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1. SUMMARY AND INTRODUCTION
This paper is concerned with the application of the Properties A and B
agsociated with the incidence matrix to the analysis of Partially Balanced
Designs having Binary Number Association Scheme (BNAS) or Balanced Factorial
Ixperiments (BFE).

We present a practical method of intra~and inter-block analysis of
Partially Balanced Block Designs (PBBD) having BNAS. All group divisible
assoclation scheme designs, rectangular agsociation scheme designs, hierarchi-
cal group divisible block designs, and direct product designs are BNAS PBB
designs. Thus, the method presented in this paper will unify and simplify
the calculations for the above various designs when compared with presently
available procedures. Also, we extend the method to the PAB type rectangular
designs. The various steps in the computation in the analysis are presented

with numerical examples.

lWork partially supported under Public Health Research Grant 2-RO1-GM-
05900 from the National Institutes of Health.

2In the Mimeo Series of the Biometrics Unit, Cornell University.



2. PRELIMINARIES

The following notation will be used:

im Pomg X 1 column vector having all elements unity,

L
J =1 i' :m, Xm, matrix with all elements unity,
I :m, X m, identity matrix,

my i” 71 .

5 I if 5, =0
Dt =4 ™ T

* J_if 5, =1.

m, i

The direct product or Kronecker product of Dié‘ and DJSJ will be written as

Di6‘ ®‘Dj6* and in general, the joint direct product of n Di51(1=l,2,---,n)

n .
will be written as N ®D
i=1

o
i

Let there be v treatments, each replicated r times in b blocks of k plots
each. Let N = Hnin, i=1,2,+++,v; j=1,2,++-,b, be the incidence matrix of
the design, where n; 5 is equal to the number of times the ith treatment occurs

in the jth block. The set up assumed is

=+ + .

where yij ig the yield of the plot in the jth block to which the ith treat-
ment is applied, p is the overall effect, ti is the effect of the ith treat-
ment, Bj is the effect of the jth block, and Eij is the experimental error.

The effects u, ti,‘and 3j are agssumed to be fixed constants, while the errors
{eij} are assumed to be independent normal variates with mean zero and variance
02 (in section 4.2, the block effects {Bj} will be assumed to be independent
random variates with mean zero and variance o2).

B
Let Ti be the total yield of all plots having the ith treatment, Bj be

~

the total yield of all plots of the jth block, and ti be a solution for ti in

the normal equations. Further, we denote the column vectors with elements



2; ’TV)' (Bl,BE,"',B) (t o7

and E respectively. It is well known that the reduced normal equations for

(T "';tv); and(tl)tg:”')tv)by ?J :§) E;

intra-block estimates of the treatment effects are

t=q, (2.2)
where
C=rI —ili—m\r', (2.3)
and
@:I-]—&]; D - (2')"')

The matrix C defined in (2.3) will be called the C matrix of the design.
The solution of (2.2) is

(2.5)

gct >
]

Q
O
~

where C+ is a generalized inverse of C .

Consider a factorial experiment'w1th n factors Fl,Fz,o-- Fn’ where Fi
has ms levels for i=1,2,++.,n, there being v = Hlm treatments. Kurkjian
and Zelen [1963] introduced a stfﬁptural property of the design which is re-
lated to the block (or column) incidence matrix N of the design. This struc-
tural property was termed Property A and was defined as follows:

A block design will be said to have Property A or will be called a PA

type block design if

T{ T 1® 6.}

/) L h(B PR an) 151 D, 1% . (A)
= 18t o tD
=0 81 62 5,

where 61 = 0or 1 for i=l,2,...,n, and h(61,6 ~--,6n) are constants.

In this case, we obtain the following solution for equation (2.2):

~ _ ‘-n p n 5’.
i-2{ L utysyens) Tenie, (2-6)
s=0 61+62+. ..+6n=s



where. - R S

n (-l)zsixi i} (mixi)l_g‘
T v @)
L L

ure(xl,x

1
u(0),8,0058) = 7 )
2’...’Xn

where

n-1
I
LI Y ] —3 v - v e 0
xy) = L 8(858,,++,8,) T E, (x;8,)

i=1
— L BN —
8=0 6l+62’ +5 =s

re(xl,xg,

1 1
for g(0,0,+++,0) = r - = h(0,0,+++,0), g(8,,8,,+++,8 ) = - £ h(8,8,,°**,8 )

if (81’62""’5n) # 0 and £ (1,1,+++,1), and the values of Ei(xi’?i) are

given by the table

3.
i
0 1
(2.9)
o1l m . .
111 ")

Finally, since Cov(Q) = Co%, we obtain

n-1 ‘
n
A e - s
Cov(t) = o u(51,52,---,6n) n ‘&Di&i o . (2.10)
§=0 B tB,*e e e ¥6 =8 i=1 J

Shah [1960] considered the following association scheme:

In a balanced factorial experiment with n factors Fl,Fe,---,Fn at My My, e ey

levels respectively, the two treatments are the (pl,pe,---,pn)th associates,
where pi=l if the ith factor occurs at the same level in both the treatments
and p=0 otherwise; A\ will denote the number of times these treatments

P1Pac Py '

occur tegether in a block. Then we have




oo

(2.11)

2

(mi-l)l-pi

n
‘pp --.p =
172 1

n

[}

5
th .
the number of (pl,pe,---,pn)  associates.
The associatien scheme could be called a '%ipary number association scheme
(BNAS)". Note: PBIB designs having BNAS are EGD/(2"-1)" PBIB designs as de-

fined by Hinkelmann [196L].
In the above BFE, suppose that the model (2.1) is assumed. Let

-h

a n s
S * e(ql,qz,...,qn), where q = hEl?hg for q;=7 or 1, be the efficiency

factor associated with the estimate of generalized interaction qulﬁéqg---an“

- _ - n-h _
and Kp = xPle---Pn such that p = hglth for pi—O or 1, then Shad [1958]

obtained the following relation:

n
1
® ==
rigl F(my ) = =& & (2.12)
1 1 -1 ” n
= — = s e e ' = LR ) ! = -
where F(mi) 7 |4 m—l,g (eo,el, ,em) ;A (xo,xl, ,xm) , m =2 -1,
1
and 60=O, km = r-rk, and conversely
N - |
8= - e G(m, Ja , : (2.13)
m -1 1
where G(mi) = .
-1 1

Kshirsager [1966] and Paik and Federer [1973b] have proved the following

theorems:

Theorem 2.1 Every PA type block design is a BFE, and conversely.

Theorem 2,2 Every Balanced Factorial Incomplete Block Design is a PBIB with

BNAS and conversely.

In the classical BIB design or PBIB design, no treatment appears more than
once in a block. However, we may wish to apply some treatments more than once
in a block. In such cases, the n-ary partially balanced block (NPBB) designs

may be useful for application (see Tocher [1952] and Paik and Federer [1973b]).
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Paik and Federer [1973b] defined a BNAS: for an NPBB design having
n T om

v o= .Hlmi treatments applied in b blocks of k plots of each. In a factorial
i= .

system of n factors F -~~,Fn at m,,m creLm 1eyels respectively, the

l) FE} l) 2}

th . = _ . .th
two treatments are the (pl’pz""pn) assoc1ates? where pi-l, if the 1
factor occurs at the same level in both treatments and pi=O otherwise;

hpip D will denote the number of times these treatments occur together
a.'. n - -

in the same blocks. Suppose two treatments t and t' are (pl,pz,---pn)th

associates and these treatments are replicated rtj and rt‘j times in the jth
block respectively, then
* .
r - rk if (pl,p2,~-o,pn) = (1,1,+0s,1)
PPzePy ) D
z tﬁart.. otherwise
j:l" Jd J
¥ op 2 = -
where r z rtj’ r=2x rtj . :
J J
Iir thEb-~-Ph does néf depend upon &a:particular pair of (pl,pe,--.,pn)th

aggociates and if r is a constant for t = 1,2,...,v, then the above block
design is an NPBB design with respect to the BNAS. Paik and Federer [1973b]
concluded the following:

Theorem 2.3 Any NPBB design having BNAS is a BFE and is a PA type block de-

sign, and conversely.

