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Abstract

Numerical simulations of crystal defects are necessarily restricted to finite com-

putational domains, supplying artificial boundary conditions that emulate the effect

of embedding the defect in an effectively infinite crystalline environment. This

work develops a rigorous framework within which the accuracy of different types

of boundary conditions can be precisely assessed. We formulate the equilibration

of crystal defects as variational problems in a discrete energy space and establish

qualitatively sharp regularity estimates for minimisers. Using this foundation we

then present rigorous error estimates for (i) a truncation method (Dirichlet bound-

ary conditions), (ii) periodic boundary conditions, (iii) boundary conditions from

linear elasticity, and (iv) boundary conditions from nonlinear elasticity. Numerical

results confirm the sharpness of the analysis.

1. Introduction

Determining the geometry and energies of defects in crystalline solids is a key

problem of computational materials science [47, Ch. 6]. Defects generally distort

the host lattice, thus generating long-ranging elastic fields. Since practical schemes

necessarily work in small computational domains (for example, “supercells”) they

cannot explicitly resolve these fields but must employ artificial boundary condi-

tions (periodic boundary conditions appear to be the most common). To assess the

accuracy and in particular the cell size effects of such simulations, numerous for-

mal results, numerical explorations, or results for linearised problems can be found

in the literature; see for example [3,8,17,27] and references therein for a small

representative sample.

The novelty of the present work is that we rigorously establish explicit conver-

gence rates in terms of computational cell size, taking into account the long-ranged
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elastic fields. Our framework encompasses both point defects and straight dislo-

cation lines. Related results in a PDE context have recently been developed in

[5].

The second motivation for our work is the analysis of multiscale methods.

Several multiscale methods have been proposed to accelerate crystal defect com-

putations (for example atomistic/continuum coupling [25,30] or QM/MM [4]), and

our framework provides a natural set of benchmark problems and a comprehensive

analytical substructure for these methods to assess their relative accuracy and effi-

ciency. In particular, it provides a machinery for the optimisation of the (non-trivial)

set of approximation parameters in multiscale schemes.

The mathematical analysis of crystalline defects has traditionally focused on

dislocations [1,2,18,20] and on electronic structure models [10,11]; however, see

[9] for a comprehensive recent review focused on point defects. The results in

the present work, in particular the decay estimates on elastic fields, also have a

bearing on this literature since they can be used to establish finer information about

equilibrium configurations; see for example, [21].

1.1. Outline

Our approach consists in placing the defect in an infinite crystalline environ-

ment, for simplicity say Zd , where d ∈ {2, 3}. Let w : Zd → Rm be the unknown

displacement of the crystal, then we decompose w = u0 + u, where the predictor

u0 specifies the far-field boundary condition through the requirement that the cor-

rector u belongs to a discrete energy space Ẇ 1,2 (a canonical discrete variant of

Ḣ1(Rd)). We then formulate the condition for w to be an equilibrium configuration

as

ū ∈ arg min
{

E (u)
∣

∣ u ∈ Ẇ
1,2

}

, (1)

where E (u) is the energy difference between the total displacement w = u0 + u

and the predictor u0.

It is crucial that u0 is an “approximate equilibrium” in the far-field, expressed

through the requirement that δE (0) ∈ (Ẇ 1,2)∗. If this condition fails, then

inf{E (u) | u ∈ Ẇ 1,2} = −∞. For this reason, we think of u0 as a predictor and u

as a corrector. For the case of dislocations, the choice of u0 is non-trivial, as the

“naive” linear elasticity predictor does not take lattice symmetries correctly into

account. In Section 3.1 we present a new construction that remedies this issue.

We will not be concerned with the existence of solutions to (1), which is a

difficult problem even for the simplest classes of defects. Uniqueness can never be

expected for realistic interatomic potentials.

Assuming that a solution to (1) does exist, we may then analyze its “regularity”.

More precisely, under a natural stability assumption we estimate the rate at which

ū (and its discrete gradients of arbitrary order) approach zero, for example,

|Dū(ℓ)| ≦ C |ℓ|−d(log |ℓ|)r , (2)

where Du(ℓ) is a finite difference gradient centered at ℓ ∈ Zd , r = 0 for point

defects and r = 1 for straight dislocation lines.
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These regularity estimates then allow us to establish various approximation

results. For example, we can estimate the error committed by projecting an infinite

lattice displacement field u to a finite domain by truncation. This motivates the

formulation of a Galerkin-type approximation scheme for (1) (see Sections 2.3 and

3.4)

ūN ∈ arg min
{

E (u)
∣

∣ u ∈ Ẇ
1,2

N

}

, (3)

where Ẇ
1,2

N :=
{

u ∈ Ẇ
1,2

∣

∣ u(ℓ) = 0 for |ℓ| ≧ N 1/d
}

.

This is a finite dimensional optimisation problem with dim(Ẇ
1,2

N ) ≈ N , and our

framework yields a straightforward proof of: suppose ū is a strongly stable (cf. (9))

solution to (1) then, for N sufficiently large, there exists a solution ūN to (3) such

that

‖ū − ūN ‖
Ẇ 1,2 ≦ C N−1/2(log N )r ,

where r = 0 for point defects, r = 1/2 for straight dislocation lines, and ‖ū −
ūN ‖

Ẇ 1,2 is a natural discrete energy norm. Note that N is directly related to the

computational cost of solving (3). It is interesting to note that the rate N−1/2 is

generic; that is, it is independent of any details of the particular defect. We prove a

similar error estimate for periodic boundary conditions in Section 2.4.

In Sections 2.5, 2.6, 3.6, 3.7 we then consider two types of concurrent (or, self-

consistent) boundary conditions that use elasticity models to improve the far field

corrector. In these approximate models, we solve a far-field problem concurrently

with the atomistic core problem in order to improve the boundary conditions placed

on the atomistic core. We also mention that, based on the approach advocated in

the present paper, improved a/c schemes with superior optimal convergence rates

have recently been developed in [24,36].

Our numerical experiments in Sections 2.7, 3.8 mostly confirm that our ana-

lytical predictions are sharp, however, in a preprint [16] we also show cases where

they do not capture the full complexity of the convergence behaviour.

Finally, we note that for the sake of brevity this paper only contains the proofs

for the decay estimates (2), but not the proofs of the approximation results. Com-

plete proofs, as well as additional numerical tests and some clarifying remarks are

contained in the preprint [16].

Restrictions Our analysis is restricted to static equilibria under classical inter-

atomic interaction with finite interaction range. We see no obstacle to include

Lennard-Jones type interactions, but this would require finer estimates and a more

complex notation. However, we explicitly exclude Coulomb interactions or any

electronic structure model and hence also charged defects (see, for example, [9–

11,17,27]).

As a reference atomistic structure we admit single-species Bravais lattices.

Generalising to multi-lattices may require substantial additional work.

We exclude curved line defects, grain or phase boundaries, surfaces or cracks.

Moreover, we exclude the case of multiple or infinitely many defects. We hope,

however, that our new analytical results on single defects will aid future studies
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of this setting; for example, see [21] for an analysis of multiple screw dislocations

based on the present work.

Notation Notation is introduced throughout the article. Symbols that are used

across sections are listed in Appendix B. We only briefly remark on some generic

points. The symbol 〈·, ·〉 denotes an abstract duality pairing between a Banach space

and its dual. The symbol | · | normally denotes the Euclidean or Frobenius norm,

while ‖ · ‖ denotes an operator norm. C is a generic positive constant that may

change from one line of an estimate to the next. C will always remain indepen-

dent of approximation parameters (such as domain size), of lattice position or of

test functions. However, it may depend on the interatomic potential or some fixed

displacement or deformation field (for example, on the solution). The dependen-

cies of C will normally be clear from the context, or stated explicitly. To improve

readability, we will sometimes replace ≦ C with �.

For a differentiable function f , ∇ f denotes the Jacobi matrix and ∇r f = ∇ f ·r
the directional derivative. The first and second variations of a functional E ∈ C2(X)

are denoted, respectively, by 〈δE(u), v〉 and 〈δ2 E(u)w, v〉 for u, v, w ∈ X .

If Λ ⊂ Rd is a discrete set and u : Λ → Rm , ℓ ∈ Λ and ℓ + ρ ∈ Λ,

then we define the finite difference Dρu(ℓ) := u(ℓ + ρ) − u(ℓ). If R ⊂ Λ − ℓ,

then we define DRu(ℓ) := (Dρu(ℓ))ρ∈R. We will normally specify a specific

stencil Rℓ associated with a site ℓ and define Du(ℓ) := DRℓ
u(ℓ). For ρ ∈ (Rℓ)

j ,

Dρu := Dρ1 . . . Dρ j
u denotes a j th order derivative, and D j u defined recursively

by D j u := DD j−1u denotes the j th order collection of derivatives.

2. Point Defects

2.1. Atomistic Model

We formulate a model for a point defect embedded in a homogeneous lattice.

To simplify the presentation, we admit only a finite interaction radius (in reference

coordinates) and a smooth interatomic potential. Both are easily lifted, but introduce

non-essential technical complications.

Let d ∈ {2, 3} and A ∈ Rd×d nonsingular, defining a Bravais lattice AZd .

The reference configuration for the defect is a set Λ ⊂ Rd such that, for some

Rdef > 0, Λ \ BRdef = AZd \ BRdef and Λ ∩ BRdef is finite. For analytical purposes

it is convenient to assume the existence of a background mesh, that is, a regular

partition TΛ of Rd into triangles if d = 2 and tetrahedra if d = 3 whose nodes are

the reference sites Λ, and which is homogeneous in Rd \ BRdef . (If T ∈ TΛ and

ρ ∈ AZd with T, ρ + T ⊂ Rd \ BRdef , then ρ + T ∈ TΛ as well.) We refer to Fig.

1 for two-dimensional examples of such triangulations.

For each u : Λ → Rm we denote its continuous and piecewise affine interpolant

with respect to TΛ by I u. Identifying u = I u we can define the (piecewise constant)

gradient ∇u := ∇ I u : Rd → Rm×d and the spaces of compact and finite-energy

displacements, respectively, by
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Fig. 1. Illustration of a vacancy and b interstitial defects; relaxed configurations computed
with ATM-DIR (cf. Section 2.7). The grey lines indicate the interaction bonds, Rℓ, between
atoms, for a nearest-neighbour mode, as well as the auxiliary triangulation TΛ

Ẇ
c :=

{

u : Λ → Rd
∣

∣ supp(∇u) is compact
}

and

Ẇ
1,2 :=

{

u : Λ → Rd
∣

∣ ∇u ∈ L2
}

.
(4)

It is easy to see [32,34] that Ẇ c is dense in Ẇ 1,2 in the sense that, if u ∈ Ẇ 1,2,

then there exist u j ∈ Ẇ c such that ∇u j → ∇u strongly in L2.

Each atom ℓ ∈ Λ may interact with a neighbourhood defined by the set of lattice

vectors Rℓ ⊂ (Brcut ∩(Λ−ℓ))\{0}, where rcut > 0, and we let Du(ℓ) := DRℓ
u(ℓ).

We assume without loss of generality that

if (ℓ, ℓ + ρ) is an edge of TΛ, then ρ ∈ Rℓ. (5)

This assumption implies, in particular, that ‖∇u‖L2 ≈ ‖ |Du|p ‖ℓ2 for any p ∈
[1,∞], where |Du|p(ℓ) := (

∑

ρ∈Rℓ
|Dρu(ℓ)|p)1/p.

For each ℓ ∈ Λ let Vℓ ∈ Ck((Rd)Rℓ), k ≧ 2, be a smooth site energy potential

satisfying Vℓ(0) = 0 for all ℓ ∈ Λ. (If V (0) = 0, then it can be replaced with

Vℓ(Du) ≡ Vℓ(Du) − Vℓ(0); that it, V should be understood as a site energy

difference.) Then the energy functional for compact displacements is given by

E (u) :=
∑

ℓ∈Λ

Vℓ(Du(ℓ)) for u ∈ Ẇ
c.

We assume throughout, that Vℓ is homogeneous outside the defect core, that is,

Rℓ ≡ R and Vℓ ≡ V for all |ℓ| ≧ Rdef , and it is point symmetric,

− R = R and V
(

(−g−ρ)ρ∈R

)

= V (g) ∀g ∈ (Rm)R. (6)

Without loss of generality, we also assume that

Aen ∈ R, n = 1 . . . , d. (7)

Under these assumptions we can extend the definition of E to Ẇ 1,2.
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Lemma 1. E : (Ẇ c, ‖∇ · ‖L2) → R is continuous. In particular, there exists a

unique continuous extension of E to Ẇ 1,2, which we still denote by E . The extended

functional E : Ẇ 1,2 → R is k times continuously Fréchet differentiable.

Proof (Idea of the proof). For u ∈ Ẇ c, we may write

E (u) =
∑

ℓ∈Λ

(

Vℓ(Du(ℓ)) − Vℓ(0) −
〈

δVℓ(0), Du(ℓ)
〉

)

+ 〈δE (0), u〉.

One now uses the fact that the summand in the first group scales quadratically, while

δE (0) is a bounded linear functional. The details are presented in Section 5.2. ⊓⊔
Lemma 1 implies that the atomistic minimisation problem is meaningful: we

seek

ū ∈ arg min
{

E (u)
∣

∣ u ∈ Ẇ
1,2

}

, (8)

where arg min denotes the set of local minimizers.

We are not concerned with the existence of solutions to (8), but take the view

that this is a property of the lattice and the interatomic potential. We shall assume

the existence of a strongly stable equilibrium ū ∈ Ẇ 1,2, by which we mean that

δE (ū) = 0 and there exists c0 > 0 such that

〈δ2
E (ū)v, v〉 ≧ c0‖∇v‖2

L2 ∀v ∈ Ẇ
c. (9)

Since E ∈ Ck(Ẇ 1,2) and k ≧ 2 it is clear that a strongly stable equilibrium is also

a solution to (8) (but not vice-versa).

Remark 1. In [21], (9) is proven rigorously for an anti-plane screw dislocation,

under restrictive assumptions on the interatomic potential. We cannot see how one

might in general prove such a result, however, in all numerical experiments that we

have undertaken to date we observe it a posteriori.

2.2. Regularity

Our approximation error results in subsequent sections require estimates on the

decay of the elastic fields away from the defect core. These results do not require

strong stability of solutions, but only stability of the homogeneous lattice,
∑

ℓ∈AZd

〈

δ2V (0)Dv, Dv
〉

≧ cA‖∇v‖2
L2 ∀v ∈ Ẇ

c, for some cA > 0. (10)

If (9) holds for any u ∈ Ẇ 1,2, then (10) holds with cA ≧ c0; see [16, Section B.2].

Theorem 1. Suppose k ≧ 3, that the lattice is stable (10), and that u ∈ Ẇ 1,2 is a

critical point, δE (u) = 0. Then there exist constants C > 0, u∞ ∈ Rm such that,

for 1 ≦ j ≦ k − 2, and for |ℓ| sufficiently large,

|D j u(ℓ)| ≦ C |ℓ|1−d− j and |u(ℓ) − u∞| ≦ C |ℓ|1−d . (11)

Proof. The proof for the cases j = 0, 1 is given in Section 6.3. The proof for the

case j > 1 is given in Section 6.4. ⊓⊔
In what follows we assume k ≧ 4, although some results are still true with

k = 3.
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2.3. Clamped Boundary Conditions

The simplest computational scheme to approximately solve (8) is to project

the problem to a finite-dimensional subspace. Due to the decay estimates (11) it is

reasonable to expect that simply truncating to a finite domain yields a convergent

approximation scheme.

