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Abstract. Failure of the first-order Rytov approximation to properly pre-
dict the scintillation index of a large-aperture focused beam, or an uplink
collimated �or focused� beam, has been discussed in several recent pub-
lications, which cite beam wander effects as the main reason for this
failure. We use computer simulations to examine several aspects of
beam wander phenomena on a propagating convergent beam in the
weak-fluctuation regime over a horizontal path at high altitude for which
the refractive index structure parameter is on the order of Cn

2=1.39
�10−16 m−2/3. Simulation results are presented at various ranges up to
10 km for �1� the beam wander centroid displacement, �2� the kurtosis
excess of the irradiance profile, �3� the irradiance profile, �4� the mean-
square hot spot displacement from the boresight and from the centroid,
and �5� the scintillation index at the optical axis of the beam. In addition,
simulation results are compared with theoretical models. © 2007 Society of
Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.2772263�
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Introduction

irst-order, weak fluctuation Rytov theory predicts that the
ongitudinal component �or on-axis scintillation index� of a
eam focused at a fixed distance along a horizontal path
ontinually decreases as the size of the laser transmitter
perture increases. However, this assertion has never been
upported by either experimental data or simulation results.
n fact, it has been known for a long time that the observed
cintillation index of a large-aperture focused beam can be
uch greater than that predicted by Rytov theory as a result

f beam wander effects.1–4

In a recent paper, Baker5 discussed the preceding dis-
repancy of the Rytov method for beam-wave scintillation
n terms of an asymptotic region called the D1 region �see
ec. 4.2�, first identified by Charnotskii.6 Baker showed

hat the strict conditions of weak turbulence scintillation
emanded by the Rytov method7 exclude the D1 region,
amely, �R

2 �1 and �2W0 /r0�5/3�1. Here, �R
2 is the Rytov

ariance, W0 is the beam radius at the transmitter, and r0 is
ried’s parameter. Based on this observation, Baker was
ble to define the borders of the D1 region by two dimen-
ionless Fresnel parameters, rather than the three param-
ters used by Charnotskii.

The current paper is a further analysis of the weak tur-
ulence scintillation associated with beam wander effects
f a convergent beam in the vicinity of its geometric focus,
hich corresponds to the D1 region. Special consideration

s given to those beams focused at the end of the
091-3286/2007/$25.00 © 2007 SPIE
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propagation path and those focused at some intermediate
point along the path. We report on simulation results in-
volving beam wander–induced scintillation along a 10-km
path at high altitude, similar to the propagation path for a
free-space optical �FSO� communication link between two
aircraft.

In addition to examination of the increase in scintillation
caused by beam wander, we also present some simulation
results for movement of the beam centroid and beam hot
spot �defined later�. In that regard, this is a companion pa-
per to our treatment of beam wander phenomena associated
with a collimated beam.8 Deviation of the irradiance profile
from a pure Gaussian shape is described by the coefficient
of kurtosis excess. For instance, the kurtosis excess of a
Gaussian-shaped irradiance profile is zero, but we find that
the kurtosis excess of the short-term and long-term beam is
much greater than unity within the D1 region, thus provid-
ing another characteristic associated with this asymptotic
regime. Of special significance is the relation between kur-
tosis excess and the increase in scintillation in the D1
region. Last, the simulation results for scintillation and
other beam wander effects are compared with theoretical
expressions.

2 Simulations

The wave optics code we use is based on the split-step
technique, in which the light waves are propagated in the
transformed domain and the effect of atmospheric turbu-
lence along the propagation path is simulated by a series of
uncorrelated random phase screens. These phase screens

are generated under the Markov approximation in the
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pectral domain by generating a set of Gaussian-distributed
andom numbers with zero mean and variances given by
�A���2�=2�k2�z�n�������	�2, where A�� are the random
armonic amplitudes associated with the transverse wave
ectors ���, k is the propagating field wave number, �z is
he thickness of the phase screen along the propagation
ath, �n����� is the spectral power density of the refractive
ndex fluctuations, taken to be the Kolmogorov power-law
odel �see Eq. �2�, later�, and �	 is the grid spacing in the

ransverse frequency domain. By applying the Fourier
ransform to the random amplitudes A��, we generate the
andom phase fluctuations �
lm over a N�N grid. This
rocedure is repeated at each phase screen along the path.