Example 2.1 Consider the following block design v =2 X 3, r = b, kx = 8, and
. .
block 1, 1, 4, 2, 3, 5, 6, 1, k
block 2, 2, 5, 1,.5, 3, L4 6, 2
o block 3, 3, 6, 6, 4, 1, 2, 5, 3
where 1 = (0,0), 2 = (0,1), 3= (0,2), & = (1,0), 5 = (1,1), and 6 = (1,2).
This design is an NPBB desigﬁ with hgy = 5, Ay = 6, Mo =5 and Ay = -26;

also it is a BFE and is a PA type block design. In this design, for example,




..’(’_

treatment 1 = (0,0) is the (1,0)"® associate with treatments 2 = (0,1) and

‘ = (0,2); (0,1)"® associate with treatment & = (1,0); and (0,0)*" associate
with treatments 5 = (1,1) and 6 = (1,2). Since S =2, rl,2 =1, r1,3 =1
and 1‘2,1 =1, I‘2’2 =2, I‘2,3 =1, then /\lo = 5; also since rl-[-,l =2, rb,,g =1,
rbr,3 = 1, then kol = 6, and lastly, since 1'5’l =1, 1'5,2 =2, r5,3 = 1, then

# *
A Also, we obtain r = 6 and Mg =T -7Tk= 6 - 32 = -26.

o0 = °°
3. EXAMPLES OF PBB DESIGNS HAVING BNAS

A rectangular association scheme is defined for v = mlm2 treatments as a

rectangle with m, rows and m, columns, with first associates in the same row,

second associates in the same column and all other pairs being third associates.

In this case, if we denote v = mym,y treatments by (i where ij = O,l,--o,mj-l,

l’i2)’
then using the notation of BNAS,

n -1, n.. =m,-1, and n.. = (ml—l)(mg-l) s

OrL- "1 00

and we have AlO’ ROl’ and KOO as the first, second and third associates, respec-
tively.

From (2.13)

A, . (3.1)

m -1 1 [mz—l 1
e = _.].'_. &
- rk -

-1 1 -1 1

where § = <e(o,o), 6(0,1), 8(1,0), 6(1,1))' and )\ = (\oo’ Mo Mo "11) , i.ed,

8(0,0) =

8(0,1) = -—11—[ L0 'thl) At r(k-l)] ’ (3.2)
8(1,0) = 7 Lm0y = Ayg) + Agy * )]

6(1,1) = :}L{ [ Moo * r(k-—l)]

In a rectangular association scheme, if m, =M, and A treatments either

10 101’

in the same row or in the same column, while all other pairs are second associ-

ates Ay, £ Ao We obtain the Latin square (Le) type association scheme.
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On the other hand, if we let two treatments in the same row in a rectangular

association be first, and any other two be second associates, then we obtain a

1

so-called "group divisible" association scheme. In this case,

Mo dor T hoor P Mo Fhep

Bp = mzfl, Doy = Myl Ngy = (ml—l)(mz-l) s

50, we obtain

8(0,1) = = [r(k-1) + *15] = 9(1,1)

6(1,0) = ii [r(k‘l) * Mo ~ Mg - Aoo)]
1
=k M%*o1

- since nlollo + nOIKOl + nOOkOO =r -rk .

We obtain yet another association scheme introduced by Roy (1953-k) if we

n
denote v = iglmi treatments by (11,12,--~,1n), where i, = O,l,---,mj-l . Let

the first associates be two treatments with all but the last subscripts equal,
and generally let (n-i)th associateg be those with the first i subscripts equal,
but the (i+1)th ones different.

In this cage, we have

M1...10

N = A
11...100 ~ 11...101

4291...1000 ~ M1...3000 ~ Mi...1010 T Ma..oion

. . o e . . . e 3

M00...0 = Mo-.0l T T T Mot

200...0 - *00...01 = 777 T Mort. ..l
General examples of PBIB design having BNAS are partially confounded factor-

ial experiments.

Exemple 3.5 ~~ V=2 X2X2, k=L b=6 r-=a3.
by by by by b5 by
1 5 1 3 1 2
2 6 2 b 3 b
3 7 5 7 5 6
Effect confounded M Y 8 6 . 8 Z‘E"é



-O=

Treatment no. = hil +oi, + i3 + 1 . 1In this case,

32212110
23121201
21321021
12230112
M =1 1103021 BoIp%0p IR, I 800T,
12012312
10212132
0112122 3]

This design is a PA type incomplete block design and PBIB design having
BNAS:

AMio = 2, A =2, A

Noro - L

From (2.13) or directly from (2.8)

i}

8(001) = 8/12, 8(010) 8/12, 8(011) =1

fl

6(100) = 8/12, o(101) =1, 6(110) =1, e(u11l) =1 .

NOTE: Triangular and cyclic PBIB designs are not PBIB designs having BNAS.
4. ANALYSIS OF PBB DESIGNS HAVING BNAS

4,1 Intra-block analysis

The notation u(&l,ée,---,an) defined in section 2 can be expressed as follows:
n
u=—1—[n®H(m.>] ot (h.1)
= rvil i’} =

1
where, u = (u(0,0,---,O), u(0,0,e¢0,1), «o., u(l,l,...)l)) ,

H(m,) = [O mi] , (k.2)
1 -1
and 9-1 = (O:eil(ofo)"')l): AR G-l(l,l,-'~,l)>' .

For example, if v = m,m,



- . i 17 1T 1 1
u(0,0) © 0 0 mm, 0 F 6(1,1)

3 ’ 1 1
u(0,1) . 0 0 m -m|fe (0,0) R ( (1,0) ~ 8(3, 15> (4 3\.

= E 1 l ’

u(1,9) 0 m, 0 -m, (1,0) ( 50,1y ~ (L, 1))

-1 1 1
u(3,1) 1 -1-1 1 e, _rm,lm ( To 1y - 6(1,0) * eT1,1>>_
Then, )

£ = [u(o,o)n‘l’ ® D‘f + u(o,l)DS ® Dé + u(l,.0>D?[ ®D,iQ
l . .
rell 1) Toym, @ <6(1 oy ~ 1,1)> Ty © Ty 3 (o)

1 \
" (e(o,ﬂ - e(1,1)> T € Tng®

Let Q, . be the (i,,1 )th element of the vector Q; then,
ll » 1& 1 2 - . -

(i, @) 9= (B op o Zagp 2y e 20y

NP L)
and

) (Jrri @ Im!)@ =<§Qio, ?Qil’ “ee, Zlea-l’ £ Qo *tts

i i
t
28 g1 7 T Yo %91,%-1) .
- 8¢ th
In general, let § = <_H @ D, > Q and S(il’i2’”"in> be the (il,ie,---,in)

“element of vector § ; then,

L1

s

2
.2) ) Z Q,. .
n ~ : ! JysJgreres e
J1 =0 Jp=0 Jo =0

LT
8(i),i,,00,1) =

where z,=m, -1 if 5,=1 and z_=0 and ig=iy if 5 =0 ,
ii i i

4.2 The combined intra- and inter-block analysis

In the model (2.1), the block effects {B } could be assumed to be independent
variates with mean zero and variance og . Using matrix notatlon, model (2.1) can

be expressed as follows: .



=11«

X + €

e
(]

"

(:-I_-_) Xl’ XE);_‘{ T e,
where y is a bk X 1l observation vector, 1 is a bk X 1 column vector having all

elements unity, Xi is a bk X v matrix, X2 is a bk X b matrix, ¢ is a (vb+l) X 1

parameter vector such that ¢ = (p,tl,tz,---,tv,ﬁl,sa,---,Bb)', and € is a bk X 1
. ' - ' = N Wiy = N
experimental error vector. Note that xlxl rIv, X1Xé N, A2A2 ka .
% % %
Let y = ‘ég, X =, Xl), ¢ = (u, t')' ; then, the sum of squares to be

minimized is

o~

! i it % K kid
W(:s_r-i@)‘(s_r-XC;)+Ek-(z ~Xe )y -X¢),

1 1
where w = —, w' = -
o2 0% + ko2

p

, and we obtain the following normal equation:

~ : ¥, ¥~
w(X'y - X'X¢) + 5~ (L'y -X X ¢gH)=0

After some algebraic manipulation, we obtain the followirng reduced normal

equation for £

wew' y _w'r ~ L 1. )
<rva- W - =gt =t w (T -Q -2y ), (4.6)
vhere y = ZZy.. .
.o ij 13
Let
% - !
¢ = rwI - ¥ gyt - E2Z g
v k v v
Then, if the design has the Property A4,
& o n
* _ , 5.
c = _ o g (81,62,--~,8n)i=1® D, 1

S=O + +eo oot =
61 62 Sn 8

Wwew'
k

rv + (w~vw')g(0,0,...,0) .

where g'(0,0,+++,0) = rw - h(0,0,+++,0)

g'(6l,52,---,6n) = (w-w')g(al,se,---,an) for (81,62,-.?,%) # 0 and (51,52,...,5 )

1,
7é (l)l)"')l)) g'<l)l)"':1) = (W‘W’)g(l)}-j"‘;l) - yv—f' .

