2) Inside contraction is performed
Xc � X − c(X − Xn+1) if f(Xr)≥f(Xn+1). Other-
wise, NM algorithm will move to the shrink step.

4.4. Shrink. (e process of shrinking is modeled by

Table 4: First ten Legendre polynomials.

n Ln(t)

0 1
1 t
2 (1/2)(3t2 − 1)
3 (1/2)(5t3 − 3t)
4 (1/8)(35t4 − 30t2 + 3)
5 (1/8)(63t5 − 70t3 + 15t)
6 (1/16)(231t6 − 315t4 + 105t2 − 5)
7 (1/16)(429t7 − 693t5 + 315t3 − 35t)
8 (1/128)(6435t8 − 12012t6 + 6930t4 − 1260t2 + 35)
9 (1/128)(12155t9 − 25740t7 + 18018t5 − 4620t3 + 315t)
10 (1/256)(46189t10 − 109395t8 + 90090t6 − 30030t4 + 3465t2 − 63)
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Vi � X1 − δ X1 − Xi( ), i � 2, . . . , n + 1, (19)

where “δ” denotes shrink coefficient. (e subsequent
shrinkage of the simplex is expressed as
V � X1, V1, V2, . . . , Vn+1{ } for the succeeding iterations.

5. Our Proposed LeNN-NM Algorithm

Steps for the proposed technique are summarized as follows:

Step 1: initialize a random population of weights and
define a fitness function. Approximate solution is
constructed by using activation function given by
equation (9).

Step 2: solution along with higher derivatives are ap-
proximated at arbitrary generated search points.

Step 3: put approximate solution along with higher
derivatives in a given differential equation.

Step 4: an equivalent set of system of algebraic equa-
tions corresponding to given differential equation will
be generated by Step 3.

Step 5: optimize the system unknown parameters ζn,
ψn, and θn using LeNN.

Step 6: Nelder–Mead algorithm will start the process of
optimizing the system by taking ζn, ψn, and θn as its
initial guess.

Step 7: Nelder–Mead algorithm evaluates the fitness
function, and the results will be displayed when the
stopping criteria are achieved.

Step 8: best values for the weights ζn, ψn, and θn ob-
tained will be plugged in approximate solution equa-
tion (9).

Step 9: it will be the solution.

Working strategy of proposed algorithm is also shown in
Figure 4. Parameters’ setting for LeNN and NM algorithm is
given in Table 6.

6. Performance Indicators

To study the performance of LeNN-NM technique for
solving Beam equations, the performance indications such
as mean absolute deviation (MAD), (eil’s inequality co-
efficient (TIC), and error in Nash Sutcliffe efficiency (ENSE)

are implemented. (e formulation of these performance
indices are given by [38]

MAD �
1

n
∑n
m�1

y(t) − yapprox(t)
∣∣∣∣∣ ∣∣∣∣∣,

TIC �

�������������������������
(1/n)∑n

n�1 y(t) − yapprox(t)( )2√
���������������
(1/n)∑n

n�1 (y(t))
2

√
+

�������������������
(1/n)∑n

n�1 yapprox(t)( )2√( ),

NSE � 1 −
∑nn�1 y(t) − yapprox(t)( )2(
∑nn�1 y(t) − y(t)2(( ) ,


(20)

where

y(t) �
1

n
∑n
m�1

y(t),

ENSE � 1 − NSE,

(21)

where n represents the number the mesh points.

7. Numerical Applications

Problem 1. Consider the homogenous beam equation of the
fourth order with bending rigidity [27], EL � 1, P � − 1, and
q(t) � 0:

d4y

dt4
+
d2y

dt2
� 0, 0≤ t≤ π

2
, (22)

with boundary conditions

y(0) � 0,

y′(0) �
− 1.1

72 − 50π
,

y″(0) � 1

144 − 100π
,

y‴(0) �
1.2

144 − 100π
.

(23)

Table 5: Notations and abbreviations used in this paper.