We choose the simple Kolmogorov spectrum model for
ur analysis because it is consistent with that used in re-
ated studies and also because we are interested primarily in
rst-order atmospheric effects, not necessarily the addi-

ional subtleties associated with the presence of inner scale
nd outer scale. However, the lowest part of the spectrum
Eq. �2�� approaching the singularity at 	=0 is not properly
ampled with typical grid values. To overcome this prob-
em, we have made use of the subharmonics technique,9,10

sing a correction term to the power spectrum in Eq. �2� at
he subharmonic range to compensate for the power losses
ue to undersampling.11

To stay within the limitations of weak irradiance fluc-
uations, the maximum optical path length between trans-
itter and receiver is taken to be 10 km at high altitude so

hat the refractive index structure constant is on the order of

n
2=1.39�10−16 m–2/3. The free-space wavelength of the
ptical beam is �=1.6 �m, and the beam radius at the
ransmitter is generally taken to be either 10 or 20 cm. The
urbulent optical path is simulated by placing ten phase
creens equally spaced at 1-km increments. Each phase
creen consists of 512�512 grid points, with a total screen
ize of 0.6 m for the 10-cm beam and 1 m for the 20-cm
eam. The numerical results plotted in the figures
orrespond to mean values obtained by performing 8,000
ealizations.

We define the hot spot as the “point” within the beam
rofile of maximum irradiance. In the simulation runs, this
an correspond to either a single pixel or a small area that
ontains the maximum power. Because of difficulties in
ometimes identifying a single pixel of maximum irradi-
nce, we based our calculations on a small circular window
rea of radius 0.5W�z�, where W�z� is the free-space spot
adius at distance z. However, the calculated mean-square
ocation of the hot spot with respect to the boresight or

entroid is dependent on the size of the small window area

L F0 F0 F0

ptical Engineering 086002-
chosen to define the hot spot. In general, the predicted dis-
placements decrease with increasing window area size.

3 Theoretical Models for Beam Wander
Some of the theoretical models we use for describing vari-
ous beam wander phenomena have been developed in re-
lated papers,8,12,13 and so their derivation will not be re-
peated here. In our work, we identify separate models for
centroid displacement and hot spot displacement, the latter
of which is a multiple of the former.

3.1 Centroid Displacement
Fante14 was one of the first scientists to relate the centroid
displacement to the long-term and short-term spot sizes, the
latter defined by the reduction in irradiance by a factor of
1 /e. Specifically, if we let a0 denote the spot radius of the
beam at the transmitter based on the 1/e point of the irra-
diance, then the long-term spot radius of the beam aLT is
related to the mean-square centroid displacement ��c

2� and
the short-term beam radius aST by aLT

2 =aST
2 + ��c

2�. �Ref. 14�
Various models developed for ��c

2� generally have the same
functional form but slightly different scaling constants. The
model we use here for ��c

2� is that developed Churnside and
Lataitis,13 namely, ��c

2�=0.56�rc
2�, where �rc

2� includes both
centroid and hot spot displacements as defined later by
Eq. �1�.

3.2 Beam Wander Variance and Spot Size
The basic model for the relative variance of centroid and
hot spot displacement is defined by7,8,12,13

�rc
2� = 1.78��c

2� = 7.25L2W0
−1/3

��
0

L

Cn
2�z��1 − z/L�2�1 − z/F0�−1/3 dz , �1�

where Cn
2�z� is the structure parameter of the refractive in-

dex as a function of distance z, L is the total propagation
path length, W0=	2a0 is the spot radius of the beam in the
plane of the transmitter based on the reduction in irradiance
by a factor of 1 /e2, F0 is the corresponding geometric focus
or phase front radius of curvature, and the bracket � � de-
notes an ensemble average. The result �1� is based on the
Kolmogorov power-law spectrum

�n�	,z� = 0.033Cn
2�z�	−11/3, �2�

which, for constant C2, reduces to
n
rc
2� = 
 2.42Cn

2L3W0
−1/3

2F1�1

3
,1;4;

L

F0
� ,

L

F0

 1

0.54Cn
2L3W0

−1/3�F0�3
9 +
4L�5L

− 6� + 9� L
− 1�8/3� ,

L
� 1.� �3�
F0

August 2007/Vol. 46�8�2
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he function 2F1 is the hypergeometric function of Gauss,
hich equals unity in the case of a collimated beam �F0

�� and 1.13 in the case of a focused beam �F0=L�. The
econd expression in Eq. �3�, which we believe is a new
esult, is applicable for the case of a beam focused in front
f the receiver.