If we denote the efficiency factor associated with matrix ¢ by ew(xl,xg,---,x )s
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n~1
r0 (xq,%5, 0 0e,% ) = o g (01’52""’5n)iElEi(Xi'51)
S=ONS_ 48 _+- e 048 =8 '
172 n’-

n=-1 ’
n
= I‘W' + (W"W')}: Z g(al’éz)‘..)Sn)._n.lEi(xiai ()4"8)
s=O\g_+8 ++++8 =g '
V1 2 n

= ' + (w-w')rB(xl,xz,---,xn) ,
where e(xl,xz,---,xn) is the efficiency factor associated with the matrix C.

s,

o .
The generalized inverse of C 1is easily obtained, i.e.,

n-l :
T T avss s ) Be ot
c - L' L . 1 (515 2,.-.,5[})1?:1@ Di 1 » (1‘!‘-9)

S=O +e s o+ =,
5l+52 Bn 8

where,

n
5.x, I (m.x.)l-ai

Y yo 1 T iy (-1) *i=l 77 (4.10)
v 61’62’.”'511 Tl L w' o+ (w-w')e(x,,x 100X ) )
g _ 1’72 n
s=1} x +X Feee X =8
172 n
Hence, the solution of (4.6) is
t=c"p, (4.11)
where
1
= - ! - -
Pugtw(z--tiy) . (+.12)
Using the form of (2.6), we obtain
HY—']. Y‘ o
T = 1 . S,
g— L L u (61,62,"‘,6n)i51w Di 1 g . (’4‘.13)

81+62+ +5n s

If v = mym,, for example,

tctl

=u'(0,0) P + u'(O,l)(Imi@‘Jm!) P+ u'(l,o)(szivl%) P,
where

1

u'(0,0) = = + r(w-w')8(1,1)

1}

1

J 1 L L
u'(0,1) = rm, (w- + (w-w')6(1,0) w' + (w-w')e(l,ﬂ)

1 — l l l
u'(1,0) = my (w' + (w-w')8(0,1) ~w' + (w-w')6(1,1)>
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Next, if we calculate Cov(P), we obtain
Cov(P) = C* .
Then
cov(®) = ¢ . (b.14)
Now, consider two treatment intra~block estimates gi and Ej’ where

is= (1

--,in) and j = (jl,jg,---,jn) . The variance of @i - tj is given by

2,
Kurkjian and Zelen [1963] as follows:

X
n ﬁ (m —l)x"!' (_l)s+]_ Ir,} (l_mr) rPr
AN 2 r=l r=1 .
Var(t.-t,> -2 ¥ V' (4.15)
1] v L o B(x.,% ,+,x )
s=1 X1+X2+'- -+Xn=S l) 2) 1%

where

This is nothing but the variance of the difference between two treatments which

are (pl,pe,--'pn)th assoclates. For example, if v = m.m

172’
) 2 m2 ml
rmcm (6(0 1) 9(1,0)> for (Pl;Pg) = (0,0)
A A m (m -1)
Var(ti-tj> = rﬁizg (e(l,cﬁ' 9(1 1) ) for (py,p,) = (0,1) . (h.16)

me(ml-l)
I m,, (9(0,1) * 8(1,1) ) for (Pl;Pg) = (1,0)

In the case of combined intra- and inter-block analysis,

n H (m 1 )%rs 1)S+l n (1-m ) X Py

var(E, £ ) = o). >y = =1 } (4.17)

12, _ W' + (W-W‘) 8 (X X ees X )
s=U x +e0e = H 2 )
1+X2 +X S 1’72 n

where p, = O if i # jyand Lif 1 =3 .

4,3 Illustrative example

We give below the analysis for the group divisible design with parameters

v=15, k=4, b=15, r=k, m, =3, m,=5, A 1=0, A2=l and association scheme



TR

1 6 11 i
PR P

38 13

b9 14

5 10 15

If we denote the treatments by (il,ie), where ij = O,l,2,---,mj-l and treat-

ment number by 5il + i, + 1, the above design is a-PBIB design having the following

o
BNAS:
MoT L My T Ay =1

From (2.13) or (3.2)

@
—~
~.\’)

]
~

i
-t
&

-

D
—~~

o)
-

(@]
~

[}

1%,' and 6(1,1) = ﬁ ,

and so from (4.3)

L - 1
U.(0,0) = §: u(O,l) =0, and u(l,O) = - 175-
From the numerical example in Chapter II of Bose, Clatworthy and Shrikhande

[1954], the caleculation for gi ;. can be systematically arranged as in the Table
* > 12

4.2. The entries for columns headed $(0,0) = u(O?O)Qil 5, and s(1,0) = u(1,0)Q i
)2 *)2

are obtained from the Table 4.1 and the last column in the Table 4.2 shows the esti-

mates of the treatment effects t; . , obtained by adding the values of $(0,0) and

1,22

S(1,0) which are shown in the corresponding rows.

TADLE 4.1
Values of Qi1 3
3 ~2
i
0 1 2 Q',ig
Qil 6 0.475 0.600 0.450 1.525
Qi 1 -1.125 0.100 0.825 ~0.200
1

Qil 5 -0. 925 0.150 -0.275 -1.050
Qil,3 -0.175 - . 0.575 -0.575 ~-0.175
Qi k4 - 0.200 -0.625 0. 325 ~0.100




-15-
TABLE 4.2

Intra-block Estimates of Treatment Iffects

Sl [ seo seo T
1; (0,0) 0.15833 -0.03389 0. 124kl
2 ; (0,1) -0, 37500 0. 00khh -0, 37056
3; (0,2) -0, 30833 0.02333 -0.28500
4 (0,3) -0.05833 0.00389 -0. 0544k
5 ; (0,4) 0.06667 0. 00222 0.06889
6; (1,0) 0.20000 -0,03389 0.16611
7; (L,1) 0.03333 0. 004k 0.03777
8; (1,2) 0. 05000 0.02333 0.07333
9; (1,3) 0.19166 0.00389 0.19555
10 ; (L,4%) . -0.20833 0.00222 -0.20611
11 ; (2,0) 0.15000 -0.03389 0.11611
12 ; (2,1) 0.27500 0. 00kkk 0.27944
13 ; (2,2) -0.09167 0.02333 -0. 06834
1 ; (2,3) -0.19166 0.00389 -0.18777
15 ; (2,4) 0.10833 0.00222 0.11055

4.3.1 Intra-block analysis of variance

We make the following calculations in the usual manner:

(a) 88, = "Treatments adjusted"” sum of squares
=349
= (0.1244k) (0.475) + (-0.37056)(-1.125) + -+ + (0.11055)(0.325)
= 1.5641 .
(») SSQ = "Blocks uwnadjusted" sum of squares
= 2 B2/k - (Total)?/N, N = bk
3 J
= 4,9233 .

(¢c) S8 = Total sum of squares corrected for the mean

= 9.3733
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i

(a) S8, Arror sum of squares

SS - sS, =.88' - - e
(V] s 0 P ARt AN

t

9.3733 = 1.5641 - k9233 -
2.8059 . -

It

We thus.: get the following intra-block- analysis of variance table.

" TABLE 4.3
Intra-block Analysis of Variance
Source pf variation ‘ d.f | - 8S Ms
Treatment (adj) 1k 1. 5641 0.1117 = s§
Blocks (unadj) T 1 4.9233
Error - 31 " 2.8859 0.0931 = g2
Total . | 59  9.3733

T e

The ob’sjérVed F-ratio of 1.199 with 14 andﬁ 3i degrees of freedom is not signifi-

cant at the 5 per cent level. o ‘ o .
The variance of the difference between the effects of ith and jth treatment is

given by (4.16) and is estimated by replacing o by 02 . Hence the estimated vari-

ance of the difference between two treatments which are (O,O)th associates is

552 mg my (my =1)(mg-1)-1
mfmg (9(0,1) TEELoy 5(L,1) )
= <0.09£;)(28) - G.0579 .

Likewise the estimated wvariances of the difference between two treatments which are

(1,0)"" associates and (0,1)™" associates are:

002 g mp (m -1) i o8

mm \8(0,1) (L1 / (0.0931) = = 0.0579
and

202 m m (mp-1)y -

rm mp (e(l,OT T eI ) = (0.0931) 3= 0.0621 ,

respectively.
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Since each treatment has eight (O,O)th associates, four (l,O)th associ-
‘ ates and two (O,l)th assoclates, the average varia;;e of a difference is
(0.0579)(8+4) + (0.0621)(2) _ ¢ oops
14
4.3.2 Inter-block analysis of varlance
The following calculations are to be made:
(a) SS% = "Treatments unadjusted (ignoring block effects)"

sum of squares

S T2/r - (Total)?/bk
i 1
= %((11.100)2 + (9.400)2 + o0 + (11.500)2> - (164.00)%/64

= 3,1383 .
and is obtained in the usual manner.