We choose a computational domain ΩR ⊂ Λ satisfying (BR ∩Λ) ⊂ ΩR , define

the approximate displacement space

Ẇ
0(ΩR) :=

{

v ∈ Ẇ
c
∣

∣ v = 0 in Λ \ Ω
}

, (12)

and solve the finite-dimensional optimisation problem

u0
R ∈ arg min

{

E (u)
∣

∣ u ∈ Ẇ
0(ΩR)

}

. (13)

Since dim(Ẇ 0(ΩR)) < ∞, (13) is computable. Moreover, since it is a pure

Galerkin projection of (8) it is relatively straightforward to prove an error estimate.

Theorem 2. Let ū be a strongly stable solution to (8), then there exist C, R0 > 0

such that, for all R ≧ R0 there exists a strongly stable solution ū0
R of (13) satisfying

‖∇ū0
R − ∇ū‖L2 ≦ C R−d/2 and

∣

∣E (ū0
R) − E (ū)

∣

∣ ≦ C R−d . (14)

Proof (Idea of proof). We construct a truncation operator TR : Ẇ 1,2 → Ẇ 0(ΩR)

such that TRv = 0 in Λ \ BR , and which satisfies ‖∇TRv − ∇v‖L2 ≦
C‖∇v‖L2(Rd\BR/2)

. Since δE and δ2E are continuous it follows that δ2E (TR ū)

is positive definite for sufficiently large R and that

‖δE (TR ū)‖
(Ẇ 1,2)∗ = ‖δE (TR ū) − δE (ū)‖

(Ẇ 1,2)∗ � ‖∇TR ū − ∇ū‖L2 → 0,

as R → ∞. The inverse function theorem (IFT) yields the existence of a solution

ū0
R , for sufficiently large R, satisfying

‖∇ū0
R − ∇TR ū‖L2 ≦ C‖∇TR ū − ∇ū‖L2 ,

and consequently also ‖∇ū0
R − ∇ū‖L2 ≦ C‖∇TR ū − ∇ū‖L2 .

Finally, the regularity estimate of Theorem 1 yields the stated rate in terms of

R. The complete proof is detailed in the preprint [16]. ⊓⊔

Remark 2. (Computational cost) In addition to the assumptions of Theorem 2,

assume that R ≈ N 1/d , which is a shape regularity condition for ΩR , then the error

estimate (14) reads

‖∇ū0
R − ∇ū‖L2 ≦ C N−1/2 and

∣

∣E (ū0
R) − E (ū)

∣

∣ ≦ C N−1. (15)

In particular, if (13) can be solved with linear computational cost, then (15) is an

error estimate in terms of the computational cost required to solve the approximate

problem.
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2.4. Periodic Boundary Conditions

For simulating point defects (and often even dislocations), periodic boundary

conditions appear to be by far the most popular choice. To implement periodic

boundary conditions, let ωR ⊂ Rd be connected such that BR ⊂ ωR , and B =
(b1, . . . , bd) ∈ Rd×d such that bi ∈ AZd ,

⋃

α∈Zd

(

Bα + ωR

)

= Rd , and the

shifted domains Bα + ωR are disjoint.

Let ΩR := ωR ∩ Λ be the periodic computational domain and Ω
per
R :=

⋃

α∈Zd (Bα + ΩR) the periodically repeated domain (with an infinite lattice of

defects). For simplicity, suppose that ωR is compatible with TΛ, that is, there exists

a subset TR ⊂ TΛ such that clos(ωR) = ∪TR . The space of admissible periodic

displacements is given by

Ẇ
per(ΩR) :=

{

u : Ω
per
R → Rm

∣

∣ u(ℓ + bi ) = u(ℓ) for ℓ ∈ Ω
per
R , i = 1, . . . , d

}

.

The energy functional for periodic relative displacements u ∈ Ẇ per(ΩR) is

given by

E
per
R (u) :=

∑

ℓ∈ΩR

Vℓ(Du(ℓ)).

For this definition to be meaningful, we assume for the remainder of the discussion

of periodic boundary conditions that BRdef+rcut ∩ Λ ⊂ Ω , that is, R > Rdef + rcut.

The computational task is to solve the finite-dimensional optimisation problem

ū
per
R ∈ arg min

{

E
per
R (u)

∣

∣ u ∈ Ẇ
per(ΩR)

}

. (16)

Theorem 3. Let ū be a strongly stable solution to (8), then there exist C, R0 > 0

such that, for any periodic computational domain ΩR with associated continuous

domain ωR satisfying BR ⊂ ωR for some R ≧ R0, there exists a strongly stable

solution ū
per
R to (16) satisfying

∥

∥∇ū
per
R − ∇ū

∥

∥

L2(ωR)
≦ C R−d/2 and

∣

∣E (ū) − E
per
R (ū

per
R )

∣

∣ ≦ C R−d .

(17)

Proof (Idea of proof). The proof proceeds much in the same manner as for Theo-

rem 2, but some details are more involved due to the fact that (16) is not a Galerkin

projection of (8). The main additional difficulty is that the strong convergence

∇TR ū|ωR
→ ∇ū|ωR

does not immediately imply stability of the periodic hessian,

that is,
〈

δ2
E

per
R (TR ū)v, v

〉

≧ c0‖∇v‖2
L2(ωR)

∀v ∈ Ẇ
per(ΩR). (18)

To prove this, we consider the limit as R → ∞ (with an arbitrary sequence of

associated domains ΩR) and decompose test functions into a core and a far-field

component v = vco + vff , where vco = TSv, with S = S(R) ↑ ∞ as R → ∞
“sufficiently slowly”. We then show that stability of δ2E (ū) implies positivity of

〈HRvco, vco〉 while stability of the homogeneous lattice (10) implies positivity of

〈HRvff , vff 〉. The cross-terms vanish in the limit. Thus, we obtain (18) for suffi-

ciently large R. The details are given in the preprint [16]. ⊓⊔
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Remark 3. 1. Remark 2 applies verbatim to periodic boundary conditions.

2. Compared with Theorem 2 we now only control the geometry in the com-

putational domain ΩR . We can, however, “post-process” to obtain a global defect

geometry v̄per := ΠR ū
per
R (slightly abusing notation since ū

per
R ∈ Ẇ 1,2(Λ)), for

which we still get the estimate ‖∇v̄per − ∇ū‖L2 ≦ C R−d/2.

2.5. Boundary Conditions from Linear Elasticity

We consider a scheme where the elastic far-field of the crystal is approximated

by linearised lattice elasticity. Our formulation is inspired by classical as well as

recent multiscale methods of this type [22,42,43,45], but simplified to allow for a

straightforward analysis.

We fix a computational domain ΩR ⊂ Λ such that BR∩Λ ⊂ ΩR (for R ≧ Rdef )

and we linearise the interaction outside of ΩR

V (Du) ≈ V (0) + 〈δV (0), Du〉 + 1
2
〈δ2V (0)Du, Du〉 =: V lin(Du). (19)

This results in a modified approximate energy difference functional

E
lin
R (u) :=

∑

ℓ∈ΩR

Vℓ

(

Du(ℓ)
)

+
∑

ℓ∈Λ\ΩR

V lin
(

Du(ℓ)
)

.

Analogously to Lemma 1 it follows that E lin
R can be extended by continuity to a

functional E lin
R ∈ Ck(Ẇ 1,2). Thus, we aim to compute

ulin
R ∈ arg min

{

E
lin
R (u)

∣

∣ u ∈ Ẇ
1,2(Λ)

}

. (20)

Remark 4. The optimisation problem (20) is still infinite-dimensional, however,

by defining Ω ′
R := ΩR ∪

⋃

ℓ∈Ω Rℓ and the effective energy functional

E
red
R (u) := inf

{

E
lin
R (v)

∣

∣ v ∈ Ẇ
1,2(Λ), v|Ω ′

R
= u|Ω ′

R

}

,

for any u : Ω ′
R → Rm , it can be reduced to an effectively finite-dimensional

problem. The reduced energy E red
Ω can be computed efficiently employing lattice

Green’s functions or similar techniques [22,42,43,45]. This process introduces

additional approximation errors, which we ignore subsequently. Thus, we only

present an analysis of an idealised scheme, as a foundation for further work on

more practical variants of (20).

Theorem 4. Let ū be a strongly stable solution to (8), then there exist C, R0 > 0

such that for all domains ΩR ⊂ Λ with BR ∩ Λ ⊂ ΩR and R ≧ R0, there exists a

strongly stable solution of (20) satisfying

∥

∥∇ulin
R − ∇ū

∥

∥

Ẇ 1,2 ≦ C R−3d/2 and
∣

∣E (ulin
R ) − E (ū)

∣

∣ ≦ C R−2d . (21)
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Proof (Idea of proof). The computational space is the same as for the full atomistic

problem, hence the error is determined by the consistency error committed when we

replaced V with V lin in the far-field. This error is readily estimated by a remainder

in a Taylor expansion,

∣

∣δV lin(Dū(ℓ)) − δV (Dū(ℓ))
∣

∣ � |Dū(ℓ)|2,

which immediately implies that

∣

∣〈δE lin
R (ū) − δE (ū), v

〉∣

∣�‖Dū‖2
ℓ4(Λ\ΩR)

‖Dv‖ℓ2(Λ\ΩR) � ‖Dū‖2
ℓ4(Λ\ΩR)

‖∇v‖L2 .

After establishing also stability of δ2E lin
R , which follows from a similar argument we

obtain ‖∇ulin
R − ∇ū‖L2 � ‖Dū‖2

ℓ4(Λ\ΩR)
, and employing the decay estimate (11)

yields the stated error bound. The details of the proof are given in the preprint [16].⊓⊔

2.6. Boundary Conditions from Nonlinear Elasticity

A natural progression is to employ nonlinear elasticity in the far-field instead of

linear elasticity, and determine whether this can improve further upon the approx-

imation error. In this context it is only meaningful to employ continuum nonlinear

elasticity, since our original atomistic model can already be viewed as a lattice non-

linear elasticity model. This leads us to considering a class of multiscale schemes,

atomistic-to-continuum coupling methods (a/c methods), that has received consid-

erable attention in the numerical analysis literature in recent years. We refer to

the review article [25] for an introduction and comprehensive references. A key

conceptual difference, from an analytical point of view, between a/c methods and

the methods we considered until now is that they exploit higher-order regularity,

that is, the decay of D2ū, rather than only decay of Dū. Methods of this kind were

pioneered, for example, in [30,40,41,46].

Due to the relative complexity of a/c coupling schemes we shall not present

comprehensive results in this section, but instead illustrate how existing error esti-

mates can be reformulated within our framework. This extends previous works such

as [31,33,35] and presents a framework for ongoing and future development of a/c

methods and their analysis; see for example [23,24,26,36], and references therein,

for works in this direction.

We choose an atomistic region Ωa
R ⊂ Λ, an interface region Ω i

R and ωR ⊂ Rd

a continuum simply connected domain such that Ωa
R ∪ Ω i

R ⊂ ωR . Let TR be a

regular triangulation of ωR , let h(x) := maxT ∈TR ,x∈T diam(T ), and let IR denote

the corresponding nodal interpolation operator. We let R and Rc denote the sizes

of Ωa
R and ωR in the sense that

BR ∩ Λ ⊂ Ωa
R and BRc ⊂ ωR ⊂ Bc0 Rc (22)

for some c0 > 0.

As space of admissible displacements we define

Ẇ
0(TR) :=

{

u ∈ C(Rd ; Rd)
∣

∣ u|T is affine for all T ∈ TR, and u|Rd\ωR
= 0

}

.
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We consider a/c coupling energy functionals, defined for u ∈ Ẇ 0(TR), of the form

E
ac
R (u) :=

∑

ℓ∈Ωa
R

Vℓ(Du(ℓ)) +
∑

ℓ∈Ω i
R

V i
ℓ(Du(ℓ)) +

∑

T ∈TR

veff
T W (∇u), (23)

where the various new terms are defined as follows:

– For each T ∈ TR , veff(T ) := vol
(

T \∪ℓ∈Ωa
R∪Ω i

R
vor(ℓ)

)

is the effective volume

of T , where vor(ℓ) denotes the Voronoi cell associated with the lattice site ℓ;

– V i
ℓ ∈ Ck((Rd)R) is an interface potential, which specifies the coupling scheme;

– W (F) := V (F ·R) is the Cauchy–Born strain energy function, which specifies

the continuum model.

With this definition it is again easy to see that E ac
R ∈ Ck(Ẇ 0(TR)). We now

aim to compute

uac
R ∈ arg min

{

E
ac
R (u)

∣

∣ u ∈ Ẇ
0(TR)

}

. (24)

The choice of the interface site-potentials V i
ℓ is the key component in the for-

mulation of a/c couplings. Many variants of a/c couplings exist that fit within the

above framework [25]. In order to demonstrate how to apply our framework to this

setting, we shall restrict ourselves to QNL type schemes [14,35,41], but our discus-

sion applies essentially verbatim to other force-consistent energy-based schemes

such as [28,38,39]. For other types of a/c couplings the general framework is still

applicable; see in particular [24] for a complete analysis of blending-type a/c meth-

ods.

As a starting point of our present analysis we assume a result that is proven in

various forms in the literature, for example, in [28,33,35]: we assume that there

exist η > 0 and c1 > 0 such that there exists a strongly stable solution ūac
R to (24)

satisfying

‖∇ūac
R − ∇ū‖ ≦ c1

(

‖h D2ū‖ℓ2(Λ∩(ωR\BR)) + ‖Dū‖ℓ2(Λ\BRc/2)

)

, (25)

provided that ‖h D2ū‖ℓ2(Λ∩(ωR\BR)) + ‖Dū‖ℓ2(Λ\BRc/2)
≦ η. Such a result follows

from consistency and stability of an a/c scheme and applying of the Inverse Function

Theorem along similar lines as in the preceding sections.

Proposition 1. Let ū be a strongly stable solution of (8) and assume that (22) and

(25) hold. Further we require that ωR and TR satisfy the following quasi-optimality

conditions:

c2 R1+2/d ≦ Rc ≦ c3 R1+2/d , and |h(x)| ≦ c4

(

|x |
R

)β

with β < d+2
2

.

(26)

Then there exists a constant C, depending on η, c2, c3, c4, and β such that, for

R sufficiently large,

∥

∥∇ūac
R − ∇ū

∥

∥

L2 ≦ C R−d/2−1. (27)
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Proof (Idea of proof). The proof consists in estimating the right-hand side of

(25) in terms of R. Note that assuming (26) ensures that the truncation term

‖Dū‖ℓ2(Λ\BRc/2)
does not dominate the coarse-graining term‖h D2ū‖ℓ2(Λ∩(ωR\BR)).⊓⊔

Remark 5. 1. It is interesting to note that an atomistic/continuum coupling is not

competitive when compared against coupling to lattice linear elasticity. The primary

reason for this is that the loss of interaction symmetry which causes a first-order

coupling error at the a/c interface (the finite element error could be further reduced

by considering higher order finite elements [13]). Since |∇ j ū(x)| � |x |1−d− j the

linearisation error |∇ū(x)|2 � |x |−2d is smaller than the coupling error |∇2ū(x)| �
|x |−d−1.

2. Using our framework, the analysis in [13] suggests that one can generically

expect the rate R−d−2 for the energy error.