Following Fante,14 we write the beam wander variance
1� as

rc
2� = WLT

2 − WST
2 , �4�

here WLT and WST denote the long-term and short-term
pot radii, respectively. In fact, we use Eq. �4� to define the
hort-term beam radius �see Eq. �7�, below�. The long-term
pot radius deduced from conventional Rytov theory leads
o7

LT = W
1 + 1.33�R
2� 2L

kW2�5/6�1/2

, �5�

here �R
2 =1.23Cn

2k7/6L11/6 is the Rytov variance, k=2� /�
s the optical wave number, � is the wavelength, and W is
he free-space spot radius in the plane of the receiver, i.e.,

= W0
�1 −
L

F0
�2

+ � 2L

kW0
2�2�1/2

. �6�

ased on Eq. �4�, the short-term spot radius WST is defined
y

ST = �WLT
2 − �rc

2��1/2. �7�

.3 Hot Spot Displacement
he hot spot displacement from the centroid is a result of

he short-term beam being skewed from a Gaussian profile.
or a collimated beam, the mean-square displacement of

he hot spot from the boresight �0
2 and that from the beam

entroid �c
2 can be estimated, respectively, from the empiri-

al relations8

0
2 � WLT

2 − W2, �8�

c
2 � WST

2 − W2. �9�

oreover, from Eq. �4� and these last expressions, it fol-
ows that

rc
2� � �0

2 − �c
2. �10�

hat is, the beam wander variance defined by Eq. �1� can
e interpreted as an estimate of the difference in mean-
quare displacements of the hot spot from the boresight and
rom the centroid.

Scintillation Theory
everal publications during the last few years indicate a
enewed interest in studying the wander-induced scintilla-
ion caused by beam wander along various horizontal and
plink propagation paths.1,12,15–17 Estimates of the induced
cintillation from beam wander were given in Baker and

17 12
enson, and a similar study by Andrews et al. led to a

ptical Engineering 086002-
different analytic expression for the wander-induced scin-
tillation associated with an uplink path to space.

The derivation of the scintillation expressions given in
this section have been published elsewhere,7,12 so we will
simply summarize the theoretical models rather than derive
them again. The reader interested in the details can consult
the references.

4.1 Beam Parameters
We assume that the spot size radius and phase front radius
of curvature at the transmitter of the propagating beam are
W0 and F0, respectively. We use the convention that F0
�0 for a convergent beam and F0�0 for a divergent beam.
For a propagation path of length L along the positive z axis,
it is convenient to describe free-space propagation by use
of two sets of nondimensional beam parameters7

�0 = 1 −
L

F0
, �0 =

2L

kW0
2 , �11�

� = 1 +
L

F
=

�0

�0
2 + �0

2 , � =
2L

kW2 =
�0

�0
2 + �0

2 . �12�

The first set of beam parameters �11� characterizes the
beam at the transmitter, and the second set �12� character-
izes the beam at the receiver, where W and F represent the
spot-size radius and phase front radius of curvature of the
beam as viewed in the receiver plane. In some cases, we

also use the notation �̄=1−�=−L /F.

4.2 Boundary of the D1 Region
The D1 region is associated with a portion of the propaga-
tion path for a beam wave where the Rytov perturbation
method is not appropriate. Baker5 recently defined the bor-
ders of the D1 region by a set of Fresnel numbers satisfying

NL =
��0�
�0

=
�1 − L/F0�

�0
� 1, N� =

L

z�

�1 − z�/F0�
�0

� 1, �13�

where z� is the effective range of the turbulence. Using the
first Fresnel inequality, it follows that the D1 region for a
convergent beam includes the regime where the free-space
longitudinal phase shift7 satisfies

� = tan−1 �0

�0
�

�

4
. �14�

In fact, if we include the geometric focus, the D1 region
covers that portion of the propagation path for which � /4
���3� /4, with �=� /2 identifying the propagation dis-
tance to the geometric focus. Depending on beam size and
location of geometric focus, we can use the longitudinal
phase �14� to estimate the propagation range over which the
D1 region occurs.