"Blocks adjusted (eliminating treatment effects)"

(0) ss,
sum of squares

1]
S8 - SSt - SSe

it

9.2733 - 3.1383 - 2.8859

i

3.3491 .

These sums of squares are summarized in Table L,

TABLE b.4

Auxiliary Table for Inter-block Analysis of Variance

Source of variation d.ft sSS Expectation of the S8
Treatment (unadj) 1L SS£=3.1383
Blocks (adj) 14 ssb=3.3u91 1402 + hEUE
Error 31 sse=2.8859 3102
Total 59 SS =9.3733

(c) The estimates of 0® and o2 are obtained by equating SS, and ss, to

p b

their expectations respectively. Thus
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ss, = (b-1)02 + (bk-v)o? (see Appendix [a.2])
88, = (tk~b~v+1 )02
This gives
ph - RN
o Se
. b =1 ( 2 _ 2)
UB bk -~ v sb Se

where si is the error mean square and s% = SSb/(b-l) is the "blocks ad-

justed" mean square. Hence

02 = 0.0931
N\,
2
0= = 0,04 .
o2 ' 02 + ko2
B
1 1
2'(0,0) = ——————x = 0.02768
r{w' + (w-w')8(1,1))
u'(o,1) = 0
u'(llo) = rl A ~ /\1 - ~ ~ Al >
o w' + (w-w')e(0,1) w' + (w-w')6(1,1)
= -0,00120 .
(d) Ccalcwlation of P, lg»and of the combined intra~ and inter-block esti-
1242 : . '
mates t. . is obtained by setting
1,13
N A
= wQ, +w'Q! .
Pil.:iz WQll)iB v Qll;lz ’
4
' - - - i
where Qil,ia Til,ig Qil,ig y,./v .« The results are presented in Table

L.s.



TASLE 4.5
Caleulation of P:.Ll,13 and P.,ig
i .
0 17 T2 Total, P,
aQi o 5.10202 6. 466 4.83350
1)
Q'Q'il o -1.11958 0.60705 1.87930
4,0 3.982k4k T7.05171 6.71280 17.74695
GQil L ~12.0837h 1.07411 8.86141
Q'Q'il 1 -1.148308 10.97055 2.69717
Pi1 7 ~13.56682 2.04466 11.55858 0.036h2
QQil, 5 -9.93552 1.61117 -2.95380
W' > -0, 75608 - -0.66521 -2.02833
12 .
Pil N -10.69160 0.94596 -4.98213 -4 72777
GQil ; -1.87969 6.17613 -6.17613
G'Q'i1’3 3.78767 -0.75608 -2.39183
4, 3 1.90798 5.42005 -8.56796 -1.23993
2
Q. 2, 14822 -6.71319 3.49086
1, li-
Q'Q'il N 0.24355 -1.84658 0.87967
b
4,k 2.39177 -8.55977 k37053 -1 79747
Since
iy, u'(O’O)Pilyia ¥ u'(l’o)P';ia ?

the combined intra- and inter-block estimates Ei of the treatment effects

1,3a

t. . can now be calculated and are given in Table 4.6.

' 11,12
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TABLE 4.6

The Combined Intra- and Inter-bleck Estimates
of the Treatment Effects

Treatment ~
1; (4,is) u*(0,0)Pi“iz u*(l,O)P.,iz Total, fy 4
1; (0,0) 0.11103 -0.02130 0. 08973
2; (o,1) -0.37824 ~0. 0000k -0.37828
3; (0,2) © -0.29808 0.01767 -0.28041
L ; (0,3) 0.05319" 0. 00149 0.05468
5; (0,%) 0.06668 0.00216 0., 06884
6 ; (1,0) 0.19660 -0.02130 0.17530
7; (1,1) 0.05701 -0. 0000k 0.05697
8 ; (1,2) 0.02637 0.01767 0.04LbL
9 ; (1,3) 0.15111 - . 0.00149 0.15260

10 ; (1,4) -0.23865 0.00216 -0.23649
11 ; (2,0) . 0.18715 - -0.02130 0.16585
12 ; (2,1) 0. 32225 -0. 00004 0.32221
13 ; (2,2) -0.13890 0.01767 -0.12123
14 ; (2,3) 0.12185 0.00216 -0.23738
15 ; (2,4) 0.12185 0. 00216 0.12401

For the combined intra- and inter-block analysis there is no exact test of
the hypothesis.of the equality of treaﬁmentvmeans but when this hypothesis

is true the quantity Z EiPi is approximately distributed as X2 with v-1 de-
i

grees of freedom.
Thus i

t.P, = 21.0345

with 14 degrees of freedomand is not significant at the 5 per cent level (also,
see Federer [1955], section XI-T).
The estimated varience of the difference between the estimated effects

of two treatments which are (O,O)th associates is
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2 T ™
o e
Ml gt 4 (g-w')e(0,1) @' + (w-w')8(1,0)
m -1)(mg -1)-1 ’
s A(ml (me ) - 0.05% .
W'+ (w-w')e(1,1)

Likewige the estimated variances ofthe difference between estimated effects of

two treatments which are (1,0)thﬂaSSociates and (O,l)th associates are 0.053k

e

and 0.0558, résﬁectively.

The average variance is therefore

noo(o.053u) + nlo(o.os3u) + n01(0.0558)

= 0.0537
v-l

5. ANALYSIS OF PAD TYPGL K-ROW BY B-COLUMN RECTANGULAR DESIGNS

5.1 Introduction

s

m,

Inh a k-row by b-column rectangular experiment design with v = ™

i
treatments being replicated r times each, suppose the column incidence ma-~
trix N has Property A and the row incidence matrix N of the experiment de-

sign has Property 3 as introduced by Zelen and Federer [1964], i.e.,

n
o~ 61
h(al)agi"’)5n)igl® Di )

~ry
M =

~1s

A
L

Il

S=018. +5 _++ 0245 =g
2 n

1
where the E(Sl,az,--~,5n) are constants. Then the k¥ X b rectangular design
will be said to have Property A and Property B or will be called a PAB type
kK X b rectangular design.

Paik and Federer [1973b] have proved the following theorems:

Theorem 5.1 If the design is an WPBB having BNAS with respect to columns,

then the design 1

a balanced factorial rectangular experiment (BFRE) and is

a PAB type rectangular design.

Theorem 5.2 Every PAB type rectangular design is an NPBB rectangular design

having BNAS with respect to rows and to columns, and conversely.
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However, a BFRE is not always a PAB type rectangular design nor an NPBB
design having BNAS with respect to both rows and columns (see Kshirsager
(19571).

5.2 Analysis without recovery of the inter-row and inter~column information

If we ignore the column effects, the above k-row by b-column rectangular
design could be considered a "block (row)" design having Property B. The

set up assumed is

ylh = K + ti + ph + eih J ’ (5'1)
where 11 is a constant and ti, Py are the fixed effects associated respective-

ly with the treatments and rows, while {eih} are assumed to be independent

normal variates with mean zero and variance ci .

In this case, the reduced normal equation for estimating the treatment

effect vectdr § is

E‘E’:Q’ (5-2)
where
~ l~~
C = rIv -5 'y,
~ l~
e=T-5MR,
(5.3)

[R=s)

1
= (RpBpeeimy)
. : th
Rh = total yield of all the plots of the h -row .

Since the above desigh has the Property B, the matrix C has the follow-

ing form:

oY)

it

15

~ o ) 6
) B(5,,8,, 00,6 ) T& DOy, (5.4)

Ola. +5 _+ee e 4y = =1 i‘
(P17 TS

1t

S

where
2(0,0,+++,0) = r - 1(0,0,.++.,0)

é(gl)ge)...,an) = _3(51,52’...,5n) for (61’62’."’8n) £0 .
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n .
g = Z \; 3(51,52,-..,%);%1% Dié‘ ) (5.5)
s=1 5l+§2+...+5n .
where
; DB T ()T
B(oy,8p,8,) = F ), ) — (’
s=1 xl+x2+--~+xn=s rG(xl,xe,-..,xn)
- (5.6)
1"5(xl,x2,-n-,xn) = Z Z é(&l,ﬁg,---,8n)il{_1_llEi(xi,6i) .
§=O 51+52+...+5n=s

When the treatment i occurs in column j and row h, the set up could be

yijh =p ot ti + Yj + ph + eijh > (5-7)

where . is a constant, and ti’ Yj’ Py, are the fixed effects associated re-

spectively with treatments, columns, and rows, while {eijh} are assumed to be

independent normal variates with mean zero and variance o . (In section

5.3, the column effects {Yj} and the row effects {ph} will be assumed to be
independent random variates with mean zero and variance 03 and UE} respec-
tively. )

Using matrix notation, the model (5.7) can be expressed as:

y = X@ + €

(5.8)
= ("i_‘_JXl)X2}X3)@ + E

where y is a bk X 1 observation vector, i is a bk X 1 column vector with all

elements unity is & bk X v matrix, %, is a bk X b matrix, X_ is a bk X k
>

2 3
matrix, ¢ is a (v+o+k+l) X 1 parameter vector such that @ = (u,tl,tg,---,

t

tv’Yl’Ye’".’Yb’pl’pz""’pk) and € is a bk X 1 experimental error vector.