3. To convert (27) into an estimate in terms of computational complexity, we

note that, if we also have |h(x)| ≧ c5(|x |/R)β
′
with β ′ > 1, then the total number of

degrees of freedom (in the atomistic and continuum region) is bounded by Ndof ≦
C Rd . The error estimate then reads

∥

∥∇ū − ∇ūac
∥

∥

L2 ≦ C

{

N−1
dof , d = 2,

N
−5/6
dof , d = 3.

2.7. Numerical Results

2.7.1. Setup We present an examples of an interstitial-type point defect in a

two-dimensional triangular lattice

AZd where A =
(

1 1/2

0
√

3/2

)

; (28)

cf. Figure 1. (A second example, with a vacancy defect is presented in the

preprint [16].)

The reference configuration is given by Λ = AZ2 ∪{(1/2, 0)}. For each ℓ ∈ Λ,

let R(ℓ) denote the set of directions connecting to ℓ, defined by the bonds displayed

in Figure 1. Then, the site energy is defined by

Vℓ(Dy(ℓ)) =
∑

ρ∈Rℓ

φ
(

|Dρ y(ℓ)|
)

+ G

(

∑

ρ∈Rℓ

ψ
(

|Dρ y(ℓ)|
)

)

,

φ(r) = e−2α(r−1) − 2e−α(r−1), ψ(r) = e−βr , G(s)=γ
(

(s − s0)
2+(s − s0)

4
)

,

with parameters α = 4, β = 3, γ = 5, s0 = 6ψ(0.9).

To compute the equilibria we employ a robust preconditioned L-BFGS algo-

rithm specifically designed for large-scale atomistic optimisation problems [37]. It

is terminated at an ℓ∞-residual of 10−7.

We exclusively employ hexagonal computational domains. We slightly re-

define N , letting it now denote the number of atoms in the inner computational

domain, that is, #ΩN in the ATM-DIR, ATM-PER and LIN methods and #Ωa
N in

the AC method. Then, our analysis predicts the following rates of convergence for

both model problems,
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Summary of convergence rates (point defect in two-dimensional)

Method ATM-DIR ATM-PER LIN AC

Energy-norm N−1/2 N−1/2 N−3/2 N−1

Energy N−1 N−1 N−2 N−2

where the rate N−2 for the energy in the AC case is predicted in [13].

We make some final remarks concerning the LIN and AC methods:

LIN: For the experiments in this paper, we did not implement a variant based on

Green’s functions. Instead, we chose as an inner domain ΩN a hexagon of

side-length K ≈ N 1/2 within a larger domain of a hexagon of side-length

K 3. This modification of the method does not affect the convergence rates.

AC: To generate the finite element mesh we use the construction described in

[23,26].

2.7.2. Discussion of Results The graph of N versus the geometry error and the

energy error are presented in Fig. 2. All slopes are as predicted with mild pre-

asymptotic regimes for the ATM-PER and AC methods. The only exception is the

energy for the LIN method, which displays a faster decay than predicted. We can

offer no explanation at this point.

3. Dislocations

We now present an atomistic model for dislocations and analogous regularity

and approximation results. To avoid excessive duplication we will occasionally

build on and reference Section 2. Our presentation also builds on the descriptions in

[2,19]. For more general introductions to dislocations, including modeling aspects

as well as analytical and computational solution strategies we refer to [7,18].

3.1. Atomistic Model

We consider a model for straight dislocation lines obtained by projecting a three-

dimensional crystal. Briefly, let BZ3 denote a three-dimensional Bravais lattice,

oriented in such a way that the dislocation direction can be chosen parallel to

e3 and the Burgers vector can be chosen as b = (b1, 0, b3) ∈ BZ3. We consider

displacements W : BZ3 → R3 of the three-dimensional lattice that are independent

of the direction of the dislocation direction, that is, e3. Thus, we choose a projected

reference lattice Λ := AZ2 := {(ℓ1, ℓ2) | ℓ ∈ BZ3}, and identify W (X) = w(X12),

where w : Λ → R3, and here and throughout we write a12 = (a1, a2) for a vector

a ∈ R3. It can be readily checked that this projection is again a Bravais lattice.

We may again choose a regular triangulation TΛ satisfying TΛ + ρ = TΛ for

all ρ ∈ Λ. Each lattice function v : Λ → Rm has an associated P1 interpolant

Iv : R2 → Rm and we identify ∇v = ∇ Iv. Further, we recall the definition of the

spaces Ẇ c, Ẇ 1,2 from (4).
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Fig. 2. Rates of convergence, in the interstitial example, of four types of boundary conditions
for a the geometry error and b the energy error; see Section 2.7.1 for definitions

Let x̂ ∈ R2 be the position of the dislocation core and Γ := {x ∈ R2 | x2 =
x̂2, x1 ≧ x̂1} the “branch-cut” (cf. (31)), chosen such that Γ ∩ Λ = ∅. In order

to model dislocations the site energy potential must be invariant under lattice slip.

Normally, this is a consequence of permutation invariance of the site energy, but here

we will formulate a minimal assumption. To that end, we define the slip operator

S0 acting on a displacement w : Λ → R3, or w : R2 → R3, by

S0w(x) :=
{

w(x), x2 > x̂2,

w(x − b12) − b, x2 < x̂2.
(29)
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This operation leaves the three-dimensional atom configuration corresponding to

the displacement u invariant: if Y (X) = X +w(X12) and Y S(X) = X +S0w(X12),

then Y (X) = Y S(X) for X2 > x̂2, while for X2 < x̂2,

Y S(X) = X + w(X12 − b12) − b = [X − b] + w([X − b]12) = Y (X − b),

that is, Y S represents only a relabelling of the atoms. Therefore, formally, if V (Dw)

is the site energy potential as a function of displacement, then it must by invariant

under the map w �→ S0w:

{

V (DS0w(ℓ)) = V (Dw(ℓ)), for ℓ2 > x̂2,

V (DS0w(ℓ + b12)) = V (Dw(ℓ)), for ℓ2 < x̂2.
(30)

In (34) below we will restate this assumption for a restricted class of displace-

ments only, which will allow us to continue to employ the finite range interaction

assumption.

Dislocations in an infinite lattice store infinite energy due to their topological

singularity. We therefore decompose the total displacement w = u0 + ū into a far-

field predictor u0 and a finite energy core corrector ū ∈ Ẇ 1,2. There is no unique

way to specify u0, but a natural choice is the continuum elasticity solution: For a

function u : R2 \ Γ → Rm that has traces from above and below, we denote these

traces, respectively, by u(x±), x ∈ Γ . We seek ulin ∈ C∞(R2 \ Γ ; R3) satisfying

C
jβ
iα

∂2ulin
i

∂xα∂xβ

= 0 in R2 \ Γ,

ulin(x+) − ulin(x−) = −b for x ∈ Γ \ {x̂},
∇e2 ulin(x+) − ∇e2 ulin(x−) = 0 for x ∈ Γ \ {x̂},

(31)

where the tensor C is the linearised Cauchy–Born tensor (derived from the inter-

action potential V ; see Section 7 for more detail).

In our analysis we require that applying the slip operator to the predictor map

u0 yields a smooth function in the half-space

ΩΓ := {x1 ≧ x̂1} \ Br̂+b1
(x̂) (32)

where r̂ is defined in Lemma 2 below. That is, we require that S0u0 ∈ C∞(ΩΓ ).

Except in the pure screw dislocation case (b12 = 0) ulin does not satisfy this prop-

erty. The origin of this conundrum is that linearised elasticity assumes infinitesimal

displacements, yet we apply it in the large deformation regime near the defect core.

To overcome this technical difficulty, instead of u0 = ulin, we define the predictor

u0(x) := ulin(ξ−1(x)), where ξ(x) := x − b12
1

2π
η(|x − x̂ |/r̂) arg(x − x̂),

(33)

arg(x) denotes the angle in (0, 2π) between b12 ∝ e1 and x , and η ∈ C∞(R) with

η = 0 in (−∞, 0], η = 1 in [1,∞) and η′ > 0 in (0, 1). While the distinction

between u0 and ulin is crucial, it arises from a subtle technical issue and could be

ignored on a first reading, especially in view of the following lemma.
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Lemma 2. (i) Suppose that the lattice is stable (10), then ulin is well-defined. For r̂

sufficiently large, ξ : R2 \Γ → R2 \Γ is a bijection, hence u0 is also well-defined

on R2 \ Γ .

(ii) We have ∇ j S0u0(x+) = ∇ j S0u0(x−) for all j ≧ 0 and for all x ∈ Γ ∩ΩΓ .

In particular, upon extending u0 continuously to Γ ∩ ΩΓ we obtain that S0u0 ∈
C∞(ΩΓ ).

(iii) There exists C such that |∇nu0(x) − ∇nulin(ξ−1(x))| ≦ C |x |−n−1 for

x ∈ R2 \ (Γ ∪ Br ); in particular |∇nu0(x)| ≦ C |x |−n for all n ∈ N.

Proof. The proof is given in Section 5.3. ⊓⊔
Statement (ii) implies that the net-Burgers vector of u0 (and hence of any u0 +

u, u ∈ Ẇ 1,2) is indeed b. Moreover, the fact that S0u0 ∈ C∞(ΩΓ ) will allow us

to perform Taylor expansions of finite differences.Statement (iii) indicates that u0

is an approximate far-field equilibrium, which allows us to use u0 as a far-field

boundary condition (see Lemma 3 below).

In order to keep the analysis as simple as possible we would like to keep the

convenient assumption made in the point defect case of a finite interaction range

in reference configuration. At first glance this contradicts the invariance of the

site energy under lattice slip (29), but we can circumvent this by restricting the

admissible corrector displacements. Arguing as in [16, Section B.1] we may choose

sufficiently large radii r̂A , m̂A and define

A :=
{

u : Λ → R3
∣

∣ ‖∇u‖L∞ < m̂A and |∇u(x)| < 1/2 for |x | > r̂A

}

.

Upon choosing m̂A , r̂A sufficiently large, we can ensure that any potential equilib-

rium solution is contained in A . Thus, the restriction of admissible displacements

to A is purely an analytical tool, which ensures that we can treat V as having finite

range, despite admitting slip-invariance.

For w = u0 + u, u ∈ A , we shall write S0w = S0u0 + Su, where S is an

ℓ2-orthogonal operator, with dual S∗ = S−1,

Su(ℓ) :=
{

u(ℓ), ℓ2 > x̂2,

u(ℓ − b12), ℓ2 < x̂2
and S−1u(ℓ) :=

{

u(ℓ), ℓ2 > x̂2,

u(ℓ + b12), ℓ2 < x̂2.

We can now rigorously formulate the assumptions on the site energy potential:

we assume that V ∈ Ck((R3)R), k ≧ 4, where R ⊂ Λ \ {0} such that for each

u ∈ A , and w = u0 + u, the site energy associated with a lattice site ℓ is given

by V (Dw(ℓ)), where Dw(ℓ) ≡ DRw(ℓ). We assume again that V (0) = 0 (that

is, V is the energy difference from the reference lattice) and that R, V are point

symmetric (6). We shall assume throughout that V is invariant under lattice slip,

reformulating (30) as

V
(

D(u0 + u)(ℓ)
)

= V
(

S−1 DS0(u0 + u)(ℓ)
)

∀u ∈ A , ℓ ∈ Λ. (34)

In addition, to guarantee lattice stability both before and after shift we assume

that not only D but also S−1 DS include nearest-neighbour finite differences (or

equivalent):

|u(ℓ + Aen) − u(ℓ)| ≦ |S−1 DSu(ℓ)|, ∀ ℓ ∈ Λ, n ∈ {1, 2}, u : Λ → R3.

(35)
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The global energy (difference) functional is now defined by

E (u) :=
∑

ℓ∈Λ

(

V
(

Du0(ℓ) + Du(ℓ)
)

− V
(

Du0(ℓ)
)

)

=:
∑

ℓ∈Λ

Vℓ(Du(ℓ)), (36)

where Vℓ(g) := V (Du0(ℓ) + g) − V (Du0(ℓ)).

Lemma 3. E : (Ẇ c ∩ A , ‖∇ · ‖L2) → R is continuous. In particular, there exists

a unique continuous extension of E to A , which we still denote by E . The extended

functional E ∈ Ck(A ) in the sense of Fréchet.

Proof (Idea of the proof). The main idea is the same as in the point defect case.

The proof that δE (0) ∈ Ẇ −1,2 is based on the construction of u0 in terms of

the linear elasticity predictor ulin, which guarantees that u0 is an “approximate

equilibrium” in the far-field. See [20] for a similar proof applied in the simplified

context of a screw dislocation. The complete proof (given in Section 5.4) for our

general case requires a combination of the proof in [20] and the concept of elastic

strain introduced in Section 3.2. ⊓⊔

The variational problem for the dislocation case is

ū ∈ arg min
{

E (u)
∣

∣ u ∈ A
}

. (37)

Since A is open, if a minimiser ū exists, then δE (ū) = 0. We call a minimiser

strongly stable if, in addition, it satisfies the positivity assumption (9).

Remark 6. One can also formulate anti-plane models for pure screw dislocations

by restricting A to displacements of the form u = (0, 0, u3) and also computing

a predictor of the form ulin = (0, 0, (ulin)3). Note also that for pure screw disloca-

tions, (33) is ignored. In the anti-plane case we may also choose A = Ẇ 1,2 since

only slip-invariance in anti-plane direction is required, that is, the topology of the

projected two-dimensional lattice remains unchanged.

To define in-plane models for pure edge dislocations one restricts A to dis-

placements of the form u = (u1, u2, 0). The predictor ulin does not simplify in this

case.

All our results carry over trivially to these simplified models.

Remark 7. The definition of the reference solution with branch-cut Γ =
{(x1, x̂2) | x1 ≧ x̂1} was arbitrary, in that we could have equally chosen ΓS :=
{(x1, x̂2) | x1 ≦ x̂1}. In this case the predictor solution u0 would be replaced with

S0u0. Let the resulting energy functional be denoted by

ES(v) :=
∑

ℓ∈Λ

V
(

DS0u0(ℓ) + Dv(ℓ)
)

− V
(

DS0u0(ℓ)
)

.

It is straightforward to see that, if δE (ū) = 0, then δES(Sū) = 0 as well. This

observation means, that in certain arguments, an estimate on ū in the left half-space

where no branch-cut is present immediately yields the corresponding estimate on

Sū in the right half-space as well.
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Remark 8. Another source of arbitrariness comes from the precise definition of

the predictor u0, for example, through the choice of the dislocation core position

x̂ or the choice of smearing function η. Indeed, more generally, arbitrary smooth

modifications to u0 are allowed as long as they do not significantly change the far-

field behaviour. While such changes to the predictor u0 affect the resulting corrector

ū (the solution of (37)), the total displacement u0 + ū remains unchanged in the

sense that, if u′
0 = u0 + w0 is a modified predictor, then ū′ = ū − w0 is again a

solution of (37).

3.2. Elastic Strain

The transformation u0 �→ S0u0 produces a map that is smooth in ΩΓ , and

which generates the same atomistic configuration. It is therefore natural to define

the elastic strains

e(ℓ) := (eρ(ℓ))ρ∈R where eρ(ℓ) :=
{

S−1 Dρ S0u0(ℓ), ℓ ∈ ΩΓ ,

Dρu0(ℓ), otherwise.
(38)

The analogous definition for the corrector displacement u is

D̃u(ℓ) := (D̃ρu(ℓ))ρ∈R where D̃ρu(ℓ) :=
{

S−1 Dρ Su(ℓ), ℓ ∈ ΩΓ ,

Dρu(ℓ), otherwise.