4.3 Untracked Beam
Under the Rytov theory, the scintillation index of a

Gaussian-beam wave takes the form

August 2007/Vol. 46�8�3
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I
2�r,L� = 8�2k2L�

0

1 �
0

�

	�n�	,z�exp�−
�L	2�2

k
�

� �I0�2�r	�� − cos
L	2

k
��1 − �̄���� d	 d� ,

�15�

here I0�x� is a modified Bessel function of the first kind,
nd �=1−z /L is a normalized distance variable. If we in-
ert the Kolmogorov spectrum �2� with constant Cn

2 into the
ntegrals in �15�, the resulting scintillation index becomes

I
2�r,L� = 3.86�R

2Re
i5/6
2F1�−

5

6
,
11

6
;
17

6
;1 − � + i���

− 2.64�R
2�5/6

1F1�−
5

6
;1;

2r2

W2� , �16�

here Re denotes the real part of the argument, and 1F1 is
he confluent hypergeometric function. In the presence of
eam wander, Andrews et al.7,12 have discussed the notion
f an effective pointing error �pe that arises from a subset
f the random scale sizes that define the beam wander vari-
nce �rc

2�. In the case of an untracked beam, this subset of
cale sizes, bounded from above by the atmospheric coher-
nce width r0, yields an on-axis value of the scintillation
ndex described by

I
2��pe,L�untracked = 3.86�R

2Re
i5/6
2F1�−

5

6
,
11

6
;
17

6
;1 − �

+ i��� − 2.64�R
2�5/6

1F1�−
5

6
;1;

2�pe
2

W2 � ,

�17�

here the mean-square pointing error for a focused beam is

pe
2 = �rc

2�
1 −
8

9
� Cr

2W0
2/r0

2

1 + 0.5Cr
2W0

2/r0
2�1/6� . �18�

he quantity r0= �0.16Cn
2k2L�−3/5 is the atmospheric coher-

nce width �i.e., Fried’s parameter� of a reciprocal propa-
ating point source from the receiver at distance L, and the
arameter Cr is a scaling constant on the order of 2� but its
xact value has not yet been determined. For an uplink
eam to space, the value Cr=� was used,12 whereas Cr
1.5� in the present study. The difference in value for the

caling constant is attributed mostly to the fact that r0 re-
uces to the plane wave atmospheric coherence width in
he uplink beam case. Last, although not strictly correct, we
ill also use Eq. �18� in the following analysis to estimate

he pointing error that arises from a beam focused at some
ntermediate plane along the path other than at the receiver
lane.

.4 Tracked Beam
common method of tracking a beam involves removal of

he tilt component from the wandering beam. Theoretically,
he rms tilt from the far-field beam can be removed using

12,18
he two-axis Zernike tilt variance

ptical Engineering 086002-
Tz
2 = 0.32� �

2W0
�2�2W0

r0
�5/3

. �19�

By subtracting the rms tilt displacement TzL from the rms
beam wander, we obtain the tilt-corrected pointing error
variances

�pe,TC
2 = ���rc

2��1/2 − TzL�2
1 −
8

9
� Cr

2W0
2/r0

2

1 + 0.5Cr
2W0

2/r0
2�1/6� .

�20�

In this case, the on-axis scintillation index for a tilt-
corrected beam becomes

�I
2��pe,TC,L�tracked = 3.86�R

2Re
i5/6
2F1

��−
5

6
,
11

6
;
17

6
;1 − � + i���

− 2.64�R
2�5/6

1F1�−
5

6
;1;

2�pe,TC
2

W2 � .

�21�

Note that Eq. �21� has the same form as Eq. �17� for an
untracked beam, but with the wander-induced pointing er-
ror �pe replaced by the tilt-corrected pointing error �pe,TC.
However, because the beam wander variance �3� is gener-
ally a little larger than the tilt variance �19�, the tilt-
corrected beam has a residual pointing error term that may
contribute a nonzero amount to the detected on-axis scin-
tillation index.

5 Comparison of Results
In this section, we show a variety of simulation results and
compare them with the corresponding theoretical results
provided in Secs. 3 and 4. To study the onset of beam
wander effects, all simulation results are based on the as-
sumption of a convergent beam propagating along a 10-km
horizontal path at high altitude for which weak fluctuation
theory is applicable. The Kolmogorov power-law spectrum
�2� with structure parameter Cn

2=1.39�10−16 m–2/3 is used
in all simulation and theoretical results.

