
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING. VOL. XX, NO. XX, MONTH 2006 1
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complexity: the effect of finite data size
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Abstract— The Lempel-Ziv (LZ) complexity and its variants
are popular metrics for characterizing biological signals. Proper
interpretation of such analyses, however, has not been thoroughly
addressed. Here, we study the effect of finite data size. We
derive analytic expressions for the LZ complexity for regular and
random sequences, and employ them to develop a normalization
scheme. To gain further understanding, we compare the LZ
complexity with the correlation entropy from chaos theory in
the context of epileptic seizure detection from EEG data, and
discuss advantages of the normalized LZ complexity over the
correlation entropy.

Index Terms— Lempel-Ziv complexity, Biomedical signal
analysis, Epileptic seizure detection.

I. I NTRODUCTION

The Lempel-Ziv (LZ) complexity [1] and its variants are
popular measures for characterizing the randomness of bio-
medical signals [2]–[6]. Despite its popularity, the issue of
interpretation of the LZ complexity calculated from biomed-
ical signals has not been thoroughly addressed. Along this line,
recently an important step has been taken by Aboy et al. [7].
Unfortunately, most studies published so far assume that the
LZ complexity normalized by the factorn/ logα n [5] (where
n is the sequence length andα is the number of alphabets
in the symbolic sequence under study) is independent of
sequence length. However, we find this is not the case (this
point will be made clearer when we discuss Fig. 1 later).
This issue can not be satisfactorily solved without an analytic
understanding of the dependence of the LZ complexity on
sequence length. Here, we derive analytic expressions for the
LZ complexity for regular and random sequences of finite
length, then develop a normalization scheme that makes the
LZ complexity almost independent of sequence length, and
finally compare the LZ complexity with another commonly
used measure, the correlation entropy from chaos theory [8],
through detection of epileptic seizures from EEG data.

II. L EMPEL-ZIV (LZ) COMPLEXITY

To compute the LZ complexity, a numerical sequence has
to be first transformed into a symbolic sequence. One popular
approach is to convert the signal into a 0 – 1 sequence by
comparing the signal with a threshold valueSd [3]. That is,
whenever the signal is larger thanSd, one maps the signal
to 1, otherwise, to 0. One good choice ofSd is the median
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of the signal [6]. After the symbolic sequence is obtained, it
can then be parsed to obtain distinct words, and the words be
encoded. LetL(n) denote the length of the encoded sequence
for those words. The LZ complexity can be defined as

CLZ =
L(n)

n
. (1)

Note this is very much in the spirit of the Kolmogorov
complexity [9].

There exist many different methods to perform parsing. One
popular scheme is proposed by the original authors of the
LZ complexity [1]. For convenience, we call this Scheme
1. Another attractive method is described by Cover and
Thomas [10], which we shall call Scheme 2. For convenience,
we describe them under the context of binary sequences.
• Scheme 1:Let S = s1s2 · · · sn denote a finite length 0

– 1 symbolic sequence;S(i, j) denote a substring ofS that
starts at positioni and ends at positionj, that is, wheni ≤ j,
S(i, j) = sisi+1 · · · sj and wheni > j, S(i, j) = {}, the null
set;V (S) denote the vocabulary of a sequenceS. It is the set
of all substrings, or words,S(i, j) of S, (i.e., S(i, j) for i =
1, 2, · · · , n; j ≥ i). For example, letS = 001, we then have
V (S) = {0, 1, 00, 01, 001}. The parsing procedure involves
a left-to-right scan of the sequenceS. A substringS(i, j) is
compared to the vocabulary that is comprised of all substrings
of S up to j − 1, that is,V (S(1, j − 1)). If S(i, j) is present
in V (S(1, j − 1)), then updateS(i, j) and V (S(1, j − 1))
to S(i, j + 1) and V (S(1, j)), respectively, and the process
repeats. If the substring is not present, then place a dot after
S(j) to indicate the end of a new component, updateS(i, j)
andV (S(1, j−1)) to S(j +1, j +1) (the single symbol in the
j + 1 position) andV (S(1, j)), respectively, and the process
continues. This parsing operation begins withS(1, 1) and
continues untilj = n, wheren is the length of the symbolic
sequence. For example, the sequence1011010100010 is parsed
as1 ·0 ·11 ·010 ·100 ·010·. By convention, a dot is placed after
the last element of the symbolic sequence. In this example, the
number of distinct words is 6.
• Scheme 2:The sequenceS = s1s2 · · · is sequentially