(39)

The slip invariance condition (34) can now be rewritten as

V
(

D(u0 + u)(ℓ)
)

= V
(

e(ℓ) + D̃u(ℓ)
)

∀u ∈ A , ℓ ∈ Λ. (40)

Linearity of S and hence of D̃ implies

〈

δV (D(u0 + u)), Dv
〉

=
〈

δV (e + D̃u), D̃v
〉

, (41)
〈

δ2V (D(u0 + u))Dv, Dw
〉

=
〈

δ2V (e + D̃u)D̃v, D̃w
〉

, (42)

and so forth.

3.3. Regularity

The regularity of the predictor u0 is already stated in Lemma 2. We now state

the regularity of the corrector ū. It is interesting to note that the regularity of

the dislocation corrector ū is, up to log factors, identical to the regularity of the

displacement field in the point defect case, which indicates that the dislocation

problem is computationally no more demanding than the point defect problem.

Indeed, this will be confirmed in Section 3.4.

Theorem 5. Suppose that the lattice is stable (10). Let u ∈ A be a critical point,

δE (u) = 0, then there exist constants C > 0, u∞ ∈ R3 such that, for 1 ≦ j ≦ k−2

and for |ℓ| sufficiently large,

|D̃ j u(ℓ)| ≦ C |ℓ|−1− j log |ℓ| and |u(ℓ) − u∞| ≦ C |ℓ|−1 log |ℓ|. (43)
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Remark 9. It can be immediately seen that the decay |D̃u(ℓ)| � |ℓ|−2 log |ℓ| is

equivalent to |Du(ℓ)| � |ℓ|−2 log |ℓ|. For higher-order derivatives, it is necessary

to make a case distinction. While, D̃ j u(ℓ) = D j u(ℓ) at sufficient distance from

Γ , “close to” the branchcut Γ we could alternatively write |D j Su(ℓ)| � |ℓ|−1− j .

In the pure screw case where b12 = 0 we simply have D = D̃.

3.4. Clamped Boundary Conditions

To extend clamped boundary conditions to the dislocation problem, we pre-

scribe the displacement to be the predictor displacement outside some finite com-

putational domain ΩR ⊂ Λ. Thus, we may think of these boundary conditions as

asynchronous continuum linearised elasticity boundary conditions.

This amounts to choosing a corrector displacement space analogous to Ẇ 0(ΩR)

in the point defect case,

A
0(ΩR) :=

{

v ∈ A
∣

∣ v = 0 in Λ \ ΩR

}

,

and the associated finite-dimensional optimisation problem reads

u0
R ∈ arg min

{

E (u)
∣

∣ u ∈ A
0(ΩR)

}

. (44)

Theorem 6. Let ū be a strongly stable solution to (37), then there exist C, R0 > 0

such that, for all ΩR ⊂ Λ satisfying BR ∩ Λ ⊂ ΩR for some R ≧ R0, there exists

a strongly stable solution ū0
R of (44) satisfying

‖∇ū − ∇ū0
R‖L2 ≦ C R−1 log(R) and

∣

∣E (ū) − E (ū0
R)

∣

∣ ≦ C R−2(log R)2.

(45)

Proof. See the preprint [16]. ⊓⊔

3.5. Periodic Boundary Conditions

It is possible to extend periodic boundary conditions to the dislocation case

by considering a periodic array of dislocations with alternating signs. In practise

the computational domain then contains a dipole or a quadrupole. It then becomes

necessary to estimate image effects, for which our regularity results are still useful,

but which requires substantial additional work. Hence, we postpone the analysis of

periodic boundary conditions for dislocation to future work, but refer to [8] for an

interesting discussion of these issues.

3.6. Boundary Conditions from Linear Elasticity

We now extend the lattice linear elasticity boundary conditions to the disloca-

tion case. The linearisation argument (19) should now be carried out for the full

displacement w = u0 + u, and reads

V (Dw) ≈ V (0) + 〈δV (0), Dw〉 + 1
2
〈δ2V (0)Dw, Dw〉,
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but this is invalid whenever the interaction neighbourhood crosses the slip plane Γ .

Instead, we must first transform the finite difference stencils as follows: recall

the definition of ΩΓ from (32) and the definition of elastic strain e and D̃u from

(38) and (39), then we define

D̃0w(ℓ) = D̃0(u0 + u)(ℓ) := e(ℓ) + D̃u(ℓ). (46)

According to Lemma 2 and Theorem 5, if u = ū, then |D̃0w(ℓ)| = O(|ℓ|−1), hence

we may linearize with respect to this transformed finite different stencil. Using the

slip invariance condition (34), we obtain

V (Dw) = V (D̃0w) = V (0) + 〈δV (0), D̃0w〉 + 1
2
〈δ2V (0)D̃0w, D̃0w〉

+O(|D̃0w|3),

and we therefore define the energy difference functional

E
lin
R (u) :=

∑

ℓ∈ΩR

Vℓ(Du(ℓ)) +
∑

ℓ∈Λ\ΩR

(

V lin
(

e(ℓ) + D̃u(ℓ)
)

− V lin
(

e(ℓ)
)

)

,

where V lin is the same as in the point defect case,

V lin(g) := V (0) +
〈

δV (0), g
〉

+ 1
2

〈

δ2V (0)g, g
〉

and where ΩR ⊂ Λ is the “inner” computational domain. It follows from minor

modifications of the proof of Lemma 3 that E lin
R can be extended by continuity to

a functional E lin
R ∈ Ck(A ).

Thus, we aim to compute

ulin
R ∈ arg min

{

E
lin
R (u)

∣

∣ u ∈ A
}

. (47)

Theorem 7. Let ū be a strongly stable solution to (37), then there exist C, R0 > 0

such that for all domains ΩR ⊂ Λ with BR ∩ Λ ⊂ ΩR and R ≧ R0, there exists a

strongly stable solution of (47) satisfying

∥

∥∇ū − ∇ulin
R

∥

∥

L2 ≦ C R−1 and
∣

∣E
lin
R (ulin

R ) − E (ū)
∣

∣ ≦ C R−2 log R. (48)

Proof (Idea of proof). The proof is similar to the point defect case, the main

additional step to take into account being that the linearisation is with respect to

the full displacement u0 + ū. Since ∇u0 ∼ |x |−1 it therefore follows that the

linearisation error at site ℓ is only of order O(|ℓ|−2), while in the point defect case

it was of order O(|ℓ|−2d). This accounts for the reduced convergence rate. See the

preprint [16] for the complete proof. ⊓⊔

Remark 10. The key difference between the schemes (44) and (47) is that the

former employs a precomputed continuum linear elasticity boundary condition

while the latter computes a lattice linear elasticity boundary condition on the fly. It

is therefore interesting to note that, for dislocations, solving the relatively complex

exterior problem yields almost no qualitative improvement over the basic Dirichlet

scheme (44). Indeed, if the cost of solving the exterior problem is taken into account

as well, then the scheme (47) may in practice become more expensive than (44).
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The main advantage of (47) appears to be that the boundary condition need not

be computed beforehand, but could be computed “on the fly”. We speculate that

this can give a substantially improved prefactor when the dislocation core is spread

out, for example, in the case of partials.

3.7. Boundary Conditions from Nonlinear Elasticity for Screw Dislocations

The formulation of a/c coupling methods for general dislocations is not straight-

forward. We therefore consider only the case of pure screw dislocations and post-

pone the general case to future work. Thus, we assume that b = e3, and in this

case, only the invariance of V in the normal direction is relevant:

V
(

g + he3

)

= V (g) ∀g ∈ (R3)R, h ∈ ZR.

We set up the computational domain and approximation space as in Section 2.6.

To define the energy functional, we first construct a modified interpolant that takes

into account the discontinuity of the full displacement across the slip plane, similarly

to the elastic strain used in Section 3.6,

I el
R u(x) :=

{

IRu(x), x ∈ T, T ∩ Γ = ∅,

IR(u + bχx2<x̂2
)(x), x ∈ T, T ∩ Γ = ∅,

where IR is the nodal interpolation with respect to TR . With this definition, the

energy difference functional is given by

E
ac
R (u) :=

∑

ℓ∈Ωa
R

Vℓ(Du(ℓ)) +
∑

ℓ∈Ω i
R

V i
ℓ(Du(ℓ))

+
∑

T ∈TR

veff
T

(

W (∇ I el
R (u0 + u)) − W (∇ I el

R u0)
)

, (49)

where V i
ℓ, W, veff

T are defined as in Section 2.6.

We seek to compute

uac
R ∈ arg min

{

E
ac
R (u)

∣

∣ u ∈ A (TR)
}

, where (50)

A (TR) := A ∩ Ẇ
0(TR).

We again let R and Rc be the sizes of Ωa
R and ωR ,

BR ∩ Λ ⊂ Ωa
R and BRc ⊂ ωR ⊂ Bc0 Rc . (51)

and assume that there exists η > 0 and c1 > 0 such that there exists a strongly

stable solution ūac
R to (50) satisfying

‖∇ūac
R − ∇ū‖ ≦ c1

(

‖h D̃2(u0 + ū)‖ℓ2(Λ∩(ωR\BR)) + ‖D̃ū‖ℓ2(Λ\BRc/2)

)

, (52)

provided that ‖h D̃2(u0 + ū)‖ℓ2(Λ∩(ωR\BR)) + ‖D̃ū‖ℓ2(Λ\BRc/2)
≦ η.



1238 V. Ehrlacher, C. Ortner & A. V. Shapeev

Fig. 3. Illustration of a screw dislocation configuration in a BCC crystal

Proposition 2. Let ū be a strongly stable solution of (37) and assume that (51) and

(52) hold. Further we require that ωR and TR satisfy the following quasi-optimality

conditions:

c2 R p ≦ Rc ≦ c3 R p, for some p > 0, and |h(x)| ≦ c4
|x |
R

. (53)

Then there exist R0, C depending on η, c2, c3, c4, and p, such that for all R ≧ R0

there exists a strongly stable solution ūac
R to (50) satisfying

∥

∥∇ūac
R − ∇ū

∥

∥

L2 ≦ C R−1. (54)

Proof. See the preprint [16]. ⊓⊔

3.8. Numerical Results

3.8.1. Setup We consider the anti-plane deformation model of a screw disloca-

tion in a BCC crystal from [20], the main difference being that we admit nearest

neighbour many-body interactions instead of only pair interactions. Thus, we only

give a brief outline of the model setup. The choice of dislocation type is motivated

by the fact that the linearised elasticity solution is readily available.

Briefly, let BZ3 = Z3 ∪ (Z3 + (1/2, 1/2, 1/2)T ) denote a BCC crystal, then

both the dislocation core and Burgers vector point in the (1, 1, 1)T direction. Upon

rotating and possibly dilating, the projection AZ2 of the BCC crystal is a triangular

lattice, hence we again assume (28). The linear elasticity predictor is now given by

ulin(x) = 1
2π

arg(x− x̂), where we assumed that the Burgers vector is b = (0, 0, 1)T

and x̂ is the centre of the dislocation core.

Let the unknown for the anti-plane model, the displacement in e3 direction, be

denoted by z(ℓ) := y3(ℓ), then we use the EAM-type site potential

V (Dy(ℓ)) = V anti(Dz(ℓ)) =
∑

ρ∈Rℓ

φ
(

|Dρz(ℓ)|
)

+ G
(

∑

ρ∈Rℓ

ψ
(

|Dρz(ℓ)|
)

)

with φ(r) = ψ(r) = sin2(πr) and G(s) = 1
2

s2.

The 1-periodicity of φ,ψ emulates the fact that displacing a line of atoms by a full

Burgers vector leaves the energy invariant.

We apply again the remaining remarks in Section 2.7.1.
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Fig. 4. Rates of convergence, in the first dislocation test, of the ATM-DIR, LIN and AC meth-
ods. N denotes the number of atoms in the inner computational domain; see Section 2.7.1
for definitions

3.8.2. Discussion of Results We choose x̂ = (1/3, 1/(2
√

3))T , which places the

dislocation core slightly off-centre to avoid spurious effects of a high-symmetry

anti-plane setting. Two additional tests (including the high-symmetry case) are

presented in the preprint [16].

The results are shown in Fig. 4. We observe precisely the predicted rates of

convergence. However, it is worth noting that although the asymptotic rates for
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ATM, LIN and AC are identical (up to log-factors), the prefactor varies by an order

of magnitude. The “dip” in the energy error for the LIN method is likely due to a

change in sign of the error.

The prefactor is a crucial piece of information about the accuracy of compu-

tational schemes that our analysis does not readily reveal. Ideally, one would like

to establish estimates of the form ‖Dū
apx
N − Dū‖ℓ2 ≦ C∗N−p + o(N−p), where

C∗ and p can be given explicitly, however much finer context-sensitive estimates

would be required to achieve this.

4. Conclusion

We have introduced a flexible analytical framework to study the effect of embed-

ding a defect in an infinite crystalline environment. Our main analytical results are

(1) the formulation of equilibration as a variational problem in a discrete energy

space; and (2) a qualitatively sharp regularity theory for minimisers.

These results are generally useful for the analysis of crystalline defects, how-

ever, our own primary motivation was to provide a foundation for the analysis of

atomistic multi-scale simulation methods, which in this context can be thought of

as different means to produce boundary conditions for an atomistic defect core

simulation. To demonstrate the applicability of our framework we analyzed sim-

ple variants of some of the most commonly employed schemes: Dirichlet boundary

conditions, periodic boundary conditions, far-field approximation via linearised lat-

tice elasticity and via nonlinear continuum elasticity (Cauchy–Born, atomistic-to-

continuum coupling). In parallel works [12,23,24,36] this framework has already

been exploited resulting in new and improved formulations of atomistic/continuum

and quantum/atomistic coupling schemes.

5. Proofs: The Energy Difference Functionals

This section is concerned with proofs for Lemmas 1 and 3 which state that the

energy E can be understood as a smooth functional on the energy space, that is,

E ∈ Ck(Ẇ 1,2) in the point defect case and E ∈ Ck(A ) in the dislocation case.

5.1. Conversion to Divergence Form

We begin by establishing an auxiliary result that allows us to convert pointwise

forces into divergence form without sacrificing fundamental decay properties.

Lemma 4. Let d ∈ N, p > d ≧ 2 and f : Zd → R such that | f (ℓ)| ≦ C f |ℓ|−p

for all ℓ ∈ Zd . Suppose, in addition, that
∑

ℓ∈Zd f (ℓ) = 0. Then, there exists

g : Zd → Rd and a constant C depending only on p and d such that

d
∑

j=1

De j
g j (ℓ) = f (ℓ) and |g(ℓ)| ≦ CC f |ℓ|−p+1 for all ℓ ∈ Zd . (55)

If f has compact support, then g can be chosen to have compact support as well.
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Proof. Denote ℓ̄ := (ℓ1, . . . , ℓd−1)
T . We define the operator Cd( f, g) := ( f̃ , g̃),

where g̃ := g + Δg̃ ed ,

Δg̃(ℓ̄, ℓd ) :=
{

∑3ℓd−2
λ=ℓd

f (ℓ̄, λ), ℓd ≧ 1,

−
∑ℓd−1

λ=3ℓd−1
f (ℓ̄, λ), ℓd ≦ 0,

and f̃ (ℓ̄, ℓd ) :=
3ℓd+1
∑

λ=3ℓd−1

f (ℓ̄, λ).