Because the following analysis involves two types of
convergent Gaussian beam, we will designate these two
beam types as beam F1 and beam F2, where

• Beam F1: Beam focused at the end of a 10-km path
�F0=10 km�

• Beam F2: Beam focused at the midpoint of a 10-km
path �F0=5 km�

5.1 Rms Beam Centroid Displacement
Shown in Fig. 1 for beam F1 are the simulation and theo-
retical results for the beam centroid displacement of three
beams with transmitter radii of 5 cm, 10 cm, and 50 cm. In
this case, we have chosen three beam sizes to better illus-
trate how the size of the beam affects beam wander. Theo-
retical curves in the figure are calculated from the expres-

2 1/2 2 1/2
sion ���c�� = �0.56�rc�� . The theoretical and simulation

August 2007/Vol. 46�8�4
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esults are in closer agreement for the smaller beam sizes,
ut still within 7% for the 50-cm beam at 10 km. In Fig. 2,
e show centroid wander results for beam F2 with trans-
itter radii of 10 cm and 20 cm. In this case, the theoreti-

al and simulation results are in good agreement for both
llustrated beam sizes.

.2 Kurtosis Excess
n the case of a collimated beam along the 10-km path, the
ong-term and short-term mean irradiance profiles will be
onskewed and maintain a near-Gaussian shape along the
hole propagation path. The situation is different for a fo-

used beam, however, where the mean irradiance profile is
onskewed but may still differ from Gaussian shape along
he propagation path near the geometric focus, thus requir-
ng an additional parameter to account for the deviation
rom Gaussian. Usually, kurtosis plays this role. In our
ase, we have considered the kurtosis excess coefficient,
hich is defined by

ig. 1 Rms centroid movement from boresight for beam F1 as a
unction of propagation distance. Theoretical results are based on
��c

2��1/2= �0.56�rc
2��1/2.
Fig. 2 Same as Fig. 1 for beam F2.

ptical Engineering 086002-
��2� � ��4

�4� − 3, �22�

where �4 is the fourth central moment of the irradiance
distribution, taken along either the x axis or the y axis. The
kurtosis excess vanishes for a Gaussian profile. A positive
kurtosis excess value indicates that the irradiance profile is
either “peaked” more than a Gaussian profile or has “flat-
ter” tails. A negative value indicates that the beam profile is
more flattened.

Simulation results for the kurtosis excess of the aver-
aged short-term beam are shown in Figs. 3 and 4. In Fig. 4,
we also include the kurtosis excess for the long-term 10-cm
beam, which is slightly lower than that of the short-term
beam. It is interesting to note that the kurtosis excess may
reach high positive values near the geometric focus, espe-
cially for the 20-cm beam. It is also a remarkable fact that
once beam F2 passes through the geometric focus at 5 km,
the mean irradiance profile returns back to near-Gaussian,
i.e., the kurtosis excess tends to zero once again

Fig. 3 Coefficient of kurtosis excess for beam F1 calculated from
Eq. �22� for the short-term beam and plotted as a function of propa-
gation distance.

Fig. 4 Same as Fig. 3 for beam F2. Also shown here is the long-

term kurtosis excess for the 10-cm beam.

August 2007/Vol. 46�8�5
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see Fig. 4�. Last, the portion of the propagation path be-
ween 4.7 km and 5.3 km corresponds roughly with the
ongitudinal phase shift � /4���3� /4 for the 20-cm
eam.

For contrast, we show in Fig. 5 the kurtosis excess for
wo collimated beams of sizes similar to the convergent
eam cases. The kurtosis excess is much less than unity for
oth beam sizes in this case, indicating a near-Gaussian
rofile shape over the entire propagation path.

.3 Beam Radius
e tested two different methods to obtain numerical values

or the long-term spot size. The first method is based on the
roperty that the 1/e2 irradiance radius of a Gaussian beam
an be expressed as 2�, where � is the standard deviation
educed from the first and second moments of the irradi-
nce. The second method is based on associating the spot-
ize radius with a circle that contains 86.47% of the total
eam energy.

In Fig. 6, we present simulation results for beam F1
ased on both methods for the long-term spot size of a

Fig. 5 Same as Fig. 3 for a collimated beam.

ig. 6 Long-term beam radius of beam F1 as a function of propa-
ation distance. Two methods of calculating spot size are featured in
he simulation results. Theoretical results are based on Eq. �5�.

ptical Engineering 086002-
10-cm beam plotted as a function of propagation distance.
We found that the values obtained from the standard devia-
tion method were generally higher than those obtained from
the 86.47% energy circle method near the focus, although
prior to the focus, the two methods produced quite similar
results. A theoretical curve based on Eq. �5� is also shown
in Fig. 6. In general, the theoretical estimate of the long-
term spot radius of the beam is in good agreement with the
simulation results. The largest discrepancy occurs at 10 km,
but the theoretical result is still within 5% of the value for
the simulation point. The discrepancies between these two
methods and with the theoretical estimates predicted from
Rytov theory can be explained by the fact that in the vicin-
ity of the focus, the beam profiles differ from being pure
Gaussian, as indicated by the high kurtosis excess values
obtained in Sec. 5.2 �see Figs. 3 and 4�. This issue will be
treated in greater detail in the following subsection.