Note that



~pls
:xi:{l = rI, ;{l"ce = N, 'x3 =%,
Xk, = kI, :{2':{3 = "JbX‘k’ x_3'_x3 = bL, and
Xy=1 ZXy=8 Xy-=R
It is known that the reduced normal equations for estimating the treat-

ment effect vector t may be written as:
N S L PR T 1
(r1, - g0V - AW s St er - pm - FRe by

where y = = total for all observations, or

-(r-xy ) . (5.9)

1Ol

= ].;" )*:
(c+c-r(:cV ) )t | Q +
Since we are concerned with the PAB type k X b rectangular design, this
design has Property A in columns and Property B in rows. The normal equa-

tions in (5.9) can be expressed as follows:

S 'y =& O L | "
Z Z_‘ ‘g"(al)az}..'}gn) n 6 Di tl = g’ s (5.10)

SO 45 4eeetd = =1 i
17027 TO,TS

where g*(0,0,"',O) = g(oio-;"':o) + é(o)o)."Jo) - T, g*(51)521"':6n)
= 3(51,52,...)5n) + é(gl,ﬁg,...,gn) for (51,521...,5n) £0and £ (1,1,---,1)

and g*(l}l;"')l) =-g(1111"';1) + é(l:l:"’:l) +§: and g:* = 9 + '_Q:« + ('{l

1
-2V

Let
) } ne1 v n
% % LR AR = v ’ * LI ] ‘ .

re (xl)‘{ei )xn) L‘ 1—0 g (61)62) )5n)iI=]lEi(X161)
: =o LAY =
8 81+62+ +8 =s :
= -r +re(x1,x2,~--,xn)+ re(xl,xz,---,xn) (5.11)

= r[e(xlier“')xn) + é(xljxe)..'}xn) - l] ;

then, the solution of the equation (5.10) is

n-1
‘ . n
s ) L u*(al’?’e”"’%)il_ll% DB (5.12)

S=O + LIS -
81 62+ +6n s




where

. n .
(_1)26’x‘ it (m.x.)l 5
. T =1 "7 :

LJ * .
l\x X 4o ety =g 6 (‘{l’XQ"”’Xn) / (5.13)
172 n

1
vr

[l e

u*(al,SE, .o .)Bn) =

S

Example 5.1 Consider the design in Ixample 2.1 as a 3 X 8 rectangular
arrangement.

(1). With respect to columns, v=2 X3, r =4, x =3, b =8, and Aop = 2>

hop = 0 Aqp =2, and Ay = -8 . Using the formula (2.11)
2 1 .2 121 [ o]
§=;11§_I1§G(mi)=i-21~~1 1 -1 1 o= 1 '
i=1 2 -1 2 1]]e2 2/3
| 1 -1 -1 18] 2/3]
Hence

6(0,1) = 4, re(1,0)=8/3, and re(1,1) = 8/3 .
(2). With respect to rows, v=2X 3, r =4, k=8, b = 3, and Noo = 2»
Nog = 6, Mo = 5, and Aqq = -26 . 1In this case,

-1 1 -1 1 6 15/16

Hence
£8(0,1) = 15/4, r8(1,0) = 4 and re(1,1) = &
(3). From (1) and (2), the above design is a '"balanced factorial 3 X 8
rectangular experiment” and.is a PAB type rectangular design having the
following efficiency factors:
8%(0,1) = 15/16, 6“(1,0) = 2/3, and €%(1,1) = 2/3 .

Now, if we consider two treatment estimates tﬁ and t?, vhere
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S e (14 eed 4 C e (4 . s . W
i= (11,12, ’ln) and j (31,32, ,Jn), then the variance of t tj is

given by applying the foimula (4.14), i.e.,

a .x- s+l X, P
. n I (mr—l) F+(-1) (1-mr) r&r
ey = 202 T Ay r=1
val(ti—tj) == L L o ) (5.14%)
S=1 Xl+01'+}-{ =S }xl,Xe) Onv)xn
. n

where
. 2-[0 if i F 3,
o
1}. if 1r = U,

and 9*(X1,X2,o--)xn):= e(Xl,Xg,.‘.,Xn) + e(rxl,xz,-on’xn) -1 .

5.3 Analysis with recovery of inter-column. and inter-row information

In the model (5.8), suppose that the column effects {Yj} and row effects
{ph} are independent random variates with mean zero and variance U$ and ci,
respectively. Then the sum of squares to be minimized is
1] __r‘~ ‘i’L _‘f~ 1 - 0
) (Xc kc@c) T3 (zr “r?r) (Xr Xrgr) ’

where

e, = (H;E'JY_'): ¢, = (H;E';Ef)' ’

&C r

~r - 1 . b'e = T !

X, = XL Xy, %) = (KL, N Jp g ), and
—_ =t <r hid - N ' .

Xr - A'3(l} A‘l} A3 - (bll{J N ) kab ) s

we obtain the following normal equation:

We ~ Wy

W(X'Y'X'X@) + i{'(XéX'KéXch) + 3{'(X;¥'X;X£?r) =0 .

After some algebraic manipulation, we obtain the following reduced nor-

mal equation for the treatment effect vector t:

| (C*gw';-rw(lv- éJv))gw =P, (5.15)



where ';.
W=,
c* = vl - NNt o,
Wiy
C’; = rva T b ?
7ot e, (Frm- B)

1 (5.16)
cu, (BR- 2.)

~ 1
3 - . &
¢ =e+q-(-ay
Since we are concerned with the PAB type kX X b rectangular design, nor-
mal equation (5.15) can be expressed as follows:
n

n
o 8
z z gvl(ol’BE”“’Sn)-n ®D, Ht = I: ) (5'17)
=O LN ) = -
5 51+52+ +6n s

where gw(o,o,"',O) = gé(oio)"'yo) * g'(Q;Q;"',O) - = v,

+ (w-wc)g(0,0,---,O) +orw, + (w-wr)é(o,o,...,o)_— W = (w-wc)g(0,0,--',O)
2).‘.)61,1)
+8.(89,8,000,8 ) = (w-w_ )g(8y,8,,+4,8,) + (w~w_)g(8,,8,,+++,8 ) for

+ (W—Wr)g(0,0,"',O) - (W'Wc’wr); gw(61’62"'.’6n) = 80(61:5

(51,52,--.,5n) #0and # (1,1,¢0.,1), and gw(l,l,--~,l) = gc(l,l,---,l)
/ v

+ gr(l:ly"';l) + gr(l,l,---,l) + ?;'= (W‘Wc)g(l:ly"')l)

+ (w-wr)'é(l, 1,000,1) = %;— (wc+wr-w) . The following solution for equation

(5.17) is obtained:

n-1
W n 8]
£t = }; z: w (6,,8,,°++,5 ) 1 @D, 1HP* | (5.18)
- w12 n’yo; i -

5=0 B B te e e 8 =5

where
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uw<61"62’ "t "an)
S=L x_x oo o dx =g w1
2 n

1 (5.19)

)

N (w-wc)e(xl,xzz--~,xn)'+ (w-wre(xl,xg,--',xn)

e‘](xl}x2, e )X
- (w—wc-wr) .
In this case, if we consider two treatment estimates tg and tg, where
. . . . - c N . S WO Wy
i= (11,12,--o,1n) and j = (31,32,---,3n), then the variance of (ti_tj) is
f (=1 (-1)°™ f (Lom )¥ePe
0oy - r

n

Var(tV-tW) = —2——2 = 171 s (5.20)
o v 0¥ (x,, %, 00,x )
w72 7

kA

S=l 4 Foea L =
>1+x2 +kn s

where* - -

iy £,
P, = .
Loifi =3,

5.4 Tilustrative example:

Example 5.2 We give‘the analysis for a PAB type kfgow by 6-go;umn rectangu-
lar design with v = 2% . It is useful to divide theigomputatioqs into a
number of 'steps. | |

Step 1. Preparation of the field and treatment allocation plans. The
field plan, Table 5.1, shows the row number in the first colpmn. In the
second column opposite each row number (and in the same row) are given the
treatments appearing in this row, and below each treatment number is shown
the correspondigg observed yield.