One can then readily verify that

Ded
gd(ℓ) − f (ℓ) = Ded

g̃d(ℓ) − f̃ (ℓ) ∀ℓ ∈ Zd . (56)

Moreover it is easy to see from the definition that
∑

ℓ∈Zd f̃ (ℓ) =
∑

ℓ∈Zd f (ℓ) = 0.

Let the operators C1, . . . , Cd−1 be defined analogously and let C be their com-

position C := C1 ◦ · · · ◦ Cd . If ( f +, g+) = C( f, g), then from (56) we obtain

that

f +(ℓ) −
d

∑

j=1

De j
g+

j (ℓ) = f (ℓ) −
d

∑

j=1

De j
g j (ℓ). (57)

Define the seminorm [ f ]q := supℓ∈Zd\{0}(|ℓ|∞ − 1
2
)q | f (ℓ)|, and a norm

�g�q := supℓ∈Zd (|ℓ|∞ + 1
2
)q |g(ℓ)|. We claim that, if ( f +, g+) = C( f, g), then

[ f +]p ≦ 3d−p[ f ]p and �g+ − g�p−1 � [ f ]p, (58)

where � denotes comparison up to a multiplicative constant that may only depend

on p and d. Suppose that we have established (58). We define

f (0) := f, g(0) := 0, and ( f (n+1), g(n+1)) := C( f (n), g(n)) for all n ∈ Z+.

Since p > d, we obtain that [ f (n)]p → 0. Moreover, since
∑

ℓ∈Zd f (n)(ℓ) = 0 for

all n it follows that ‖ f (n)‖ℓ1 → 0. Further, (58) implies

�g(n+1) − g(n)�p−1 � [ f (n)]p ≦ 3n(d−p)[ f ]p,

and hence the series
∑∞

n=0 g(n+1) − g(n) converges. Let g(ℓ) := limn→∞ g(n)(ℓ),

then (57) implies that g satisfies the identity in (55), and the bound on �g�p−1

implies the inequality in (55). It remains to note that if f = f (ℓ) = 0 outside the

region |ℓ|∞ ≦ L for some L , then f (n), g(n), and hence g, are also zero outside

this region.

To show the first inequality in (58), we fix ℓ = 0, express f +(ℓ) through f (ℓ),

and estimate

| f +(ℓ)| =
∣

∣

∣

∣

∑

λ∈Zd

|λ−3ℓ|∞≦1

f (λ)

∣

∣

∣

∣

≦
∑

λ∈Zd

|λ−3ℓ|∞≦1

(

|λ|∞ − 1
2

)−p[ f ]p

≦
∑

λ∈Zd

|λ−3ℓ|∞≦1

(

|3ℓ|∞ − 1 − 1
2

)−p[ f ]p = 3d 3−p
(

|ℓ|∞ − 1
2

)−p[ f ]p.
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The second inequality in (58) is based on the following two estimates:

| f̃ (ℓ)| ≦ 3(|ℓ|∞ − 1
2
)−p[ f ]p and |Δg̃(ℓ)| � (|ℓ|∞ + 1

2
)−p+1[ f ]p,

where we denote again ( f̃ , g̃) := Cd( f, g) and Δg̃ := (g̃−g)·ed . The first estimate

follows from arguments similar to the above. The second estimate, for ℓ = (ℓ̄, ℓd)

with ℓd ≦ 0, is proved in the following calculation:

|Δg̃(ℓ)| ≦

ℓd−1
∑

λ=3ℓd−1

| f (ℓ̄, λ)| ≦ [ f ]p

ℓd−1
∑

λ=3ℓd−1

(|(ℓ̄, λ)|∞ − 1
2
)−p

≦ [ f ]p

ℓd−1
∑

λ=3ℓd−1

(|(ℓ̄, ℓd − 1)|∞ − 1
2
)−p

≦ [ f ]p|2ℓd − 1|
(

1
3

(

|(ℓ̄, ℓd − 1)|∞ + 1
2

))−p

≦ [ f ]p |2ℓd + 1| 1
3p (|ℓ|∞ + 1

2
)−p ≦ [ f ]p

2
3p (|ℓ|∞ + 1

2
)−p+1,

where we used that for ℓd ≦ 0, |(ℓ̄, ℓd −1)|∞ ≧ 1 and the fact that x− 1
2

≧ 1
3
(x+ 1

2
)

for any x ≧ 1. For ℓd > 0 this estimate is obtained in a similar way.

The analogous estimates hold for applications of Cd−1, . . . , C1 and combining

these yields the second inequality in (58). ⊓⊔

Corollary 1. Let p > d (d ∈ {2, 3}), and f : AZd → R such that | f (ℓ)| ≦
C f |ℓ|−p for all ℓ ∈ AZd , and

∑

ℓ∈AZd f (ℓ) = 0. Then under the assumptions of

Section 2.1, there exists g : AZd → RR and a constant C depending only on p

such that

∑

ℓ∈AZd

f (ℓ)v(ℓ) =
∑

ℓ∈AZd

〈g(ℓ), Dv(ℓ)〉 |g(ℓ)| ≦ CC f |ℓ|−p+1 for all ℓ ∈ AZd .

In addition, if d = 2, under the assumptions of Section 3.1, there exists g̃ : AZ2 →
RR such that

∑

ℓ∈AZ2

f (ℓ)v(ℓ) =
∑

ℓ∈AZ2

〈g̃(ℓ), D̃v(ℓ)〉 |g̃(ℓ)| ≦ CC f |ℓ|−p+1 for all ℓ ∈ AZ2.

If f has compact support, then g and g̃ can be chosen to have compact support as

well.

Proof. One only needs to notice that the assumptions that the operators D and D̃

contain nearest-neighbor finite differences (cf. (7) and (35)) allow to use Lemma 4

to construct the needed g and g̃. ⊓⊔
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5.2. Proof of Lemma 1

The proof relies on two prerequisites.

Lemma 5. Under the conditions of Lemma 1,

F (u) :=
∑

ℓ∈Λ

(

Vℓ(Du(ℓ)) − 〈δVℓ(0), Du(ℓ)〉
)

is well-defined for any u ∈ Ẇ 1,2, and F ∈ Ck(Ẇ 1,2).

Proof. For a very similar argument that can be followed almost verbatim see [34],

hence we only give a brief idea of the proof.

Since |Du(ℓ)| ∈ ℓ2(Λ) implies |Du(ℓ)| ∈ ℓ∞ and since Vℓ ≡ V for |ℓ| ≧ R0,

we obtain that ‖δ2Vℓ(t Du(ℓ))‖ ≦ C , where C is independent of t ∈ [0, 1], and ℓ.

It follows that
∣

∣Vℓ(Du(ℓ)) − 〈δVℓ(0), Du(ℓ)〉
∣

∣ ≦ Cu |Du(ℓ)|2,

where Cu depends only on ‖ |Du| ‖ℓ∞ . In particular, ℓ �→ Vℓ(Du(ℓ)) −
〈δVℓ(0), Du(ℓ)〉 ∈ ℓ1(Λ), and hence F (u) is well-defined.

Using similar lines of argument one can prove that F ∈ Ck(A ). ⊓⊔

Lemma 6. Under the conditions of Lemma 1, δE (0) ∈ Ẇ −1,2.

Proof. Let v ∈ Ẇ c, then we can write the first variation in the form

〈δE (0), v〉 =
∑

ℓ∈Λ

〈δVℓ(0), Dv(ℓ)〉 =
∑

ℓ∈Λ

f (ℓ) · v(ℓ).

where f (ℓ) is given in terms of the Vℓ,ρ ; the precise form is unimportant. Point

symmetry of the lattice implies that f (ℓ) = 0 for |ℓ| > Rdef + rcut. Since E

is translation invariant (E (u + c) = E (u) for c(ℓ) = c ∈ R), it follows that
∑

ℓ∈Λ f (ℓ) = 0. Therefore,
∣

∣〈 f, u〉
∣

∣ =
∣

∣〈 f, u − u(0)〉
∣

∣ ≦ ‖ f ‖ℓ2‖u − u(0)‖ℓ2(Λ∩BRdef +rcut )

≦ C‖ f ‖ℓ2‖∇u‖L2(BRdef
+rcut)

,

where the inequality ‖u − u(0)‖ℓ2(Λ∩BRdef +rcut )
≦ ‖∇u‖L2(BRdef

+rcut)
follows from

the fact that only finite-dimensional subspaces are involved, and for these it is

enough to see that for any u such that the right-hand side vanishes, the left-hand

side must vanish as well. But this is immediate. This completes the proof. ⊓⊔

For u ∈ Ẇ c,

E (u) = F (u) + 〈δE (0), u〉,

which according to the two foregoing Lemmas is continuous with respect to the

Ẇ 1,2-topology and thus has a unique extension to Ẇ 1,2. Since the first term is

Ck and the second is linear and bounded, the result E ∈ Ck follows as well. This

completes the proof of Lemma 1.
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5.3. Proof of Lemma 2 (Properties of the Dislocation Predictor)

We begin by analyzing the auxiliary deformation map ξ defined in (33) in more

detail. To simplify the notation let ζ := ξ−1 throughout this section.

Lemma 7. (a) If r̂ is sufficiently large, then ξ : R2 \ (Γ ∪ Br̂/4) → R2 \ Γ is

injective.

(b) The range of ξ contains R2 \ (Γ ∪ Br̂/4).

(c) The map ζ S(x) :=
{

ζ(x − b12), x2 > x̂2,

ζ(x), x2 ≦ x̂2
can be continuously extended to the

half-space ΩΓ = {x1 > r̂ + b1}, and after this extension we have ζ S ∈ C∞(ΩΓ ).

Proof. (a) Suppose that x, x ′ ∈ R2 \ (Γ ∪ Br̂/4) and ξ(x) = ξ(x ′), then x2 = x ′
2

and since s �→ s + b1
2π

arg((s − x̂1, x2 − x̂2)) is clearly injective, it follows x1 = x ′
1

as well.

(b) The map ξ leaves the x2 coordinate unchanged and only shifts the x1

coordinate by a number between 0 and b1. Thus, for r̂/4 > |b1|, the statement

clearly follows.

(c) To compute the jump in ζ let x ∈ Γ , x1 > r̂ + b1, then we see that

ξ(x+) = x , ξ(x−) = x − b12, and hence ζ(x+) = x and ζ(x−) = x + b12. Thus,

we have

ζ(x+) − ζ
(

(x − b12)−) = x − [x − b12 + b12] = 0.

Consequently, using also ∇ζ(x) = ∇ξ(ζ(x))−1 and ∇ξ ∈ C∞(R2\{0}), we obtain

∇ζ(x+) − ∇ζ
(

(x − b12) −
)

= ∇ξ(ζ(x+))−1 − ∇ξ
(

ζ
(

(x − b12) −
))−1

= ∇ξ(ζ(x+))−1 − ∇ξ(ζ(x+))−1 = 0.

The proof for higher derivatives is a straightforward induction argument. ⊓⊔

Next, we establish an auxiliary result on the predictor u0.

Lemma 8. Let ∂α , α ∈ N2 be the usual multi-index notation for partial derivatives,

then there exist maps gα,β ∈ C∞(R2 \ Γ ) satisfying |∇ j gα,β | � |x |−1− j−|α|1+|β|1

such that

∂αu0(x) =
(

∂αulin
)(

ξ−1(x)
)

+
|α|1
∑

j=1

∑

β∈Nd

|β|1= j

gα,β(x)
(

∂βulin
)(

ξ−1(x)
)

for α ∈ N2.

(59)

Moreover, for all α and β, gα,β ◦ S can be extended to a function in C∞(ΩΓ ).

Proof. We only need to consider |x | > r̂ + |b|.
For α = 0 the result is trivial (with g0,0 = 0). For the purpose of illustration,

consider α = es , s ∈ {1, 2}, which we treat as the entire gradient:

∇u0 = ∇ulin(ξ−1(x))∇ξ−1(x)

= ∇ulin(ξ−1(x)) + ∇ulin(ξ−1(x))
(

∇ξ−1(x) − Id
)

.
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Since |∇ξ−1(x) − Id| � |x |−1, the result follows for this case.

In general the proof proceeds by induction. Suppose the result is true for all α

with |α|1 ≦ m.

We use induction over |α|1. For |α|1 = 0 the result is trivial with g0,0 = 0. Let

|ᾱ|1 = n − 1 ≧ 0, α = ᾱ + es for some s ∈ {1, 2}. Then,

∂αu0 = ∂es

[

∂ᾱulin +
∑

|β|1≦|ᾱ|1

gᾱ,β∂βulin

]

= ∂e1+ᾱulin∂es ζ1 + ∂e2+ᾱulin∂es ζ2

+
∑

|β|1≦|α|1

[

∂es gᾱ,β∂βulin + gᾱ,β

(

∂e1+βulin∂es ζ1 + ∂e2+βulin∂es ζ2

)]

= ∂αulin + ∂e1+ᾱulin
(

∂sζ1 − δ1s

)

+ ∂e2+ᾱulin
(

∂sζ2 − δ2s

)

+
∑

|β|1≦|α|1+1

g′
α,β∂βulin.

for some g′
α,β that depend on gᾱ,β and its derivatives and have the same regularity

and decay as stated for gα,β .

Finally, the coefficient functions (∂sζi − δis) are readily seen to also satisfy the

same regularity and decay as stated for gα,β with any |β|1 = |α|1. This concludes

the proof. ⊓⊔

We can now proceed to the proof of Lemma 2.

Proof of (i): u0 is well-defined. The elasticities tensor C is derived from the

interaction potential and due to the lattice stability assumption (10) satisfies the

strong Legendre–Hadamard condition (see Section 7 for more detail). The existence

of a solution to (31) then follows from [18, Section 13-3, Equations 13–78], with

∇ulin ∈ C∞(R2 \ {x̂}) and and |∇ j ulin(x̂ + x)| � |x |− j . Lemma 7 immediately

implies that u0 is also well-defined. This completes the proof of Lemma 2 (i).

Proof of (ii) Let x ∈ Γ ∩ ΩΓ , then

S0u0(x+) − S0u0(x−) = u0(x+) −
[

u0

(

(x − b12) −
)

− b
]

= ulin(x+) −
[

ulin
(

(x − b12 + b12) −
)

− b
]

= ulin(x+) − ulin(x−) − b = b − b = 0.

For derivatives of arbitrary order, the result is an immediate consequence of

(59) and of Lemma 7(c).

Proof of (iii): This statement is again an immediate consequence of (59).

5.4. Proof of Lemma 3

The main idea of the proof is the same as in the point defect case, Section 5.2.

For u ∈ Ẇ c we write

E (u) = F (u) + 〈δE (0), u〉,
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where now

F (u) =
∑

ℓ∈Λ

Vℓ(Du(ℓ)) − 〈δVℓ(0), Du(ℓ)〉

=
∑

ℓ∈Λ

(

V (D(u0 + u)(ℓ)) − V (Du0(ℓ)) − 〈δV (Du0(ℓ)), Du(ℓ)〉
)

,

and

〈δE (0), u〉 =
∑

ℓ∈Λ

〈δV (Du0(ℓ)), Du(ℓ)〉. (60)

It is an analogous argument as in the point defect case to show that F ∈ Ck(A ).