5.4 Mean Irradiance Profile
For the long-term beam, the mean irradiance profile is often
approximated by the Gaussian function

�I�r,L�� �
W0

2

WLT
2 exp�−

2r2

WLT
2 � , �23�

where the long-term spot radius is defined by Eq. �5�. Ex-
cept in the vicinity of the geometric focus of a convergent
beam, where the kurtosis excess shown in Figs. 3 and 4
begins to greatly increase, we expect the Gaussian approxi-
mation �23� to be quite close to the exact mean irradiance
profile predicted by Rytov theory, namely,7

�I�r,L�� =
W0

2

W2 exp�−
2r2

W2�
�exp
− 1.33�R

2�5/6
1F1�−

5

6
;1;

2r2

W2�� . �24�

Of course, the validity of Eq. �24� requires �R
2�5/6�1, en-

suring the conditions of weak fluctuation theory.
We show simulation results for the long-term beam irra-

diance profile �scaled to a maximum mean irradiance of
unity� on a logarithmic scale in Fig. 7, for the 20-cm F2
beam at distance 4.5 km from the transmitter. To compare
the accuracy of the Gaussian approximation at this dis-
tance, we also plot the Gaussian function �23� using the
spot radius obtained from the 86.47% energy circle as well
as that from the second central moment, each scaled by
W0

2 /WLT
2 for normalization of the profile to a maximum

value of unity. Note that the circle method predicts a spot
size that matches the simulation results more closely in the
center part of the beam, but neither Gaussian approxima-
tion reproduces the behavior of the simulation results at the
tailgates, as indicated by a large positive kurtosis excess
�recall Fig. 4�.

To view the transition of the mean irradiance profile
from a Gaussian shape to a non-Gaussian shape as the
beam approaches the geometric focus, we display scaled
simulation results for the 20-cm F2 long-term beam in Fig.
8 at distances of 3.5 km, 4.5 km, and 5 km from the source.
It is interesting that the scaled simulation results resemble a

Gaussian shape at distance 3.5 km but exhibit high tails in
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he profile at distances between 4.5 km and the geometric
ocus, which is consistent with the kurtosis values obtained
n Fig. 4. Nevertheless, the region near the peak that carries
ost of the energy of the beam can still be approached by
q. �23�, provided that the 86.47% energy circle is used to
stimate the value of WLT.

We have also compared in Fig. 9 the long-term beam
rofiles obtained from simulation and scaled to a maximum
alue of unity, with the mean irradiance profiles predicted
y Eq. �24�, scaled by W0

2 /WLT
2 , for the same beam of Figs.

and 8, at distances of 4.5 km, 5 km, and 5.5 km. The
ytov model matches the simulation results out to the beam

adius and somewhat beyond at 4.5 km and again at
.5 km, but clearly not so around 5 km �consistent with the
ongitudinal phase shift � /4���3� /4 corresponding to
he D1 region�. Deviations of Eq. �24� with respect to the
imulation results in Fig. 9�b� arise because the Rytov ap-
roximation is not valid for this beam owing to off-axis
rradiance fluctuations exceeding the limitation of weak
uctuation theory. Interestingly enough, we show in Sec.
.6 that the on-axis scintillation values are still within the
imits of weak fluctuation theory.