In this design, the column incidence matrix N and row incidence matrix

N are respectively as follows:




»
D
b

1
]
1
]

1010 1 0] 1 110
010101 1110
01 1 0 0 11 11 0 1}-
y=|1 00110 and T = 11 0 1
01 0110 1 0 11
101 0 01 1 0 1 1
1 00 1 01 01 1 1
001 1 0 1 0] 01 1 1]
So,
NN’ = bIg - 2188, - J@I8L, + 20g ,
NN = L®L®J, +2J5 .
TABLE 5.1
Field Plan
Columns (Blocks) Row Row
Row(h) (1) (2) " (3) (&) (5) (6) Totals | Average
Treatments and Yields Ry Rh/b
( 1) 1 2 3 L 5 6
19 1o 17 18 18 17 101 16.833
( 11) 4 3 1 7 8 2
ol 18 16 18 18 17 111 18.500
(111) 6 5 8 2 1 7
20 17 22 16 19 o1 115 19.167
( IV) 7 8 6 5 b 3
o4 15 18 16 22 18 113 18.833
Bj 87 62 73 68 77 73 | uhko
Bj/k 21.75 15.5 18.25 17.0 19.25 18.25 18.333
Then, since k =4, b =6, and r = 3,
C=rI-M"Yk-= 2Ig + 181 @Ué/g +J @w 8&2/4 - J'B./2

€ =rI-W'/b=3Lg -1 BT, = Jg/s

g(0,0,0) =2, g(0,0,'_L) = 1/2) g(o,l,O) = 0, g(OJl)l) =0,

g(1,0,0) = 0, g(1,0,1) = 0, g(1,1,0) = 1/4; and
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"1/6; é(oll)o) =0, ’é(oyl)l) =0,

"

£(0,0,0) = 3, g(0,0,1)

g(1,0,0) = 0, 2(1,0,1) =0, g(1,1,0) =0 .

Then, from formula (2.7), we obtain

©(0,0,1) = 1, o(9,1,0) =1, 8(0,1,1) = 2/3, e(l,O‘_,"Q) =1,
8(1,0,1) = 2/3, (1,1,0) = 1, o(1,1,1) = 2/3 ; ‘

5(0,0,1) = 1, 8(0,1,0) = 8/9, 8(0,1,1) = 1, §(1,0,0) = 8/9 ,
§(1,0,1) = 1, 8(1,1,0) = 8/9, 8(1,1,1) = 1 ; and

6%(0,0,1) =1 +1-1=1, 6%(0,1,0) =1 + 8/9 -1 = 8/9,
6%(0,1,1) = 2/3 +1 -1 =2/3, 8%(1,0,0) =1 +'8/9 -1=8/9,
6%(1,0,1) = 2/3 + 1 -1 = 2/3,~ “{g¥(1,1,0) =1 + 8/9 - 1 = 8/9,
6%(1,1,1) =2/3+1 -1=2/3.

The treatment allocation plan l,Table 5.2, shows the treatment number
in the first column. In tﬁe seconéwéoiﬁgh, opposite each treatment number
(and in the same row) are given the columns (blocks) in which this treatment
occurs, and below each block number iélgiven the corresponding observed
yield. 1In the next row of the second column immediately below the observed
yields are shown the block averages (taken from the final column of the field
plan, Table 5.1).

Ffoﬁ Table 5.2, we obtain

Qm_=de,%L=7ﬁQO.=¢ﬁQQu.=&®,Q@=lﬂq
Q,”1 = -1.00 ,

and from Table 5.3,

Qoo- = -10.00, QOL = 8.667, o, = -3.667, Qqy, = 5.00, Q4 = 1.00,
q, .= -1.00.
Also, since Qi =Q, * éi -ty /v we obtain

6'833) Q:-T_OO = ‘0'583)
-10.000, Q7 = 8.667,

® ¥ o= *
Qoo = *T5 Qpop = =5+25, Qppq = 1:833, Qqpq

3t _ t3 _ 3
Qqy0 = ¥.500, Qpqy = 0.500, Qg

it - 3%
-3.667, Qy,, = 5.000, &*

L]

Qoy = -3-083,

*
“0.

]
it

1.000, Q¥ L = ~1.000 .
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TABLE 5.2

_ Treatment Allocation Plan 1

Treatment i |  Block (Column) Number, T, and
i),10,1,) " Yields and Block Average T, -, %Y
1 (1) (3) (5)
(0,0,0) 19 16 19 5k
21.75 18.25 19.25 59.25 ~5.25
2 (2) (4) (6)
(0,0,1) 12 16 17 L5
15.5 17.0 18.25 50.75 -5.75
3 (2) (3) (6) .
(0,1,0) 18 17 18 53
15.5 18.25 18.25 52.00 1.00
4 (1) () (5)
(0,1,1) 24 18 22 64
21.75 17.0 19.25 58,00 6.00
5 (2) (&) (5)
(l)O)O) 17 16 18 51
15.5 17.0 19.25 51.75 ~0.75
6 (D) (3) (6) "
(1,0,1) 20 18 17 55
21.75 18.25 18.25 58.25 -3.25
7 (1) (W) (6)
(1,1,0) oh 18 21 6l
21.75 17.0 18.25 57.00 6.00
3 (2) (3) (5)
(1,1,1) 15 22 18 55
15.5 18.25 19.25 53.00 2.00

The treatment allocation plan 2, Table 5.3, shows the treatment number
in the first column. In the second column, opposite each treatment number
(and in the same row) are given the rows in which this treatment occurs, and
below each row number is given the corresponding observed yield. In the next
row of the second column immediately below the observed yields are shown the

row average (taken from the final row in the field plan, Table 5.1).
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TABLE 5.3

Treatment Allocation Plan 2

Treatment i Row Number, T, and S
(il’i2’i3), . Yields andrRéﬁmﬁ;erage T, ~Qy Qy
1 (1) (1I) - (II1)
(0,0,0) 19 16 19 5k
16.833 18.500 19.167 54.5 ~-0.500
2 (1) (11) (111)
(0,0,1) 12 17 - 16 ks
16.833 18.500 19.167 54,5 -9.500
3 (1) (I1) () |
(0,1,0) 17 18 18 53
16.833 18.500 18.833 5k .167 -1.167
k (1) (11) (1v)
(0,1,1) 18 ok 22 64
16.833 18.500 18.833 54,167 9.833
5 (1) (I11) {IV)
(l; 0, O) 18 7 16 51
16.833 19.167 18.833 54,833 -3.833
6 (1) (111) (1v)
(1,0,1) 17 20 18 " 55
16.833 19.167 18.833 54.833 0.167
7 (1) () (W)
(1,1,0) 18 21 ol 63
18.500 19.167 18.833 56.5. 6,500
8 (1I1) (I1I) (IvV) '
(1L,1,1) 18 22 15 55
18.500 19.167 18.833 56.5 -1.500
Step 2. Calculation of u(61,62,63), 3(51,52{53), and u*(51,62,63) .

From the formulas (2.7) or (4.1)

b,
1 1
2

u(0,0,0) = cErg 7y =

= 0.5 ,

1 11 N__L1_.
u(0,0,1) = = (9(1,1,03 e(l,l,l)) iz = 0-08333,

Vo1 1 . 1 ):
u(O,l,O) Iy (6(1,0,1) e(l)lxl) ° ’

1 ( 1.1 1 .1 ) _ o
rmpm, \8(1,0,0)  6(1,0,1) ~ 8(1,1,0) =~ e(1,1,1) ’

u(0,1,1) =

_ 1 1 1 =
u(l,o;o) - rmy (Q(O,l,l) - 9Tl,l,l)> =0,
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1

1 1

u(1,0,1) =

1

1 ( 1 )
-rmm, \8(0,1,0) ~ &{0

1

- +
,L,1) T 8(1,1,0) © o(1,1,1

1

u(1,1,0) = -

s = 0.04167 .

1
rmy mp (9(0,0,17 ~8(0,1,1) ~ 8(1,0,1)

Similarly, from (5.6) and (5.13) we have

3(0,0,0) = = =

(W)

%(0,1,1) = 0, §(1,0,0) = 0, ®(1,0,1) = 0, and u(1,1,0) =0 .