To prove that δE (0) is a bounded linear functional, we first use (41) to rewrite

it in the form

〈δE (0), u〉 =
∑

ℓ∈Λ

〈

δV (0), D̃u(ℓ)
〉

.

Next, we convert it to a force-displacement formulation, by generalising summation

by parts to incompatible gradients D̃.

Lemma 9. Let v ∈ Ẇ 1,2 be such that v(ℓ) = 0 for all ℓ such that |ℓ| ≦ 2|r̂ |+ |b1|.
Then D̃∗

ρv = D̃−ρv for all ρ ∈ R.

Proof. We let k ∈ Λ and u ∈ Ẇ 1,2, u(ℓ) := δkℓ. Then we form the expression

∑

ℓ∈Λ

D̃ρu(ℓ) · v(ℓ) −
∑

ℓ∈Λ

u(ℓ) · D̃−ρv(ℓ)

and show that it vanishes. This result is geometrically evident, but could also be

proved by a direct (yet tedious) calculation whose details we omit. ⊓⊔

We can now deduce that

〈δE (0), v〉 =
∑

ℓ∈Λ

f (ℓ) · v(ℓ), where,

f (ℓ) =
∑

ρ∈R

[

D̃−ρV,ρ(e)
]

(ℓ), for |ℓ| sufficiently large.
(61)

To prove that δE (0) is bounded we must establish decay of f . For future refer-

ence, we establish a more general result than needed for this proof.

Lemma 10. Let f be given by (61), and 0 ≦ j ≦ k − 2, then there exists C such

that

|D̃ j f (ℓ)| ≦ C |ℓ|−3− j . (62)
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Proof. Throughout this proof we will implicitly assume that |ℓ| is sufficiently large

so that the defect core Br̂+|b|(x̂) does not affect the computation. We first consider

the case j = 0.

Case 1: left halfspace: We first consider the simplified situation when ℓ1 <

x̂1, that is we can simply replace D̃ ≡ D throughout. We will see below that a

generalisation to ℓ1 > x̂1 is straightforward.

We begin by expanding V,ρ to second order,

V,ρ(e) = V,ρ(0) + 〈δV,ρ(0), e〉 +
∫ 1

0

(1 − t)〈δ2V,ρ(te)e, e〉 dt. (63)

Point symmetry of V implies that
∑

ρ V,ρ(0) = 0. Hence, we obtain

f =
∑

ρ,ς∈R

V,ρς (0)D−ρeς +
∑

ρ,∈R

∫ 1

0

(1 − t)D−ρ〈δ2V,ρ(te)e, e〉 dt (64)

=: f (1) + f (2).

Since |Dρe(ℓ)| � |ℓ|−2, we easily obtain | f (2)(ℓ)| � |ℓ|−3.

To estimate the first group we expand

∣

∣eρ(ℓ) − ∇ρu0(ℓ) − 1
2
∇2

ρu0(ℓ)
∣

∣ � ‖∇3u0‖L∞(Brcut (ℓ))
� |ℓ|−3, and hence

∣

∣D−ρeς (ℓ) + ∇ρ∇ς u0(ℓ)
∣

∣ � |ℓ|−3.

Lemma 2(iii) (∇2u0 = ∇2ulin + O(|x |−3), where C : ∇2ulin ≡ 0) yields

f (1) = −
∑

ρ,ς∈R

V,ρς (0)∇ρ∇ςulin(ℓ) + O(|ℓ|−3) = O(|ℓ|−3).

We have therefore shown (62) for the case j = 0, when ℓ lies in the left half-space.

Case 2: right halfspace: To treat the case ℓ1 > x̂1, |ℓ| sufficiently large, we

first rewrite

f = D̃−ρV,ρ(D̃0u0) = [S−1 D−ρ S]V,ρ

(

[S−1 DS0]u0

)

= S−1 D−ρV,ρ(DS0u0).

Since S0u0 is smooth in a neighbourhood of |ℓ| (even if that neighbourhood crosses

the branch-cut), we can now repeat the foregoing argument to deduce again that

|S f (ℓ)| � |ℓ|−3 as well (cf. Remark 7). But since S represents an O(1) shift, this

immediately implies also that | f (ℓ)| � |ℓ|−3. This completes the proof of (62).

Proof for the case j > 0: To prove higher-order decay, assume again at first

that ℓ1 < x̂1 and consider τ ∈ R j , j ≧ 1, then

Dτ f =
∑

ρ,ς

V,ρς Dτ D−ρeς +
∑

ρ∈R

∫ 1

0

(1 − t)Dτ D−ρ〈δ2V,ρ(te)e, e〉 dt

=: f (1) + f (2).
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An analogous Taylor expansion as above yields

f (1) = −∇τ

∑

ρ,ς∈R

V,ρς (0)∇ρ∇ςulin(ℓ) + O(|ℓ|−3− j ) = O(|ℓ|−3− j ),

applying again
∑

ρ,ς∈R V,ρς (0)∇ρ∇ςulin = 0.

The term f (2) is readily estimated by multiple applications of the discrete

product rule, from which we obtain that | f (2)(ℓ)| � |ℓ|− j−3 again.

The generalisation to the case ℓ1 > x̂1 is again analogous to above, due to the

fact that

D̃τ1 · · · D̃τ j
D̃−ρV,ρ(e) = S−1 Dτ1 · · · Dτ j

D−ρV,ρ(DS0u0).

From this point, the argument continues verbatim to the case ℓ1 < x̂1. ⊓⊔

Applying Corollary 1 to f yields a map g : Λ → (R3)R such that

〈δE (0), v〉 = 〈g, Dv〉, where |g(ℓ)| � |ℓ|−2.

Thus, 〈δE (0), v〉 ≦ ‖g‖ℓ2‖Dv‖ℓ2 � ‖g‖ℓ2‖∇v‖L2 , and hence δE (0) ∈ Ẇ −1,2.

This completes the proof of Lemma 3.

6. Proofs: Regularity

In this section we prove the regularity results, Theorems 1 and 5.

6.1. First-Order Residual for Point Defects

Assume, first, that we are in the setting of the point defect case, Section 2.1. To

motivate the subsequent analysis we first convert the first-order criticality condition

δE (ū) = 0 for (8).

Since ∇ū ∈ L2, Dρ ū(ℓ) → 0 uniformly as |ℓ| → ∞, for all ρ ∈ R. Con-

sequently, for |ℓ| large, linearised lattice elasticity provides a good approximation

to δE (ū) = 0. To exploit this observation we first define the homogeneous lattice

hessian operator (cf. (10))

〈Hu, v〉 =
∑

ℓ∈AZd

〈

δ2V (0)Du(ℓ), Dv(ℓ)
〉

=
∑

ℓ∈AZd

∑

ρ,ς∈R

Dρu(ℓ)T Vρς (0)Dςv(ℓ).

(65)

We assume throughout that it is stable in the sense of (10).

Finally, to state the first auxiliary result, we recall from Section 2.1 the definition

of the interpolant I u for discrete displacements u : Λ → Rd , which provides point

values I u(ℓ) for all ℓ ∈ AZd .
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Lemma 11. (First-order residual for point defects) Under the assumptions of The-

orem 1 there exists g : AZd → (Rm)R and R1, C > 0 such that

〈H I ū, v〉 = 〈g, Dv〉, ∀v ∈ Ẇ
c(AZd), where (66)

∣

∣g(ℓ)
∣

∣ ≦ C |Dū(ℓ)|2 ∀ℓ ∈ AZd \ BR1 . (67)

Proof. Let u ≡ I ū. We rewrite the residual 〈Hu, v〉 as

〈Hu, v〉 =
∑

ℓ∈AZd

〈

δ2V (0)Du(ℓ), Dv(ℓ)
〉

=
∑

ℓ∈AZd

(

〈

δV (0) + δ2V (0)Du(ℓ) − δV (Du(ℓ)), Dv(ℓ)
〉

(68)

+
〈

δV (Du(ℓ)), Dv(ℓ)
〉

−
〈

δV (0), Dv(ℓ)
〉

)

.

The first group can be written as

〈

δV (0) + δ2V (0)Du(ℓ) − δV (Du(ℓ)), Dv(ℓ)
〉

=: 〈g1(ℓ), Dv(ℓ)〉,

and where we note that g1(ℓ) is a linearisation remainder and hence |g1(ℓ)| �
|Du(ℓ)|2 for |ℓ| sufficiently large.

The second group is the residual of the exact solution after projection to the

homogeneous lattice AZd . Writing this group in “force-displacement” format,

∑

ℓ∈AZd

〈δV (Du(ℓ)), Dv(ℓ)〉 =
∑

ℓ∈AZd

f (ℓ)v(ℓ),

we observe that f (ℓ) =
∑

ρ∈R D−ρV,ρ(Du(ℓ)) has zero mean as well as compact

support due to symmetry of the lattice. Because of the mean zero condition, we

can write it in the form 〈 f, v〉 = 〈g2, Dv〉 where g2 also has compact support (cf.

Corollary 1).

Finally, the third group vanishes identically, which can for example be seen by

summation by parts. Setting g = g1 + g2 this completes the proof. ⊓⊔

6.2. The Lattice Green’s Function

To obtain estimates on ū and its derivatives from (66) we now analyse the lattice

Green’s function (inverse of H ). The following results are widely expected but we

could not find rigorous statements in the literature in the generality that we require

here.

Using translation and inversion symmetry of the lattice, the homogeneous finite

difference operator H defined in (65) can be rewritten in the form

〈Hu, u〉 =
∑

ℓ∈AZd

∑

ρ∈R′
Dρu(ℓ)T Aρ Dρu(ℓ) (69)

where R′ := {ρ + ς | ρ, ς ∈ R} \ {0} and Aρ ∈ Rd×d . (Written in terms of V,ρς ,

Aρ =
∑

ς,τ∈R,ς−τ=ρ V,ςτ . Alternatively, one can define Aρ = −2
∂2〈Hu,u〉

∂u(0)∂u(ρ)
and
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arrive at the same result; cf. [19, Lemma 3.4].) Since the Green’s function estimates

hold for general operators of the form (69) we recall the associated stability

〈Hv, v〉 ≧ γ ‖∇v‖2
L2 ∀v ∈ Ẇ

c(AZd), (70)

for some γ > 0.

Next, we recall the definitions of the semi-discrete Fourier transform and its

inverse,

Fd[u](k) :=
∑

ℓ∈AZd

eik·ℓu(ℓ), and F
−1
d [û](ℓ) =

∫

B

e−ik·ℓû(k) dk, (71)

where B ⊂ Rd is the first Brillouin zone. As usual, the above formulas are well-

formed for u ∈ ℓ1(AZd; Rm) and û ∈ L1(B; Rm), and are otherwise extended by

continuity.

Transforming (69) to Fourier space, we get

〈Hu, u〉 =
∫

B

û(k)∗ Ĥ(k)û(k) dk, where Ĥ(k) =
∑

ρ∈R′
4 sin2

(

1
2

k · ρ
)

Aρ .

Lattice stability (70) can equivalently be written as Ĥ(k) ≧ γ ′|k|2Id. Thus, if (70)

holds, then the lattice Green’s function can be defined by

G(ℓ) := F
−1
d [Ĝ](ℓ), where Ĝ(k) := Ĥ(k)−1.

We now state a sharp decay estimate for G.

Lemma 12. Let H be a homogeneous finite difference operator of the form (69)

satisfying the lattice stability condition (70), and let G be the associated lattice

Green’s function.

Then, for any ρ ∈ R j , j > 0, or j = 0 if d = 3, there exists a constant C such

that

∣

∣DρG(ℓ)
∣

∣ ≦ C(1 + |ℓ|)−d− j+2 ∀ℓ ∈ AZd . (72)

Proof. The strategy of the proof is to compare the lattice Green’s function with a

continuum Green’s function.

Step 1: Modified Continuum Green’s Function: Let G denote the Green’s function

of the associated linear elasticity operator L = −
∑

ρ∈R′ ∇ρ · Aρ∇ρ , and Ĝ(k)

its (whole-space) Fourier transform. Then, Ĝ(k) = (
∑

ρ∈R′(ρ · k)2 Aρ)−1, where

we note that lattice stability assumption (70) immediately implies that
∑

ρ∈R′(ρ ·
k)2 Aρ ≧ γ ′|k|2Id, where γ ′ > 0. We shall exploit the well-known fact that

|∇ j G(x)| ≦ C |x |−d− j+2 for |x | ≧ 1, (73)

where C = C( j, {Aρ}); see [29, Theorem 6.2.1].
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Let η̂(k) ∈ C∞
c (B), with η̂(k) = 1 in a neighbourhood of the origin. Then,

it is easy to see that its inverse (whole-space) Fourier transform η := F−1[η̂] ∈
C∞(Rd) with superalgebraic decay. From this and (73) it is easy to deduce that

∣

∣Dα(η ∗ G)(ℓ)
∣

∣ ≦ C |ℓ|2−d− j for |ℓ| ≧ 1, (74)

where C = C( j, H) and α ∈ R j is the multi-index defined in the statement of the

theorem.

Step 2: Comparison of Green’s Functions: Our aim now is to prove that

∣

∣Dα(G − η ∗ G)(ℓ)
∣

∣ ≦ C |ℓ|1−d− j , (75)

which implies the stated result. (In fact, it is a stronger statement.)

We write

Fd[Dα(G − η ∗ G)] = (Ĝ − η̂Ĝ)pα(k),

where pα(k) ∈ C∞
per(B) with |pα(k)| � |k| j . (To be precise, pα(k) ∼

(−i) j
∏ j

s=1(αs · k) as k → 0.) Fix some ε > 0 such that η̂ = 1 in Bε. The explicit

representations of Ĝ and Ĝ make it straightforward to show that (one employs the

fact that Ĝ−1 − Ĝ−1 has a power series starting with quartic terms)

∣

∣Δn(Ĝ − Ĝ)pα(k)
∣

∣ � |k|−2n+ j

for k ∈ Bε, while Δn(Ĝ − η̂Ĝ) is bounded in B \ Bε. Thus, if d − 1 + j is even

and we choose 2n := d − 1 + j , then we obtain that Δn(Ĝ − Ĝ)pα(k) ∈ L1(B),

which implies that

∣

∣Dα(G − η ∗ G)(ℓ)
∣

∣ =
∣

∣F
−1
d [Δ−nΔn(Ĝ − η̂Ĝ)pα(k)](ℓ)

∣

∣

� |ℓ|−2n = |ℓ|1−d− j ,

which is the desired result (75).

If d−1+ j is odd, then we can deduce (75) from the result for a larger multi-index

α′ = (α, ρ′) of length j ′. Namely, fix ℓ ∈ AZd and choose ρ′ a nearest-neighbour

direction pointing away from the origin, then

DαG(ℓ) =
∞
∑

n=0

Dα′G(ℓ + nρ′)

from which (75) easily follows. ⊓⊔
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6.3. Decay Estimates for Du, Point Defect Case

At the end of this section we prove Theorem 1 for the cases j = 0, 1. In

preparation we first prove a more general technical result.

Lemma 13. Let H be a homogeneous finite difference operator of the form (69)

satisfying the stability condition (70). Let u ∈ Ẇ 1,2(AZd) satisfy

〈Hu, v〉 = 〈g, Dv〉, where

{

g : AZd → (Rm)R,

|g(ℓ)| ≦ C(1 + |ℓ|)−p + Ch(ℓ)|Du(ℓ)|,
(76)

p ≧ d and h ∈ ℓ2(AZd). Then, for any ρ ∈ R, there exists C ≧ 0 such that, for

|ℓ| ≧ 2,

|Dρu(ℓ)| ≦

{

C |ℓ|−d , if p > d,

C |ℓ|−d log |ℓ|, if p = d.