.5 Hot Spot Movement

n Figs. 10 and 11, we plot the quantity ��0
2−�c

2�1/2 for
eams F1 and F2 with beam radii of 10 cm and 20 cm at the
ransmitter, using the simulation results for the hot spot
isplacements based on both a single pixel and a window
rea. Notice that there is virtually no difference in the simu-
ation results for the quantity ��0

2−�c
2�1/2, although the in-

ividual variances �0
2 and �c

2 are quite different for the
ingle-pixel method versus the small area method. The the-
retical result in all cases is the rms beam wander term
�rc

2��1/2. The fit of the simulation results with the theoreti-
al result of Eq. �10� is not as good as for the collimated
eam case,8 particularly at longer distances for beam F1. In
art, this is caused by the difficulty in obtaining good esti-
ates of the mean-square hot spot displacements in the

ig. 7 Mean irradiance profile of the 20-cm beam F2 at 4.5 km. The
aussian approximation �23� is scaled by the factor W0

2 /WLT
2 , and

he simulation results are scaled so that the maximum value is unity.
icinity of the focus of a convergent beam. On the other

ptical Engineering 086002-
hand, the theoretical and simulation results for beam F2 in
Fig. 11�b� are in good agreement over the entire 10-km
path.

5.6 Scintillation Index
In Figs. 12 and 13, we show the on-axis scintillation index

Fig. 8 Mean irradiance profile of the 20-cm beam F2 compared with
the Gaussian profile model �23� at �a� 3.5 km, �b� 4.5 km, and �c�
5 km, all scaled the same as in Fig. 7.
for beam F1 with initial beam radii of 10 cm and 20 cm as

August 2007/Vol. 46�8�7
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function of propagation distance. The solid circles and
olid curve depict the untracked beam case, and the open
riangles and dashed curve portray the tracked �tilt correc-

ig. 9 Mean irradiance profile of the 20-cm beam F2 compared with
he Rytov theory �24� at �a� 4.5 km, �b� 5 km, and �c� 5.5 km, all
caled the same as Fig. 7.
ion� beam case. Theoretical results are based on Eqs. �17�

ptical Engineering 086002-
and �21�. Note that the scintillation index for the untracked
and tracked beam cases begins to significantly separate
around 5.5 km for the 10-cm beam and around 7.5 km for
the 20-cm beam. These distances are close to those at
which the kurtosis excess in the beam profile begins to
climb �see Fig. 3�, indicating the onset of the D1 region. To
illustrate the longitudinal phase shift criterion, we have
marked the range in Figs. 12 and 13 at which the longitu-
dinal phase shift is � /4 for beam F1. However, as already
noted, the onset of the D1 region occurs a little before the
� /4 range, where the scintillation index separates for the
tracked and untracked beams. We do not expect an exact
comparison of distances because the longitudinal phase
shift criterion is based on free-space beam propagation
whereas kurtosis excess, for example, is based on turbu-
lence conditions. We believe that the kurtosis excess pro-
vides a better estimate for the boundary of the D1 region.

Simulation results and theoretical results shown in Figs.
12 and 13 are generally in excellent agreement for the scin-

Fig. 10 Rms beam wander of beam F1 from the boresight as a
function of propagation distance for �a� a 10-cm beam and �b� a
20-cm beam. Theoretical results are based on Eq. �3�; simulation
results are based on Eq. �10�.
tillation index in both the tracked beam case and the un-
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tracked beam case. The largest difference between theory
and simulation occurs between 8 and 10 km for the un-
tracked 20-cm beam case �Fig. 13�.

In Figs. 14 and 15, we plot the untracked and tracked
scintillation index for beam F2 along the optical axis of a
propagating beam. Once the results for the untracked and
tracked beam cases separate in Fig. 14, they stay apart over
the rest of the illustrated propagation path. However, there
is a tendency for the two curves to approach each other
again after 6.5 km. In both Figs. 14 and 15, there is a dra-
matic change in behavior for the untracked and tracked
beam cases as the beam passes through the range at which
the beam is focused, corresponding to high values of kur-
tosis excess. The results shown in Fig. 15 are particularly
interesting in that the scintillation index is nearly the same
for the untracked and tracked beam cases shortly behind the
geometric focus region. It is also interesting to note that the
scintillation index obtained at the plane of the receiver for
the untracked beam when it is focused at that plane is sig-
nificantly higher than when it is focused at 5 km. This be-
havior is observed both in the 10-cm �see Figs. 12 and 14�
and 20-cm �see Figs. 13 and 15� beams, thus suggesting

Fig. 13 Same as Fig. 12 for a 20-cm beam.

Fig. 14 On-axis scintillation index of a 10-cm beam F2 in both the
ig. 11 Rms beam wander of beam F2 from the boresight as a
unction of propagation distance for �a� a 10-cm beam and �b� a
0-cm beam. Theoretical results are based on Eq. �3�. Simulation
esults are based on Eq. �10�.
ig. 12 On-axis scintillation index of a 10-cm beam F1 in both the
racked and untracked cases. The vertical dotted line corresponds
tracked and untracked cases.