Abbreviation Description Abbreviation Description

LeNN Legendre neural networks α Reflection coefficient
NM Nelder–Mead algorithm β Expansion coefficient
MAD Mean absolute deviation c Contraction coefficient
TIC (eil’s inequality coefficient δ Shrink coefficient.
NSE Nash Sutcliffe efficiency M Bending moment
ENSE Error in Nash Sutcliffe efficiency V Shear force
P Axial load EL Bending rigidity
q Load perpendicular to axis Ln Legendre polynomials
ζn, ψn, and θn Neurons in LeNN Xr Reflection point
Xe Expansion point X Centroid
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Figure 4: Flowchart of LeNN-NM algorithm for solving beam-column models.
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(e exact solution for the physical problem modeled as
equation (22) is given by

y(t) �
1 − t − cos(t) − 1.2 sin(t)

144 − 100π
. (24)

(e result obtain by LeNN-NM algorithm along with
absolute errors is given in Table 1 and graphically

illustrated through Figures 5(a) and 6(a), respectively. (e
unknown parameters achieved by the proposed method
are revealed in Table 7. (e result of MAD, TIC, and ESNE
for equation (22) is shown in Figures 2 and 3. Normal
provability plots for fitness evaluation, MAD, TIC, and
ENSE, are shown in Figures 7–10, respectively. Hence, the
graphs and tables show the dominance of LeNN-NM
algorithm in solving higher-order ordinary differential

Table 6: Setting of parameters for LeNN and NM algorithm.

Algorithm Parameters Settings Parameters Settings

LeNN
Limits [− 1, 1] Max. iterations 6,000

Candidate selection Uniform Search agents 40

Nelder–Mead algorithm
Initial weights Global best from LeNN Max evaluation 100,000

X-tolerance TolX 1.0E− 100 Max. iterations 2,000
Scaling Objective and constraints ‘TolFun’ 1.00E− 100
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Figure 5: Best and worst approximate solution obtained by LeNN-NM algorithm along with exact solution for Problem 1, 2 and 3.
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equations subjecting to multiple initial or boundary
conditions.

Problem 2. Consider the nonhomogenous linear beam
equation of the fourth order with bending rigidity [28],
EL � 1, P � − 2, and q(t) � − 8et, for

d4y

dt4
− 2

d2y

dt2
+ y � − 8et, t ∈ [0, 1], (25)

with boundary conditions

y(0) � y(1) � 0,

y″(0) � 0,

y″(1) � − 4e.
(26)

(e exact solution for equation (25) is y(t) � t(1 − t)et.
(e result obtained by LeNN-NM algorithm is compared

with the spline method [28] and given in Table 2.
Figures 5(b) and 6(b) show that the solution obtained by
proposed algorithm overlaps the exact solution with mini-
mum absolute errors. Unknown neurons in LeNN structure
for optimization of Problem 2 are shown in Figure 11. (e
result of MAD, TIC, and ESNE for equation (24) is shown in
Figures 2 and 3. Normal provability plots for fitness eval-
uation, MAD, TIC, and ENSE, are shown in Figures 7–10,
respectively. (e statistical analysis shows the dominance of
the proposed method.

Problem 3. Consider the homogenous linear beam equation
of the fourth order with bending rigidity [28], EL � 1, P � 0,
and q(t) � 0:

d4y

dt4
− y � 0, t ∈ [0, 1], (27)

with boundary conditions
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Figure 6: Comparison between best and worst absolute errors for Problems 1–3.
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y(0) � y″(0) � 1,

y(1) � y″(1) � 0.
(28)

(e exact solution for equation (27) is given by

y(t) �
1

2 sinh(1)
e1− t − et− 1( ). (29)

(e result obtained by LeNN-NM algorithm along with
absolute errors are given in Table 3 and graphically

presented through Figures 5(c) and 6(c), respectively. (e
unknown parameters achieved by the proposed method are
revealed in Table 7. Convergence of the fitness value during
100 independent runs of the proposed algorithm is shown in
Figure 12. (e result of MAD, TIC, and ESNE for equation
(27) is shown in Figures 2 and 3. Normal provability plots for
fitness evaluation and performance measures are shown
through Figures 7–10, respectively.

Approximate series solution for Problem 1 is given as

ŷP1 � 0.360045 +(− 0.040634t − 0.039017)(0.093106)

+
3(0.094271t − 0.041539)2 − 1

2
( )(0.552727)

+
5(− 0.04037t − 0.01940)3 − 3(− 0.04037t − 0.01940)

2
( )(0.160012)

+
35(− 0.1294t − 0.0835)4 − 30(− 0.1294t − 0.0835)2 + 3

8
( )(− 0.2591)

+
63(0.022929t − 0.112845)5 − 70(0.022929t − 0.112845)3

8
(

+
15(0.022929t − 0.112845)

8
)(0.087927)

+
231(− 0.0002t − 0.0212)6 − 315(− 0.0002t − 0.0212)4

16
(

+
105(− 0.0002t − 0.0212)2 − 5

16
)(0.3193)