Proof. Recall the definition of the Green’s function G from Section 6.2 and its

decay estimates stated in Lemma 12. Then, for all ℓ ∈ AZd , it holds that

u(ℓ) = −
∑

k∈AZd

∑

ρ∈R

DρG(ℓ − k)gρ(k), and hence, for all σ ∈ R,

Dσ u(ℓ) = −
∑

k∈AZd

∑

ρ∈R

Dσ DρG(ℓ−k)gρ(k)=−
∑

k∈AZd

∑

ρ∈R

Dσ DρG(k)gρ(ℓ−k).

Applying Lemma 12 and the assumption (76), we obtain

∣

∣Dσ u(ℓ)
∣

∣ ≦ C
∑

k∈AZd

(1 + |k|)−d
(

(1 + |ℓ − k|)−p + h(ℓ − k)|Du(ℓ − k)|
)

.

(77)

For r > 0, let us define w(r) := supℓ∈AZd , |ℓ|≧r |Du(ℓ)|. Our goal is to prove

that there exists a constant C > 0 such that

w(r) ≦ Cz(r)(1 + r)−d for all r > 0, (78)

where z(r) = 1 if p > d and z(r) = log(2 + r) if p = d. The proof of (78) is

divided into two steps.

Step 1: We shall prove that there exists a constant C > 0 and η : R+ → R+,

η(r) −→ 0 as r → +∞, such that for all r > 0 large enough,

w(2r) ≦ Cz(r)(1 + r)−d + η(r)w(r). (79)

Step 1a: Let us first establish that, for all |ℓ| ≧ 2r , we have

∣

∣

∣

∣

∑

k∈AZd

(1 + |k|)−d(1 + |ℓ − k|)−p

∣

∣

∣

∣

≦ Cz(r)(1 + r)−d . (80)
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We split the summation into |k| ≦ r and |k| > r . We shall write
∑

|k|≦r instead

of
∑

k∈AZd ,|k|≦r , and so forth.

For the first group, the summation of |k| ≦ r , we estimate

∑

|k|≦r

(1 + |k|)−d (1 + |ℓ − k|)−p ≦ (1 + r)−p
∑

|k|≦r

(1 + |k|)−d

≦ C(1 + r)−p log(2 + r). (81)

We now consider the sum over |k| > r . If p > d, then (1 + |ℓ − k|)−p is

summable and we can simply estimate

∑

|k|>r

(1 + |k|)−d
(

1 + |ℓ − k|
)−p

≦ (1 + r)−d
∑

|k|>r

(1 + |ℓ − k|)−p

≦ C(1 + r)−d , if p > d. (82)

If p = d, then we introduce an exponent δ > 0, which we will specify momentarily,

and estimate

∑

|k|>r

(1 + |k|)−d
(

1 + |ℓ − k|
)−d

≦ (1 + r)−d+δ
∑

|k|>r

(1 + |k|)−δ(1 + |ℓ − k|)−d

≦ (1 + r)−d+δ

(

∑

|k|>r

(

1 + |k|
)−(d+δ)

) δ
d+δ

(

∑

|k|>r

(

1 + |ℓ − k|
)−(d+δ)

) d
d+δ

≦ (1 + r)−d+δ
∑

k∈AZd

(

1 + |k|
)−(d+δ)

.

Applying the bound
∑

k∈AZd

(

1 + |k|
)−(d+δ)

≦ Cδ−1 we deduce that

∑

|k|>r

(1 + |k|)−d
(

1 + |ℓ − k|
)−d

≦ C(1 + r)−d (2 + r)δ

δ
.

Finally, we verify that, choosing δ = 1/ log(2+r) ensures (2+r)δδ−1 = e log(2+
r), and hence we conclude that

∑

|k|>r

(1 + |k|)−d
(

1 + |ℓ − k|
)−d

≦ C(1 + r)−d log(2 + r), if p = d. (83)

Combining (81)–(83) yields (80).

Step 1b: Let us now consider the remaining group in (77),

∑

k∈AZd

(1 + |k|)−d h(ℓ − k)|Du(ℓ − k)|,

which we must again estimate for all |ℓ| ≧ 2r .
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Recall that h, |Du| ∈ ℓ2. Defining h̃(r) := sup|k|≧r h(k), we have h̃(r) → 0

as r → +∞, and

∑

k∈AZd

(1 + |k|)−d h(ℓ − k)|Du(ℓ − k)|

=
∑

|k|≧r

(1 + |k|)−d h(ℓ − k)|Du(ℓ − k)| +
∑

|k|<r

(1 + |k|)−d h(ℓ − k)|Du(ℓ − k)|

≦ C(1 + r)−d
∑

|k|≧r

|h(ℓ − k)||Du(ℓ − k)| + w(r)

√

h̃(r)
∑

|k|<r

(1 + |k|)−d |h(ℓ − k)|1/2

≦ C(1 + r)−d‖h‖ℓ2‖Du‖ℓ2 + w(r)

√

h̃(r)‖(1 + |k|)−d‖ℓ4/3‖h‖1/2

ℓ2

≦ C

(

(1 + r)−d + w(r)

√

h̃(r)

)

.

Combining this estimate with (80) we have proved (79) with η(r) := C

√

h̃(r).

Step 2: Let us define v(r) := rd

z(r)
w(r) for all r > 0. We shall prove that v is

bounded on R+, which implies the desired result. Multiplying (79) with 2drd/z(2r),

we obtain

v(2r) ≦ C
(

1 + η(r)v(r)
)

.

There exists r0 > 0 such that, for all r > r0, Cη(r) ≦ 1
2

. This implies that, for all

r > r0,

v(2r) ≦ C + 1

2
v(r).

Denoting F := supr≦r0
v(r) and reasoning by induction, we obtain that, for all

r > r0,

v(r) ≦ C + 1

2

(

C + 1

2

(

. . .

(

C + 1

2
F

)

. . .

))

≦ C

N (r)
∑

k=1

1

2k
+ 1

2N (r)
F,

where N (r) ≦ C log(2+r). Finally, the above inequality implies that v(r) ≦ C+F

and thus v is bounded on R+.

This implies (78) and thus completes the proof of the lemma. ⊓⊔

Proof (Theorem 1, j = 0, 1). The case j = 1 is an immediate corollary of

Lemmas 13 and 11.

To establish the case j = 0 we first note that, due to |Dρ ū(ℓ)| ≦ C |ℓ|−d for all

ρ it can be easily shown that ū(ℓ) → c uniformly as |ℓ| → ∞. Thus,

ū(ℓ) − c =
∞
∑

i=1

(

ū
(

ℓ + iρ
)

− ū
(

ℓ + (i − 1)ρ
)

)

.

Choosing ρ such that |ℓ + iρ| ≧ c(|ℓ| + i), we obtain the stated bounds. ⊓⊔
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6.4. Decay Estimates for Higher Derivatives, Point Defect Case

From Section 6.3 we now know that |Du(ℓ)| ≦ C |ℓ|−d for |ℓ| sufficiently large,

and more generally we can hope to, inductively, obtain that |Di u(ℓ)| ≦ C |ℓ|1−d−i .

Using this induction hypothesis we next establish additional estimates on the right-

hand side g in (66).

Note that, if |Di u(ℓ)| � |ℓ|−p−i , then

|Dρ Di u(ℓ)| ≦ |Di u(ℓ + ρ)| + |Di u(ℓ)| � |ℓ|−p−i (84)

as well, which gives a first crude estimate for the decay. Exploiting this observation,

the proofs of the higher-order decay estimates take a somewhat simpler form, as

they need to address the nonlinearity.

Lemma 14. (Higher order residual estimate, point defect case) Suppose that the

assumptions of Lemma 11 are satisfied and that

|Di u(ℓ)| ≦ C |ℓ|1−d−i for i = 1, . . . , j, |ℓ| ≧ R1,

then there exist R2, C such that

|D j g(ℓ)| ≦ C |ℓ|−1−d− j for |ℓ| ≧ R2,

where g is defined in (66).

Proof. The elementary but slightly tedious proof is a continued application of a

discrete product rule, exploiting the observation (84). We begin by noting that

Aρ f (ℓ) := 1
2
( f (ℓ + ρ) + f (ℓ)) yields the discrete product rule

Dρ( f1(ℓ) f2(ℓ)) = Dρ f1(ℓ)Aρ f2(ℓ) + Aρ f1(ℓ)Dρ f2(ℓ), ρ ∈ R. (85)

Let 1 ≦ j ≦ k−2. Recall from the proof of Lemma 11 that, for |ℓ| ≧ R1, chosen

sufficiently large, g(ℓ) = δV (0)+ δ2V (0)Du(ℓ)− δV (Du(ℓ)). Let R2 ≧ R1 such

that all the subsequent operations are meaningful. We expand to order j with explicit

remainder of order j + 1:

gρ(ℓ) = 1

2

∑

ς,τ∈R

∫ 1

s=0

V,ρςτ (Du(ℓ))(1 − s) ds Dς u(ℓ)Dτ u(ℓ), if j = 1,

and in general,

gρ(ℓ) = 1

2

∑

τ∈R2

〈V,ρτ , D⊗
τ

u(ℓ)〉 + · · · + 1

j !
∑

τ∈R j

〈V,ρτ , D⊗
τ

u(ℓ)〉

+ 1

( j + 1)!
∑

τ∈R j+1

∫ 1

0

〈Vρ,τ (s Du(ℓ)), D⊗
τ

u(ℓ)〉(1 − s) j ds,

where V,ρτ = V,ρτ (0) and D⊗
τ

u(ℓ) =
⊗i

k=1 Dτk
u(ℓ) for τ = (τ1, . . . , τi ).
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Let α = (α1, . . . , α j ) ∈ R j be a multi-index. For any “proper subset” α′ =
(αi )i∈I , I � {1, . . . , j}, we have by the assumptions made in the statement of the

lemma that

|Dα′u(ℓ)| ≦ C |ℓ|1−d−#I for |ℓ| ≧ R1.

Thus, applying the discrete product rule (85), we obtain, for τ ∈ Rs , s ≧ 2,

∣

∣Dα1 · · · Dα j

(

D⊗
τ

u(ℓ)
)∣

∣ ≦ C |ℓ|−ds− j ≦ C |ℓ|−1−d− j . (86)

Using, moreover, the estimates

∣

∣Dα1 · · · Dα j
Vρ,τ (s Du(ℓ))

∣

∣ ≦ C and
∣

∣D⊗
τ

u
∣

∣ ≦ C |ℓ|−d( j+1) ≦ C |ℓ|−1−d− j ,

(87)

for τ ∈ R j+1, we can conclude that

∣

∣Dα1 · · · Dα j
gρ(ℓ)

∣

∣ ≦ C |ℓ|−1−d− j + C |ℓ|−d |D j+1u(ℓ)| for |ℓ| ≧ R1.

This, together with (84), completes the proof. ⊓⊔

To complete the proof of Theorem 1 we need a final auxiliary lemma that

estimates decay for a linear problem.

Lemma 15. Let H be a homogeneous finite difference operator of the form (69)

satisfying the stability condition (70). Let u ∈ Ẇ 1,2(AZd) satisfy

〈Hu, v〉 = 〈g, Dv〉 where

{

g : AZd → (Rm)R,

|Di g(ℓ)| ≦ C(1 + |ℓ|)−p−i , i = 0, . . . , j − 1,

where p > d and j ≧ 0. Then, for i = 1, . . . , j and ρ ∈ Ri , there exists C > 0

such that

|Dρu(ℓ)| ≦ C(1 + |ℓ|)1−d−i .

Proof. The proof is a straightforward application of the decay estimates for the

Green’s function. For the sake of brevity, we shall only carry out the details for the

case j = 2. This will reveal immediately how to proceed for j > 2.

For all ℓ ∈ AZd , ς, ς ′ ∈ R, we have

Dς Dς ′u(ℓ) = −
∑

k∈AZd

∑

ρ∈R

Dς ′ Dς DρG(k) gρ(ℓ − k). (88)

We again split the summation over |k| ≦ |ℓ|/2 =: r and |k| > r . In the set |k| > r

the estimate is a simplified version (due to the absence of the nonlinearity) of Step 1b

in the proof of Lemma 13, which yields

∣

∣

∣

∣

∑

|k|>r

∑

ρ∈R

Dς ′ Dς DρG(k) gρ(ℓ − k)

∣

∣

∣

∣

≦ Cr−1−d .
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In the set |k| < r , we carry out a summation by parts,

∑

|k|≦r

∑

ρ∈R

Dς ′ Dς DρG(k) gρ(ℓ − k) =
∑

|k|≦r+|ς ′|
χr,ς ′(k)Dς DρG(k)D−ς ′ gρ(ℓ − k)

+
∑

r−|ς ′|≦|k|≦r+|ς ′|
νr,ς ′(k)Dς DρG(k) gρ(ℓ − k), (89)

where χr,ς ′(k), νr,ς ′(k) ∈ {−1, 0, 1}. To see this, consider two discrete functions

a, b and the characteristic function χ(k) = 1 if |k| ≦ r and χ(k) = 0 otherwise.

Then,

∑

|k|≦r

(

Dτ a(k)
)

b(k) =
∑

k∈Λ

(

Dτ a(k)
)

b(k)χ(k) =
∑

k∈Λ

a(k)D−τ (b(k)χ(k))

=
∑

k∈Λ

a(k)D−τ b(k)χ(k + τ) +
∑

k∈Λ

a(k)b(k)D−τχ(k).

This establishes the claim that the coefficients χr,ς ′ , νr,ς ′ belong indeed to

{−1, 0, 1}.
The summation over |k| ≦ r + |ς ′| can be bounded using a simplified variant

of the estimates in Step 1a of the proof of Lemma 13 and the decay assumption for

g. This yields

∣

∣

∣

∣

∑

|k|≦r+|ς ′|
χr,ς ′(k)Dς DρG(k)D−ς ′ gρ(ℓ − k)

∣

∣

∣

∣

≦ Cr−1−d .

The “boundary terms” in (89) (second group on the right-hand side) are esti-

mated by

∣

∣

∣

∣

∑

r−|ς ′|≦|k|≦r+|ς ′|
νr,ς ′(k)Dς DρG(k) gρ(ℓ − k)

∣

∣

∣

∣

≦ C
∑

r−|ς ′|≦r≦r+|ς ′|
(1 + |k|)−d(1 + |ℓ − k|)−p

≦ Crd−1(1 + r)−d−p ≦ C(1 + r)−p−1 ≦ C(1 + r)−d−1

Thus, in summary, we can conclude that

∣

∣

∣

∣

∑

k∈AZd

|k|≦r

∑

ρ∈R

Dς ′ Dς DρG(k) gρ(ℓ − k)

∣

∣

∣

∣

≦ C(1 + r)−d−1.

The only modification for the case j > 2 is that j − 1 summation by part steps

are required instead of a single one. This completes the proof of Lemma 15. ⊓⊔

Proof (Theorem 1, Case j ≧ 2). The statement of Theorem 1, Case j ≧ 2, is an

immediate corollary of Lemmas 14 and 15. ⊓⊔
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6.5. Proof of Theorem 5, Case j = 1

We now adapt the arguments of the foregoing sections to the dislocation case.