August 2007/Vol. 46�8�9
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hat focusing the beam at the plane of the receiver may not
e the best option if the beam is not properly tracked.

Discussion
e have defined the beam wander variance �rc

2� as that part
f the squared long-term spot-size radius WLT

2 caused only
y turbulent scale sizes on the order of the beam and larger.
hus, it is not quite the same as the variance of the centroid
isplacement, as our analysis here has shown, but is more
eneral in that it also includes movement of the hot spot
ithin the beam. Nonetheless, the variance �rc

2� is a simple
ultiple of the centroid variance ��c

2�.
Failure of the Rytov approximation in the D1 region was

riginally pointed out by Charnotskii,6 but has been dis-
ussed more recently by Baker5 in terms of two Fresnel
arameters that can be used to define the boundary of this
egion. In the current paper, we have noted two other
equivalent� criteria that can also be used to estimate the
oundary of D1, namely, the free-space longitudinal phase
hift and the excess of kurtosis, the latter of which identi-
es the non-Gaussian behavior of the mean irradiance pro-
le within this region. Deviation of the mean irradiance
rofile from a Gaussian shape can also be observed by sim-
ly comparing the theoretical expressions �23� and �24�.
hat is, the Gaussian function �23� is an excellent approxi-
ation to the mean irradiance result of the Rytov theory

24� except within the D1 region, as illustrated in Figs. 8
nd 9. Although we have not discussed such cases in this
aper, this last criterion also applies in the case of an uplink
ollimated beam to space. In particular, the on-axis scintil-
ation index of an uplink beam to space begins to increase
ver that predicted by Rytov theory when the mean irradi-
nce deduced from Rytov theory can no longer be approxi-
ated by a Gaussian profile �23�.
Gaussian beams propagating through the atmosphere are

sually characterized by the first two moments of the irra-
iance in simulation studies. The first moment is related to
he beam center of gravity, whereas the second is related to
he beam 1/e2 irradiance radius. Nevertheless, this last as-
ertion holds true only for ranges outside the D1 region.
hat is, because the theory for beam spot size has been

2

Fig. 15 Same as Fig. 14 for a 20-cm beam.
eveloped for the 1/e radius of a purely Gaussian beam,

ptical Engineering 086002-1
the values obtained for the short-term and long-term beam
radii by the method of drawing a circle that contain 86.47%
of the beam energy match better with the theoretical values
within the D1 region than do values obtained by the method
of second moment �recall Figs. 7 and 8�. This can be attrib-
uted to the fact that the method of circles defines the radius
of an equivalent Gaussian beam that carries the same
amount of energy within the circular area of that radius,
whereas the circle area defined by the 2� radius no longer
contains 86.47% of the total beam energy when the profile
is non-Gaussian. Consequently, we believe that the 86.47%
circle method is more suitable for comparison with theory.

Also, the deviation from Gaussian shape makes neces-
sary the use of higher-order moments to properly character-
ize the properties of the beam. For example, we show in a
companion paper8 that the coefficient of skewness defined
by the third central moment is related to movement of the
hot spot away from the beam centroid, reaching its maxi-
mum value near the geometric focus of the beam. In the
present paper, we have shown that the coefficient of kurto-
sis excess, defined by the fourth central moment, is an ad-
ditional indicator of the non-Gaussian nature associated
with both the long-term and short-term mean irradiance
profiles of focused beams. In the D1 region close to the
geometric focus, the kurtosis excess may reach large val-
ues, which we believe explains the strong differences ob-
served between the values of the scintillation index of an
untracked and a tracked beam.

Generally speaking, as the kurtosis excess grows, there
will be larger differences in the scintillation index between
the untracked and tracked beams; i.e., as a consequence of
the deviation of the mean profile from the Gaussian shape,
the effect of beam wander in the scintillation index of the
untracked beam increases. Conversely, as the kurtosis ex-
cess begins to vanish at distances beyond the geometric
focus, there is little difference in the scintillation index be-
tween the untracked and tracked beams �e.g., see Fig. 15�.
As a consequence, kurtosis becomes a fundamental param-
eter in focused beams, since it can be considered as an
indicator of the need to track the beam to reduce its scin-
tillation index. Last, the values obtained in the scintillation
index for untracked beams suggest that focusing the beam
at the plane of the receiver may not be the best option if the
beam is not properly tracked.
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