1

0.3333, 1(0,0,1) = g = 0.02083, ©(0,1,0) = 0,

)> =0, and

1 -1
* e(1,1,1))‘=§E

w¥(0,0,0) = 0.5, u*(0,0,1) = -0.06250, u¥*(0,1,0) = 0, u*(0,1,1) = 0,

w(1,0,1) = 0, u"(1,1,0) = -0.04167 .

Step 3. Calculation of estimates of treatment effects.

(1). Estimation of the treatment effects eliminating column effects and

ignoring row effects.

TABLE 5.1
Treatment i u(o,o,o)Qiliaia u(0,0,i)Qiliz' u(l,l,o)Q“i3 €i
1 -2.625 0.91663 -0. 04167 ~1. 75004
2 -2.875 0.91663 0, 04167 -1.91670
3 0.500 -0.58331 -0.04167 -0.12498
4 3. 000 ~-0.58331 0.04167 2.45836
5 -0. 375 0.33332 -0.04k167 -0.08335
6 -1.625 0.33332 0.04167 -1.25001
7 3.000 -0. 66664 -0. 04167 2.29269
8 1.000 ~0. 66664 0.04167 0.37503

(2). Dstimation of the treatment effects ignoring column effects and elimi-

nating row effects.
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Treatment 1| §(0,0,00Q; 4 ;- 3(0, ;ifQ 1 ,

1 ~0.16667 -0.20830 -0. 37497
2 -3.16667 -0.20830 -3. 37454
3 -0. 38889 0.18053 -0.20836
b 3.277Th 0.18053 3.45793
5 -1.27776 -0, 07638 -1.3541k
6 0. 05556 ~0.07638 -0, 02082
7 3 2.16665 0.10415 2.27080
8 -0.50000 0. 10415 -0. 39585

(3). Estimation of the treatment effects eliminating column and row

effects.
TABLE 5.6
4 3 Y * : *
Treatment i | u (ooo)Qilizia ul (901)Qili2. u (110)Q..i3 £
1 -2.37500 0.62500 ~0.04167 -1.79167
2 -2.62500 0.62500 0.04167 -1.95833
3 0.91667 -0.54167 -0.04167 0. 33333
L 3.41667 0.54167 0.04167 2.91667
5 -0.29167 0.22917 -0. 04167 ~0.10417
6 -1.54167 0.22917 0. 04167 -1.27083
7 2.25000 -0. 31250 -0,04167 1.89583
8 0.25000 -0. 31250 0.04167 ~0.02083

Step 4. Analysis of variance

Method I.

(i). From Table 5,1, the total sum of squares (SST) is

S8y = 197 + 122 +-+++ 182 - khoP/2k = 177.33333

(ii). The treatment sum of squares eliminating column and row effects (SSt*)

is, from step 3, (3),
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L]

% = 5 t*Q¥
SStx- : tin
(

]

~1.79167) (4. 75) + (-1.95833)(-5.25) + ---
+ (-0.02083)(0.500) = 51.83331
(iii). ssg = "column unadjusted (ignoring treatment effects)" sum of

squares

z B§/k - (total)?/bk
J "

89.33333

]

1

(iv). SSQ = "row unadjusted (ignoring treatment effects)"” sum of squares

= 19.3333

(v). 88, = "error" sum of squares

il

" "
SST - SSt* - SSc - SSr

il

177.33333 - 51.83331 - 89.33333 - 19.33333

16.83336

Table 5.7 is then obtained.

TABLE 5.7

Analysis of Variance, Form I.

Source of Variation ar SS MS E(S8)
Treatment,
(elim. C and R) 7 51.83331 si = 7.40476
Column,
(ignor. treat.) 5 89-33333v
Row,
(ignor. treat.) 3 19.33333
Error 8 16.83336 si = 2,10417 802
Total 23 177.33333

The observed F-ratio of 3.52 with 7 and 8 degrees of freedom is signifi-

cant at 5 per cent level.
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Method II.
(i). From step 3, (1), - ‘
587 = "treatment sum of squares" ignoring row effect and eliminating
i oL

column effects

oo

= 2 £,Q, = (-1.75004)(-5.25) + (-1.91670)(-5.75) + -+

1

+ (0.37503)(2.00) = 53.45916 .

i

(ii). ssé Error sum of squares ignoring row effects

A o 1
SST - SSt SSc

177.33333 - 53.45916 - 89.33333
34,5408 .

i

(iii). SSE = treatment sum of squares ignering column and row effects

(1/3)(542 + 452 40t 552) - (4hO)Z/2

= 88.66667 .
(iv). SSé = column sum of squares eliminating treatment effects
= SST - SSt - SSé
= 177.33333 - 88.66667 ~ 3k4.54084
= 5uﬂ§8476 .
(v) . 88, = row sum of squares eliminating treatment and column effects

- H_ t _
SST SSt SSc SSe

177.33333 ~ 88.66667 - 54.58476 - 16.83336

17.70748 .
These results are presented in Table 5.8.

Method III.

(i). 8s, = treatment sum .of squares ignoring column effects eliminating row
effects
= £ T.4.
7 it

i

(-0.37497)(-0.500) + (-3.37494)(-9.500) +- -
+ (-0.39585)(-1.500) = 86.91810 .
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it

(ii). 88" = error sum of sQuares ignoring column effects

il

1
SST - SSE - SSr

i

177.33333 - 86.91810 - 19.33333 = 71.08190 .

(iii). SSé = row sum of squares eliminating treatment effects

- 1
= SST - SSt* = SSr

= 177.33333 ~ 88.66667 - 71.08190 = 17.58476 .
(iv). 88, = column sum of squares eliminating treatment effects and row
effects

- - - '
= SST SSt% SSr SSe

= 177.33333 -~ 88.66667 - 17.58476 - 16.83336 = 54.2L854 .

We then obtain Table 5.9.

TABLE 5.8
Analysis of Variance, Form IT.
Source of Variation ar 38 Expected SS
Treat. ignor. C and R T 88. 66667
Column elim. T ignor. R 5 54.12582
Row elim. T. and C 3 17.70748 362 + 160§
Zrror 8 16.83336 802
_ A ~
Total 23 177.33333

(see Appendix [a.6])

The variance of the difference between the effects of ith and jth

treatments is given by (5.14) and is estimated by replacing o© by si (taken

from Table 5.7).
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Associate

Estimation .of Variance
of the difference
Between Two Treatments

(000)
(o01)
(o10)
(011)
(100)
(101)

(110)

(19/24)s2

(21/24)s
(19/2k )s
(21/2k )s
(19/2k)s

N o o ON

(2L/2u)s§

(22/24 )s®

e

(U/7)(1/24)(19 + 21 + 19 + 21 + 19 + 21 + 22)s2 = (71/84)s2

TABLE 5.9
Analysis of Variance, Form III.

Source of Variation ar s Fxpected S8
Treat. ignor. C and R 7 88.66667
Column elim. T and R 5 5k, 58476 502 + 16G$
Row elim, T ignor. C 3 17.58476 .
irror 8 16.83336 802

Total 23 1T77.33333

(s

ee Appendix [a.77)

Step 5. Analysis with recovery of inter-column and inter-row information

(a).

Then,

Estimation of ¢%, 02, and 02 .

P

Using Tables 5.7, 5.8, and 5.9, we obtain the following equations:

= 5i2 2
8s, = 50° + 160Y s
8s,. = 302 + 16 cg , and
88, = 862 | (see Appendix,

(a.6], [a.7]) .
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62 = 2,10817 ,
83 = 0.54659 , and
Sg = 0.23739 .

) .

(p). Calculation of w, W,, W, and u*(61,62,8

3
7 = 1/62 = 1/2.10417 = 0.4752k
Qr = 1/(62+b3§) = 1/3.52851 = 0.28340
Gc = 1/(3%+K62) = 1/4.29053 = 0.23307

(¢). Using formula (5.19), we obtain:

uw(o,o,o) = 0.84490, uw(0,0,l) = -0.05528 ,
uW(O,l,O) = 0, uw(O,l,l) = 0, uw(l,0,0) =0,
uw(l,O,l) =0, uw(l,l,O) = -0,03587
(d). Calculation of P* and t' .
Using formula (5.16), we obtain:
Pgoo = ~1.4085k, P%Ol = ~3,62726, Pglo = -0.06411 ,
P¥y = 3-T1051, Pioo = -1.08193, P§01 = -0.75507 ,
Pilo = 3,02982, Pﬁll = 0.19658 ,
P, = -5.03580, P = 3.64640, qu_ = -1.83700 ,
Pk = 3.22640 ,
P* = 0.47524, Pf.l = -0.k7524 .

Now, we obtain the treatment effects with recovery of the inter-column and
inter-row information as shown in Table 5.10.