scanned and rewritten as a concatenationw1w2 · · · of words
wk chosen in such a way thatw1 = s1 andwk+1 is the shortest
word that has not appeared previously. In other words,wk+1 is
the extension of some wordwj in the list,wk+1 = wjs, where
0 ≤ j ≤ k, ands is either 0 or 1. The above example sequence
1011010100010 is parsed as1·0·11·01·010·00·10·. Therefore,
a total of 7 distinct words are obtained. This number is larger
than 6 ofScheme 1by 1.

The words obtained by Scheme 2 can be readily en-
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coded. One simple way is as follows [10]. Letc(n) de-
note the number of words in the parsing of the source
sequence. For each word, we uselog2 c(n) bits to de-
scribe the location of the prefix to the word and 1 bit
to describe the last bit. For our example, let 000 describe
an empty prefix, then the sequence can be described as
(000, 1)(000, 0)(001, 1)(010, 1)(100, 0)(010, 0)(001, 0). The
total length of the encoded sequence isL(n) =
c(n)[log2 c(n) + 1]. Eq. (1) then becomes

CLZ = c(n)[log2 c(n) + 1]/n (2)

Whenn is very large,c(n) ≤ n/ log2 n [1], [10], thus Eq. (2)
can be further simplified as

CLZ =
c(n)

n/ log2 n
(3)

The commonly used definition ofCLZ takes the same
functional form as Eq. (3), except thatc(n) is obtained by
Scheme 1. Typically,c(n) obtained by Scheme 1 is smaller
than that by Scheme 2. However, encoding the words obtained
by Scheme 1 needs more bits than that by Scheme 2. We
surmise that the complexity defined by Eq. (1) is similar for
both schemes. Indeed, numerically, we have observed that the
functional dependence ofCLZ onn (based on Eqs. (2) and (3))
is similar for both schemes. For ease of analysis, below, we
shall employ Scheme 2.

III. LZ COMPLEXITY FOR REGULAR AND RANDOM

SEQUENCES OF FINITE LENGTH

For convenience, we consider binary sources throughout this
section. The results generalize easily to any finite alphabet.

A. LZ complexity for regular sequences of finite length

We start with the constant sequence of lengthn (00000 · · ·).
The sequence is parsed as0, 00, 000, · · ·. Denote the length of
the longest word byk bits. It is clear that(1+k)k/2+x = n,
wherex ≤ k. The number of distinct wordsc(n) is k + dxe
(wheredxe denotes the smallest integer that is not smaller than
x). By Eq. (2), the LZ complexity is calculated as

CLZ = (k + dxe)[log2(k + dxe) + 1]/n. (4)

Next, we consider the sequence with period 2 (010101 · · ·).
Denote the length of a parsed word byi bit(s). Wheni = 1,
the only possible words that appear in the parsing are 0 and
1; wheni = 2, the only possible words are 01 and 10; when
i = 3, the only possible words are 010 and 101;· · ·. Generally,
for an arbitraryi, there are always 2 different words. Let the
length of the longest word bek bits. We have(k−1)k+xk ≤
n, wherex is the number of words with lengthk bits, and it
equals to 1 or 2 depending on the sequence lengthn. The total
number of words isc(n) = 2(k − 1) + x. Thus

CLZ = (2k − 2 + x)[log2(2k − 2 + x) + 1]/n. (5)