+
429(0.2662t − 0.0298)7 − 693(0.2662t − 0.0298)5

16
(

+
315(0.2662t − 0.0298)2 − 35(0.2662t − 0.0298)

16
)(0.5709)

+
6435(0.2662t − 0.0298)8 − 12012(0.2662t − 0.0298)6

128
(

+
6930(0.2662t − 0.0298)4 − 1260(0.2662t − 0.0298)2 + 35

128
)(0.571)

+

12155(− 0.01207t + 0.1319)9 − 25740(− 0.01207t + 0.1319)7

128
+ +

18018(− 0.01207t + 0.1319)5 − 4620(− 0.01207t + 0.1319)3

128

+
315(− 0.01207t + 0.1319)

128


(− 0.11928)

+

46189(− 0.00597t + 0.00983)10 − 109395(− 0.00597t + 0.00983)8

256
+
90090(− 0.00597t + 0.00983)6 − 30030(− 0.00597t + 0.00983)4

256

+
3465(− 0.00597t + 0.00983)2 − 63

256


(− 0.13750).

(30)
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Figure 7: Normal probability plots of fitness values obtained during 100 experiments for Problems 1–3.
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Figure 8: Continued.
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Figure 8: Normal probability plots of fitness values obtained during 100 experiments for Problem 1–3.
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Figure 9: Normal probability plots of TIC obtained during 100 experiments for Problem 1–3.
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Figure 10: Normal probability plots of ENSE obtained during 100 experiments for Problem 1–3.

Table 7: Trained neurons obtained by LeNN-NM algorithm for Problems 1–3.

Problem 1 Problem 2 Problem 3

Index ζn ψn θn ζn ψn θn ζn ψn θn

1 0.095393 − 0.00751 0.360046 − 0.08189 − 1.87335 − 0.25355 0.301072 0.050994 0.081955
2 − 0.04063 − 0.03902 0.093106 − 0.59112 0.017422 − 1.02846 0.11172 0.147113 − 0.32471
3 0.094272 − 0.04154 0.552728 0.024504 − 0.42908 − 0.05271 0.070749 − 0.85036 1.372923
4 − 0.04037 − 0.0194 0.160012 − 0.52688 − 0.72334 0.014351 0.121341 0.712113 0.608768
5 − 0.12942 − 0.08346 − 0.25919 0.109931 − 0.78767 − 0.5388 − 0.01146 − 0.09546 0.091558
6 0.022929 − 0.11285 0.087927 0.042851 − 0.66665 − 0.29808 0.463903 0.224941 − 0.46237
7 − 0.05836 − 0.09943 − 0.02973 − 0.01336 0.132638 − 0.02625 0.729139 − 0.04045 0.176563
8 − 0.00019 − 0.02121 0.319345 − 0.02041 − 0.04962 − 0.80236 0.4657 0.061354 0.227969
9 0.266188 − 0.0298 0.570869 0.270267 − 0.27792 − 0.35499 0.717546 0.043049 − 0.3886
10 − 0.01207 0.1319 − 0.11928 0.125709 0.131585 − 0.75108 0.012412 0.138911 0.165863
11 − 0.00597 0.009826 − 0.1375 − 0.36437 − 0.18466 − 0.93043 0.511784 0.103503 − 0.37962
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Figure 11: Trained neurons obtained by LeNN-NM algorithm for Problems 1–3. (a) Weights for Problem 1. (b) Weights for Problem 2. (c)
Weights for Problem 3.

Problem 1

Problem 1

10–12

10–10

10–8

10–6

10–4

10–2

F
it

n
es

s 
ev

al
u

at
io

n

10 20 30 40 50 60 70 80 90 1000

Number of independent runs

(a)

Problem 2

Problem 2

10–6

10–4

10–2

100

F
it

n
es

s 
ev

al
u

at
io

n

10020 30 40 50 60 70 80 90100

Number of independent runs

(b)

Problem 3

Problem 3

10–7

10–6

10–5

10–4

10–3

10–2

10–1

F
it

n
es

s 
ev

al
u

at
io

n

10 20 30 40 50 60 70 80 90 1000

Number of independent runs

(c)

Figure 12: Convergence analysis of Problems 1–3 by LeNN-NM algorithm.
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Approximate series solution for Problem 2 is given as

ŷP2 � − 0.253550 +(− 0.591120t + 0.017422)(− 1.028463)

+
3(0.024503t − 0.429078)2 − 1

2
( )(− 0.052705)