The variance of the difference between the effects of ith and jth treat-

W)

ments, var(tg-tj is given by the formula (5.20), and is estimated by using

the values of w, w_, and w_ in step 5, (b).
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TABLE 5.10
-— . .
i 0. 84@90?’{1 a1y -0.05 528#{1 R 0.03587P¥ i t
L —
000 -1.19008 0.27838 - -0.01705 -0.92875
001 -3. 06467 0.27838 0. 01705 -2, 76924
010 -0.05417 ~0.20157 -0.01705 -0.27279
011 3.13501 -0.20157 0.01705 2.95049
100 -0.91412 0.10155 -0.01705 -0.82962
101 -0.63796 0.10155 0.01705 ~0.51936
110 2.55989 : -0.17836 -0,01705 2.36448
111 0.16609 -0.17836 0. 01705 0.00478
APPENDIX

I. In the model (2.1), the block effects {Bj] are assumed to independent
random variates with mean zero and variance UE .
Using matrix notation, model (2.1) is expressed as follows:
= X + X .
y= et ‘iE Bt e, (a.1)

where y is a bk X 1 observation vector, 1 is a bk X 1 column vector having

all elements unity, X is a bk X v matrix, X, 1is a bk X b_mafr?g,‘p is the

overall constant effect, t i; a v X 1 treatment effect vector, B isﬁa.b X1
random block effect vector, and élis anpk X1 indééendent experimenfa%,error
vector having the variance-covariance matrix.azlbk .
Then, the total sum of squaréé corrected for fhe mean is expressed as:
gy - Wy .o
Let CF = (1'y)'l'y)/vk . Then, the treatment sum of squares ignoring
block effects is
88,=(1/r)(xy) (Ky) - cF .
Now, since X;X, = rI, XX, = kL, XX, = N, and E(u),B(t) = t, E(
E(e) = 0,

E((ul-_v_,_zuxi-pétxg'-*-gv)(}“ﬂ(liiﬂ(?@ + .6.)) »

it

a(y'y)

bl? + 2rpl b, + rZ 65 +bkcg + bko®
1 1




Hence,

x(ss,) = E(y'y - CF)-

o)

= r[Zt?—(Zt.)z/v] + (pk-b)o2 + (bk-1)o®
it oy . B

rt

Hext, since Xly = Xi}p + rIrg + NB + X

E((Xiz)'(xiz)/r> = Dk + 2ru§ti + r@t? + VGZ + vo=

\ i
S0,
E(ssy) = E((Xiz>'(Xiz)/r - CF)
= r(Zt?-(zt.)Z/v> + (v-b)o? + (v-1)o®
i 1 i 1 B
Then
E(Remainder) = E(SST> - E(SSQ)
= (bk-v)cg + (bk-v)o®
and
E(ss,) = (bk-v-b+l)o?
Therefore,

E(SSb, block sum of squares eliminating treatment effects)

—-@ST SSt SSe)
(8.2)

= (bk~v)og + (b-1)o®

II. In a k X D rectangular experiment, the set-up assumed is:

Yisp =BT b T Yy oy toesay
i-= 112)"')V ;
j = 1;2)"')b ;

1,2,+++,k, and bk/v = r .

g
]

Using matrix notation
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= 1lp + x t + Y + 9 +te . (3,3)

where y is a bk X 1 observation vector, } is'a bk X 1 column vector with all

elements unity, ey is a bk X v matrix, X, is a bk X b matrix, X3 is a bk X k

matrix, p 1s a constant, t = (t ---,tv)' is a fixed treatment effect column

1)
vector, Y is a b X 1 independent random column effect vector such that E(!)

= 0, E(\ﬁ') 0’21b P 1s akX1l 1ndependent .row effect vector such that

w = Y = 2
£(p) = 0, E(pp") UpIk

error vector such that E(¢) = 0, E(e¢’ )= o Ibk Note that
v = 1 = . .
XjK = rL, XX, =KL, XX b;k ,

XX, = N, xix3 = up‘ xéx3 = ka .

*

» and € is a bk X 1 1ndependent random experimental

Now,

™ 1 Y = 2 +§ + J + : Ay 2 2
B(y'y) = bky rugti rggti +.r§ti + bkoZ
+ bkai + bka? ,

: 1 = 1 1 ' ! '
and since 1'y oku+r1v§ + k}bx.+ b}ke +1l'e,

2(cr) = B((1'y)" (1'y)/vk)
2 (r/v) 2 2 2 2
= bkp® + 2rpuit, + (r (Zt.) + ko= + ho= +
o 1u§ 1 r/v e Y . o)
Then,
i(ssy) = E(y'y-CF)
= t2.-t2>+ -k)g2 + (bk-b)o2
r ? s (§ i) /v (pk k)aY (vk o)op
+ (bk~1)0?
Since
Xig =rlop+rit+ NY + Np + Xig ’
Ly = Klu + N't + KLY + Jy0 + Xle , and
AL = Pl * WL+ Jg ¥ 4 bTp + Xge
we obtain
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E(Ss,', ignoring column and row effects)
= E((Xiz)'(Xiz)/r-CF)
= 2_ 2 + LR 2
r(§ti (§ti) /v) (trN'N k)oY
+ (trN'N—b)ci + (v-1)02 .
©(ss", ignoring treatment and row effects)

= E((Xéz)'(xéz)/k-CF)

1]

(t'NN't)/k - (/v)(56;)2 + (vk-b)o2 + (k-1)o%
& t 2t
and

E(SSe)==(bk-v-b-k+2)62 .

Next, for treatment effects ignoring row effects,

O
"

Xy - (/xNxly

1]

(rIv - (1/k)NN‘)§ + (Xi - (l/kSNié>§* )

Q' = (rIv - (1/k)NN'>§§’<rIV - (l/k)NN')
(s - /em)eret (s, - )
and since E(g*g*') = X3Xéc§ + g21 ,
- 1y o 1At TN 2 2
E(@% ) = ctt'c! + (NN (rz/k)va)dp + Co® ,

where

C

]

rI, - (1/k)Nm’

E(SSg, treatment sum of squares eliminating column effects and ignoring row
effects) =‘E(§'g)

= E((c+g)'g) = B(g'cQ) = tr(c+(@g')>

Hence,

E(ssp) tr(c+c§§'c') + tr(c+(ﬁﬁ' - (rz/k)Jv)) + tr(cTco?)

"

t'Ct + tr(c+(ﬁﬁ' - (r2/k)J)>0§ + (v-1)o% .
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Next, i
E(SS', error sum of sqﬁaféé ignoring row effects)
e
_ - A_,"n; .
= E(88; - S8¢ fs@lf:;f
+ o |
= -tr(C (' - (rE/kOJ“§>a%e+(bk-b)02
v p P
+ (bk-v-p+1)o? ,
and

E(Ssé, column sum of squares eliminating treatment effects and ignoring row

effects)

1l

1 -' H
E(ssT--sst sse)

(bk-trN'N)oy +‘tr(c:+(ﬁ"1¥_' g (r/k)Jv))f’i

T

+ (v -trNN )cp f (b~1)o® .

Finally,

PTEA
E(SSr,_eliminating treatment and column effects)

H L]
E(ssT 55, ssc sse)

E(ss) - 8S.) R (a.l)

(bk-b-t;(c+(ﬁﬁ’ - (rz/k)J))>c§ + (k-l)&2

i}

. .
(bk—b-tr(c NN'))ai + (k-1)o®
Similarly, we obtain

E(SSC, eliminating treatment and row effects)

(a.5)

+ (b-1)o®

= (bk-k tr(E+NN'))c$

From Paik and Federer [1973al, we obtain

n
_ 1-0(x1 ,%5, 0 ,%,)
e+ 143 n
tr(c NI\T') = rZ{ Z - 1 (mi-l)X‘ ,
. ©os=Ll{x_4x_+teeotx. =g Q(X;,xz,---,xn)l‘
172 n
\
n l"é(xl,xz,"',x ) n
SCLDELI ) T I
s=1 X1+X teeety =g G(Xl,xs,--o,x ) i=1
n

.
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where r8(x --~,xn) and r8(x --,xn) are the eigenvalues of C and C,

¥’

respectively, and € and 9 are the efficency factors defined in section 2

1%’

and section 5.

In the example 5.2,

t1~(c+"1\1'ﬁ'> = 6(0/1 + ]9'/1 + o/g + 9/1 + O/2 l + 0/2>

o]
E(SSr> = (24 - 6 - 2)02 + 302 = 1602 + 302 .6)
tr(E+NN> = h(o/l + o/ —/1 + o/— 3/1 + o/— + 1?:/1> =L,
SO
B(ss_) = (2 - & - k) 2+ 50% = 1602 + 50° . (a.7)
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