Now we generalize our results to sequences with arbitrary
period m ≥ 2. Let m1 = blog2 mc (where bxc denotes the
largest integer that is not greater thanx), and denote the length
of the longest word byk bits. When the length of the words

i ≤ m1 , the number of possible words is2i (or less); when
i > m1, the number of possible words ism. Thus we have

m1∑

i=1

i · 2i +
k−1∑

i=m1+1

i ·m + x · k = (m1 − 1)2m1+1 + 2

+m(k + m1)(k −m1 − 1)/2 + x · k ≤ n, (6)

wherex ≤ m. The total number of words is

c(n) =
m1∑

i=1

2i+
k−1∑

i=m1+1

m+x = 2m1+1−2+(k−m1−1)m+x.

(7)
Therefore, the LZ complexity is

CLZ =
1
n
{2m1+1 − 2 + (k −m1 − 1)m + x} ·

{log2[2
m1+1 − 2 + (k −m1 − 1)m + x] + 1} (8)

The constant sequence can be considered as the regular
sequence with periodm = 1. Indeed, if we setm = 1 and 2,
Eq. (8) reduces to Eqs. (4) and (5), respectively.

When n → ∞, the right side of Eq. (8) approaches 0.
Hence, the LZ complexity for an infinite periodic sequence
is 0. However, as we will show soon, for a finite periodic
sequence, its LZ complexity can be much larger than 0.

Before verifying Eq. (8), we first discuss how to use it to
analytically calculate the LZ complexity for regular sequences.
The key is to get the values ofk andx. They can be obtained
as follows. Given a regular sequence with periodm and of
length n, first calculatem1 = blog2 mc, then choose a not
too large integerk that satisfies Eq. (6), and finally getx =
dn− [(m1 − 1)2m1+1 + 2 + m(k + m1)(k −m1 − 1)/2]e.
Check whetherx ≤ m holds or not, if not, then setk = k+1,
and recalculate thex value.

To assess the goodness of Eq. (8) for estimating the LZ
complexity of regular sequences, we simulate 0 – 1 sequences
with different period and of different length, calculate their
LZ complexity, and compare the simulation results with the
analytic solutions obtained from Eq. (8). We find that Eq. (8)
holds very accurately. A few examples are shown in Figs. 1(a-
c), for the constant sequence, the sequences with period 2 and
4. We wish to emphasize that when the sequence length is
finite, the LZ complexity can be considerably larger than 0:
the shorter the sequence, the larger the value for theCLZ .
Note that theCLZ calculated from Eq. (3) shows even stronger
dependence on the sequence length.

We would like to make a comment on the LZ complexity of
sinusoidal signals. As we have mentioned earlier, to calculate
the LZ complexity, a sinusoidal signal has to be mapped to
a symbolic sequence first. It is mapped to a patch of 0’s
and 1’s in each half period, whose length, denoted byL, is
equal to half of the ratio between the period and the sampling
period. When the sampling period is small,L is large, the LZ
complexity of the sequence is then small. On the other hand,
when the sampling period is large,L is small, and the LZ
complexity of the sequence is large. Now it is clear that the two
limiting cases are the constant sequence and period-2 sequence
discussed above. Therefore, Eqs. (4) and (5) provide the lower
and upper bounds of the LZ complexity for sinusoidal signals.
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Fig. 1. The LZ complexity vs. the sequence length for (a) the constant
sequence, (b) sequence with period 2, (c) sequences with period 4, and (d)
random sequences. The vertical bars in (d) indicate the estimated standard
errors of the mean.

B. LZ complexity for random sequences of finite length

Now we derive analytic expression for the LZ complexity
for random sequences of finite lengthn. Denote the length
of the longest word after parsing the sequence byk bits, and
the number of words with lengthk bits by x. Note that the
number of possible words with lengthi (< k) bits is2i. Then

k−1∑

i=1

i · 2i + x · k = (k − 2)2k + 2 + x · k ≤ n, (9)

wherex ≤ 2k. The total number of words is

c(n) =
k−1∑

i=1

2i + x = 2k − 2 + x. (10)

Therefore, the LZ complexity is

CLZ =
(2k − 2 + x)[log2(2k − 2 + x) + 1]

n
. (11)

It is easy to prove asn → ∞, the right side of Eq. (11)
approaches 1. This indicates that the LZ complexity for an
infinite random sequence is 1. However, as we will show
soon, for a finite random sequence, its LZ complexity can
be considerably larger than 1.