+
5(− 0.526876t − 0.723342)3 − 3(− 0.526876t − 0.723342)

2
( )(0.014351)

+
35(0.1099t − 0.7878)4 − 30(0.1099t − 0.7878)2 + 3

8
( )(− 0.5388)

+
63(0.042850t − 0.666649)5 − 70(0.042850t − 0.666649)3

8
+
15(0.042850t − 0.666649)

8
( )(− 0.298076)

+
231(− 0.0134t + 0.1326)6 − 315(− 0.0134t + 0.1326)4

16
+
105(− 0.0134t + 0.1326)2 − 5

16
( )(− 0.0262)

+
429(− 0.0204t − 0.0496)7 − 693(− 0.0204t − 0.0496)5

16
+
315(− 0.0204t − 0.0496)2 − 35(− 0.0204t − 0.0496)

16
( )(− 0.8023)

+

6435(0.2703t − 0.2779)8 − 12012(0.2703t − 0.2779)6

128

+
6930(0.2703t − 0.2779)4 − 1260(0.2703t − 0.2779)2 + 35

128


(− 0.3549)

+

12155(0.1257t + 0.1316)9 − 25740(0.1257t + 0.1316)7

128
+
18018(0.1257t + 0.1316)5 − 4620(0.1257t + 0.1316)3

128

+
315(0.1257t + 0.1316)

128


(− 0.75106)

+

46189(− 0.3644t − 0.1846)10 − 109395(− 0.3644t − 0.1846)8

256
+
90090(− 0.3644t − 0.1846)6 − 30030(− 0.3644t − 0.1846)4

256

+
3465(− 0.3644t − 0.1846)2 − 63

256


(− 0.930432).

(31)

Approximate series solution for Problem 3 is given as
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ŷP3 � 0.081955 +(0.111719t + 0.147113)(− 0.324711)

+
3(0.070749t − 0.850358)2 − 1

2
( )(1.372923)
+

5(0.121341t + 0.712113)3 − 3(0.121341t + 0.712113)

2
( )(0.608767)
+

35(− 0.0115t − 0.0955)4 − 30(− 0.0115t − 0.0955)2 + 3

8
( )(0.0916)
+

63(0.463903t + 0.224941)5 − 70(0.463903t + 0.224941)3

8
+
15(0.463903t + 0.224941)

8
( )(− 0.462369)
+

231(0.7291t − 0.04045)6 − 315(0.7291t − 0.04045)4

16
+
105(0.7291t − 0.04045)2 − 5

16
( )(0.1766)

+

429(0.4657t + 0.06135)7 − 693(0.4657t + 0.06135)5

16

+
315(0.4657t + 0.06135)2 − 35(0.4657t + 0.06135)

16


(0.2279)

+

6435(0.7175t + 0.04305)8 − 12012(0.7175t + 0.04305)6

128

+
6930(0.7175t + 0.04305)4 − 1260(0.7175t + 0.04305)2 + 35

128


(− 0.3886)

+

12155(0.0124t + 0.1389)9 − 25740(0.0124t + 0.1389)7

128
+
18018(0.0124t + 0.1389)5 − 4620(0.0124t + 0.1389)3

128

+
315(0.0124t + 0.1389)

128


(0.16586)

+

46189(0.5118t + 0.1035)10 − 109395(0.5118t + 0.1035)8

256
+
90090(0.5118t + 0.1035)6 − 30030(0.5118t + 0.1035)4

256

+
3465(0.5118t + 0.1035)2 − 63

256


(− 0.379615).

(32)

8. Conclusion

In this paper, we have modeled physical problems arising
in the beam-column theory as the fourth ordinary dif-
ferential equation. Moreover, the paper presents a tech-
nique which is named as LeNN-NM algorithm for solving
an ordinary differential equation of higher order sub-
jecting to single or multi-initial boundary conditions. (e
different cases of beam equations are studied and have
been solved by the proposed technique. (e results given
in Tables 1–3 show that LeNN-NM algorithm converges
rapidly and dominates the existing algorithm in literature
for finding solutions to higher-order differential equa-
tions such as beam equations. (e analysis reveals that the

proposed algorithm looks like a promising methodology
to be exploited as an alternate, accurate, reliable, and
robust computing framework for solving a variety of the
problems arising in astrophysics, atomic physics, plasma
physics, nonlinear optic, electric machines, nanotech-
nology, fuel ignition model, fluid dynamics, bio-
informatics, and financial mathematics. (e proposed
method gives the direction of using the proposed algo-
rithm for solving fractional differential equations.
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