To use Eq. (11) to calculate the LZ complexity of a random
sequence, we need to know the values ofk andx. They can
be obtained as follows: first choose a not too large integerk
that satisfies Eq. (9), and then getx = dn− [(k − 2)2k + 2]e.
Check whetherx ≤ 2k is true or not, if not, then setk = k+1,
and recalculatex.

To verify Eq. (11), for each sequence lengthn, we simulate
20 random sequences uniformly distributed in the unit interval
[0, 1]. We convert each sequence into a 0 – 1 sequence by
comparing the sequence with its median value, and calculate
the LZ complexity. Then we calculate the mean and standard
deviation of the LZ complexity from all the 20 sequences.
Fig. 1(d) shows the averaged LZ complexity with the corre-
sponding standard deviations. We notice that as the sequence
becomes longer, the standard error of the LZ complexity be-
comes smaller. For comparison, the LZ complexity calculated

from Eq. (11) is also shown in Fig. 1(d). We observe that
the analytic results are on top of the simulation results, and
the difference between these two is very small (<0.05). This
suggests that Eq. (11) provides a quite accurate upper bound
for the LZ complexity of random sequences.

From Fig. 1(d), we observe that when the sequence length
is finite, the LZ complexity for a random sequence can be
considerably larger than 1: the shorter the sequence, the larger
the value for theCLZ . Intuitively, we would expect the LZ
complexity for a finite sequence not to change much with the
sequence length, falling in the unit interval[0, 1] just as the
case of an infinite sequence. These motivate us to propose a
normalization scheme as follows,

CnormalizedLZ(n) =
CLZ(n)− CconstLZ(n)

CrandLZ(n)− CconstLZ(n)
, (12)

whereCconstLZ(n) and CrandLZ(n) stand for the LZ com-
plexity for the constant and random sequences of length
n, respectively. These two values can be directly obtained
from Eqs. (8) and (11). It is easy to see that0 ≤
CnormalizedLZ(n) ≤ 1. More interestingly, we find this
normalization scheme makes the LZ complexity almost inde-
pendent of the sequence length. This will be illustrated later
when we study the EEG data.

IV. COMPARISON OFLZ COMPLEXITY AND CORRELATION

ENTROPY

In this section, we compare the LZ complexity with the
correlation entropyK2 [8] from chaos theory, in the context
of epileptic seizure detection from EEG data.

Let us introduce the correlation entropy first. It is a tight
lower bound of the Kolmogorov-Sinai (KS) entropy. The KS
entropy characterizes the rate of creation of information in a
system. It is zero, positive, and infinite for regular, chaotic, and
random motions, respectively. Letx(1), x(2), · · · , x(n) denote
the scalar time series under study. Before calculatingK2, one
can use a time delay embedding [11] to form vectors of the
form: Vi = [x(i), x(i + L), ..., x(i + (m − 1)L)], where the
embedding dimensionm and the delay timeL are chosen
according to optimization criteria [12]–[14].K2 can be readily
computed from the correlation integral through the relation [8],

C(m, ε) ∼ εD2e−mLτK2 (13)

wherem and L are the embedding dimension and the delay
time,τ is the sampling period,D2 is the correlation dimension,
which quantifies the minimal number of variables needed to
characterize the underlying dynamics of the signal,C(m, ε) =
1

N2

∑N
i,j=1 θ(ε−‖Vi−Vj‖) is the correlation integral,θ is the

Heaviside step function,Vi andVj are reconstructed vectors,
N is the number of points in the time series, andε is a
prescribed small distance. Eq. (13) means that in a plot of
ln C(m, ε) vs. ln ε with m as a parameter, for truly low-
dimensional chaos, one observes a series of parallel straight
lines, with the slope beingD2, and the spacing between the
lines estimatingK2 (where lines for largerm lie below those
for smallerm).

The EEG signals analyzed here were measured intracra-
nially by the Shands hospital at the University of Florida.
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Fig. 2. The variation of (a,d) the LZ complexity, (b,e) the normalized LZ
complexity, (c,f) theK2 entropy with time for the EEG signal of a patient. (a-
c) are obtained by partitioning the EEG signals into short windows of length
W = 500 points, (d-f) are obtained usingW = 2000. The vertical dashed
lines indicate seizure occurrence times determined by medical experts.

Such EEG data are also called depth EEG and considered
cleaner and more free of artifacts than scalp (or surface) EEG.
Altogether, we have analyzed 7 patients’ multiple channel
EEG data, each with a duration of a few hours, with a sampling
frequency of 200 Hz. When analyzing EEG for epileptic
seizure prediction/detection, it is customary to partition a long
EEG signal into short windows of lengthW points, and cal-
culate the measure of interest for each window. Here, we have
tried two differentW values, 500 and 2000. For calculating the
K2 entropy, we have chosenm=4 and 5,L = 1 according to an
optimization criterion of [12]–[14]. The relations between the
LZ complexity and the correlation entropy are the same for all
the 7 patients’ EEG data. Here, we shall illustrate the results
based on one patient’s data. Figs. 2(a-c) show the variation
of the LZ complexityCLZ , the normalized LZ complexity
CnormalizedLZ , and the correlation entropyK2 with time
for the EEG signal of a patient obtained withW = 500,
respectively. Figs. 2(d-f) show the variation of the same three
measures with time for the same EEG signal obtained with
W = 2000. We observe the following interesting features: (i)
The pattern of variation of the three measures with time is
quite similar: slightly after the seizure, all the measures have
a sharp drop, followed by a gradual increase. This indicates
that the brain dynamics first becomes more regular right after
the seizure, then its irregularity increases as it approaches
the normal state. (ii)CLZ varies a lot with the window
size W , as can be seen by comparing Figs. 2(a,d). This can
be readily understood by the fact that the LZ complexity
for a finite sequence depends on the sequence length. This
feature not only makes interpretation of the LZ complexity
problematic, but also makes automated detection of seizure
through thresholding very difficult. Fortunately, both problems
can be readily overcome by the normalization scheme, as
point (iii) illustrates:CnormalizeLZ is almost independent of
the window sizeW , as shown in Figs. 2(b,e). (iv) TheK2

entropy is also almost invariant with respect toW . However,

the curve shown in Fig. 2(f) is much more noisy than that
shown in Fig. 2(c). This is quite counter intuitive, since
usually for calculating measures based on chaos theory, the
more data points we use, the better the result. This puzzling
observation may be understood as follows: methods from
chaos theory require the signals under study to be ergodic, and
therefore stationary. However, the EEG data are nonstationary.
As the window sizeW becomes larger, different nonstationary
regions are included, thus the result for theK2 entropy
becomes noisier. (v) Comparing Figs. 2(b,c,e,f), we find that
the normalized LZ complexity provides better defined features
than theK2 entropy for detecting epileptic seizures. It should
also be emphasized that the LZ complexity has the additional
advantage that it is easy to implement and computationally
very fast. Therefore, normalized LZ complexity provides a
good and convenient characterization of epileptic seizure data.

V. CONCLUSION AND DISCUSSIONS

We have derived analytic expressions for the LZ complexity
for regular and random sequences, and used them to study
the effect of finite data size on the LZ complexity. We have
also developed a normalization scheme that makes the LZ
complexity almost independent of sequence length. Finally,
we have compared the LZ complexity with the correlation
entropy from chaos theory in the context of epileptic seizure
detection from EEG data. We have found that the normalized
LZ complexity appears to provide better defined features than
the correlation entropy for detecting epileptic seizures.
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