Remembering that Du0(ℓ) → 0 as |ℓ| → ∞ we begin by recalling the definitions

of e = D̃0u0 and D̃u from Section 3.2, noting that |e(ℓ)| � |ℓ|−1.

Let u := ū, v ∈ Ẇ c and |ℓ| sufficiently large, then (41) yields
〈

δV (D(u0 + u)(ℓ)), Dv(ℓ)
〉

=
〈

δV (e + D̃u(ℓ)), D̃v(ℓ)
〉

=
〈

δV (e + D̃u) − δV (e) − δ2V (e)D̃u, D̃v
〉

+
〈

(δ2V (e) − δ2V (0))D̃u, D̃v
〉

+
〈

δ2V (0)D̃u, D̃v
〉

+ 〈δV (e), D̃v〉.

Upon defining the linear operator

〈H̃v,w〉 :=
∑

ℓ∈Λ

〈δ2V (0)D̃u, D̃v〉, for v,w ∈ Ẇ
1,2(Λ), (90)

we obtain that

〈H̃u, v〉 =
∑

ℓ∈Λ

(

〈

δV (e) + δ2V (e)D̃u − δV (e + D̃u), D̃v
〉

+
〈

(δ2V (0) − δ2V (e))D̃u, D̃v
〉

)

− 〈δE (0), v〉.
(91)

We can now generalise Lemma 11 as follows.

Lemma 16. (First-order residual estimate, dislocations) Under the conditions of

Theorem 5 there exists g : Λ → (Rd)R and constants C1, R1 such that

〈H̃ ū, v〉 = 〈g, D̃v〉 ∀v ∈ Ẇ
c, where

|g(ℓ)| ≦ C1

(

|ℓ|−2 + |D̃ū(ℓ)|2
)

for |ℓ| ≧ R1.

Proof. Setting again u = ū, we can write

〈H̃u, v〉 =
∑

ℓ∈Λ

(

〈

(δ2V (0) − δ2V (e))D̃u, D̃v
〉

+
〈

δV (e) + δ2V (e)D̃u − δV (e + D̃u), D̃v
〉

)

− 〈δE (0), v〉

=: 〈g(1) + g(2), D̃v〉 − 〈 f, v〉, (92)

where we employed Lemma 10 in the last step.

The 〈 f, v〉 group: The decay | f (ℓ)| � |ℓ|−3 implies that also |S f (ℓ)| � |ℓ|−3,

hence Corollary 1 implies the existence of g(3), |g(3)(ℓ)| � |ℓ|−2 such that

〈δE (0), v〉 = 〈 f, v〉 = 〈g(3), D̃v〉.

The first two groups are linearisation errors and it is easy to see that, for |ℓ| ≧ R1,

with R1 chosen sufficiently large, we have
∣

∣g(1)(ℓ)
∣

∣ ≦ C |ℓ|−1|D̃u(ℓ)| and
∣

∣g(2)(ℓ)
∣

∣ ≦ C |D̃u(ℓ)|2.

Setting g := g(1) + g(2) − g(3) we obtain that stated result. ⊓⊔
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An obstacle we encounter trying to extend the regularity proofs in the point

defect case (Lemmas 13 and 15) are the “incompatible finite difference stencils”

D̃u(ℓ), which occur in (90). Interestingly, we can bypass this obstacle without

concerning ourselves too much with their structure, but instead using a relatively

simple boot-strapping argument starting from the following sub-optimal estimate.

Lemma 17. (Suboptimal estimate for D̃u) Under the conditions of Theorem 5,

there exists R1 > 0 such that

|D̃ū(ℓ)| ≦ C |ℓ|−1 for all |ℓ| > R1.

Proof. In the following let u := ū, s1 := 1
2
|ℓ| − rcut, s2 := 1

2
|ℓ| and assume that

|ℓ| is always large enough so that s1 ≧ 1
3
|ℓ| ≧ r̂ + |b12|.

We first consider the case that B 3
4 |ℓ|(ℓ) does not intersect Γ . We will then extend

the argument to the case when it does intersect.

Let η1 be a cut-off function with η1(x) = 1 in Bs1/2(ℓ), η1(x) = 0 in R2\Bs1(ℓ)

and |∇η1| ≦ C |ℓ|−1. Further, let v(k) := DτG(k−ℓ), where G is the lattice Green’s

function associated with the homogeneous finite difference operator H defined in

(65). Then,

Dτ u(ℓ) = 〈Hu, v〉 = 〈Hu, [η1v]〉 + 〈Hu, [(1 − η1)v]〉 (93)

where η1v, (1 − η1)v are understood as pointwise function multiplication.

For the first group in (93), and assuming that |ℓ| is sufficiently large, B3|ℓ|/4(ℓ)

does not intersect the branch-cut Γ , hence we have

〈Hu, [η1v]〉 = 〈H̃u, [η1v]〉 = 〈g, D[η1v]〉
�

∑

k∈Bs2
(ℓ)

(

|k|−2 + |Du(k)|2
) ∣

∣D[η1v](k)
∣

∣.

Using the decay estimates for G established in Lemma 12 and the assumptions on

η1 it is straightforward to show that |D[η1v](k)| � (1 + |ℓ − k|)−2, and hence we

can continue to estimate

∣

∣〈Hu, [η1v]〉
∣

∣ �
∑

k∈Bs2
(ℓ)

(

|ℓ|−2 + |Du(k)|2
)

(1 + |ℓ − k|)−2

� |ℓ|−2 log |ℓ| +
∥

∥ψℓ Du
∥

∥

2

ℓ2(Λ∩Bs2
(ℓ))

, (94)

where ψℓ(k) := (1 + |ℓ − k|)−1.

To estimate the second group in (93) we note that

Dρ[(1 − η1)v](k) = −Dρη1(k)Aρv(k) + Aρ(1 − η1)(k)Dρv(k),

where Aρw(k) = 1
2
(w(k) + w(k + ρ)). We first note that the first term on the

right-hand side is only non-zero for s1 ≧ |ℓ − k| ≧ s1/4, while the second term

on the right-hand side is only non-zero for |ℓ − k| ≧ s1/4, both provided that |ℓ|
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is sufficiently large. Applying the bounds for η1 and G again, we therefore obtain

that

∣

∣D[(1 − η1)v](k)
∣

∣ � |ℓ|−1|ℓ − k|−1χ[s1/4,s1](|ℓ − k|) + |ℓ − k|−2 � |ℓ − k|−2.

Thus, we can estimate

∣

∣

〈

Hu, [(1 − η1)v]
〉∣

∣ �
∑

|k−ℓ|>s1/4

|Du(k)| |ℓ − k|−2

� ‖Du‖ℓ2

(

∑

|k−ℓ|>s1/4

|ℓ − k|−4

)1/2

� |ℓ|−1.

To summarize the proof up to this point, we have shown that, if |ℓ| is sufficiently

large and if B3|ℓ|/4(ℓ) ∩ Γ = ∅, then

∣

∣Du(ℓ)
∣

∣ ≦ C
(

|ℓ|−1 +
∥

∥ψℓ Du
∥

∥

2

ℓ2(Λ∩Bs2
(ℓ))

)

. (95)

Reflection argument: We now extend the argument to the case when B3|ℓ|/4(ℓ)∩
Γ = ∅. According to Remark 7, we have δES(Su) = 0 (recall that in the definition

of ES we have replaced u0 with S0u0). This new problem is structurally identical

to δE (u) = 0, except that the branch-cut Γ is now replaced with ΓS . Therefore, it

follows that (95) holds, but u replaced with Su and for all ℓ1 > x̂1, |ℓ| sufficiently

large. It is now immediate to see that we can replace DSu with S−1 DSu = D̃u

without changing the estimate. Thus we obtain

∣

∣D̃u(ℓ)
∣

∣ ≦ C
(

|ℓ|−1 +
∥

∥ψℓ D̃u
∥

∥

2

ℓ2(Λ∩Bs2
(ℓ))

)

∀ℓ ∈ Λ, sufficiently large.

(96)

In the preprint [16] we also give a direct argument for (96) using purely algebraic

manipulations.

Conclusion: We now consider arbitrary ℓ. We rewrite (96) in a way that allows

us to apply the argument similar of Step 2 in the proof of Lemma 13. We begin by

noting that

∥

∥ψℓ D̃u
∥

∥

2

ℓ2(Λ∩Bs2
(ℓ))

≦ ‖ψℓ‖2
ℓ4(Bs2

(ℓ))
‖D̃u‖ℓ2(Bs2

(ℓ))‖D̃u‖ℓ∞(Bs2
(ℓ)). (97)

Fix ε > 0, then there exists r0 > 0 such that ‖D̃u‖ℓ2(Bs2
(ℓ)) ≦ ε, whenever |ℓ| ≧ r0.

Let w(r) := max|k|≧r |D̃u(k)|, then (96) and (97) imply that

w(2r) ≦ C
(

r−1 + εw(r)
)

for r ≧ r0.

We can now apply the argument of Step 2 in the proof of Lemma 13 to obtain that

w(r) � r−1 and hence |D̃u(ℓ)| � |ℓ|−1. ⊓⊔

Having established a preliminary pointwise decay estimate on D̃ū, we now

apply a boot-strapping technique to obtain an optimal bound.
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Proof (Theorem 5, Case j = 1). In view of Remark 7 (cf. part (2) in the proof of

Lemma 17) we may assume, without loss of generality, that ℓ belongs to the left

half-plane, that is, ℓ1 < x̂1. We again define v and η1 as in the proof of Lemma 17,

and B := δ2V (0), to write

Dτ u(ℓ) = 〈Hu, v〉 =
∑

k∈Λ

〈B Du(k), Dv(k)〉

=
∑

k∈Λ

〈B D̃u(k), D̃v(k)〉 +
∑

k∈Λ

(

〈B Du(k), Dv(k)〉 − 〈B D̃u(k), D̃v(k)〉
)

=: T1 + T2.

To estimate the first group we note that T1 = 〈g, D̃v〉, hence we can employ

the residual estimates from Lemma 16. Combining Lemma 16 with Lemma 17 we

have |g(k)| � |k|−2, which readily yields

∣

∣T1

∣

∣ ≦
∑

k∈Λ

(1 + |k|)−2(1 + |ℓ − k|)−2 � |ℓ|−2 log |ℓ|.

Here, we used the observation that

|D̃ρ Dτ G(k − ℓ)| � (1 + |k − ℓ|)−2

due to the fact that Dρ Sw(k) = Dρ′w(k′), where |ρ − ρ′| + |k − k′| � 1.

To estimate T2, we observe that D̃w(k) = Dw(k) for all k ∈ Λ \ UΓ , where

we define UΓ to be a discrete strip surrounding Γ , UΓ := Λ ∩ (Γ + Brcut ). Thus,

employing again Lemma 17,

∣

∣T2

∣

∣ �
∑

k∈UΓ

(1 + |k|)−1(1 + |ℓ − k|)−2 � |ℓ|−2 log |ℓ|,

where the final inequality crucially uses the fact that ℓ1 < x̂1, which implies that

|ℓ − k| � |ℓ| + |k|. ⊓⊔

6.6. Proof of Theorem 5, Case j > 1

In view of case j = 1 and also of Lemma 15(b) it is natural to conjecture that

|D̃i u(ℓ)| � |ℓ|−i−1 log |ℓ|.

Suppose that we have proven this for i = 1, . . . , j −1. Then the triangle inequality

immediately yields

|D̃ j u(ℓ)| � |ℓ|− j log |ℓ|,

which is of course sub-optimal, but it allows us again to apply a bootstrapping

argument. In the dislocation case, this requires two steps, corresponding to cases

(a) and (b) of the following lemma.
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Lemma 18. (Residual Estimates) Assume the conditions of Theorem 5 hold.

(a) Suppose, further, that 2 ≦ j ≦ k − 2 and that there exist C1, R1 > 0 such

that

|D̃i ū(ℓ)| ≦ C1|ℓ|−i−1 log |ℓ| for 1 ≦ i ≦ j − 1, |ℓ| ≧ R1,

then there exists g : Λ → (R3)R and C2, R2 such that

〈H̃ ū, v〉 = 〈g, D̃v〉, where, for |ℓ| ≧ R2,

|g(ℓ)| ≦ C2|ℓ|−2,

|D̃i g(ℓ)| ≦ C2|ℓ|−2−i for i = 1, . . . , j − 2, and

|D̃ j−1g(ℓ)| ≦ C2|ℓ|−1− j log |ℓ|.

(b) If, in addition, we also have that |D̃ j ū(ℓ)| ≦ C1|ℓ|− j , then

|D̃ j−1g(ℓ)| ≦ C2|ℓ|−1− j for |ℓ| ≧ R2.

Proof. Many estimates in this proof are very similar to estimates that we have

proven in previous results, hence we only give a brief outline. We begin by setting

again u ≡ ū and recalling from (92) that

〈H̃u, v〉 = 〈g(1) + g(2), D̃v〉 − 〈 f, v〉, where

g(1) =
(

δ2V (0) − δ2V (e)
)

D̃u, g(2) = δV (e) − δ2V (e)D̃u − δV (e + D̃u),

and f is given by (61). We now analyze the terms g( j) and f in turn.

The term g(1): Let ℓ1 > x̂1 (the case ℓ1 ≦ x̂1 can be treated by a simplified

argument). Let α1, . . . , αi ∈ R, ρ ∈ R2, then

D̃α1 · · · D̃αi
Vρ(e(ℓ)) = S−1 Dα1 · · · Dαi

SVρ(S−1 DS0u0(ℓ))

= S−1 Dα1 · · · Dαi
Vρ(DS0u0(ℓ)).

Applying Lemma 2(iii) it is easy to show that for |ℓ| sufficiently large,

∣

∣D̃α1 · · · D̃αi
V,ρ(e(ℓ))

∣

∣ ≦ C |ℓ|−i−1 for i ≧ 1, αi ∈ R, ρ ∈ R2.

Hence, and recalling the discrete product formula (85), we obtain in case (a)

∣

∣D̃α1 · · · D̃αi
g(1)(ℓ)

∣

∣ � |ℓ|−i−3 log |ℓ| + |ℓ|−1|D̃i+1u(ℓ)|

�

{

|ℓ|−i−2 + |ℓ|−i−3 log |ℓ|, i ≦ j − 2,

|ℓ|−i−2 + |ℓ|−i−2 log |ℓ|, i = j − 1

�

{

|ℓ|−i−2, i ≦ j − 2,

|ℓ|−i−2 log |ℓ|, i = j − 1.
(98)

In case (b) of the foregoing calculation, the log-factor in the i = j − 1 case

is dropped, hence we then obtain the improved estimate |D̃α1 · · · D̃α j
g(1)(ℓ)| �

|ℓ|−1− j .
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The term g(2): The higher-order estimate for the term g(2) can be performed

very similarly as in the point defect case in Section 6.4, but expanding about e

instead of 0. Applying |D̃i e(ℓ)| � |ℓ|−i−1, the hypothesis |D̃i u| � |ℓ|−1−i log |ℓ|
and Lemma 2(iii), and hence arguing analogously as in Section 6.4 we obtain

∣

∣D̃α1 · · · D̃αi
g(2)(ℓ)

∣

∣ � |ℓ|−i−4 log2 |ℓ| + |ℓ|−2 log |ℓ||D̃i+1u(ℓ)|
)

� |ℓ|−2−i .

The term f : Recall from the proof of Lemma 16 that there exists g(3) such

that |g(3)(ℓ)| � |ℓ|−2 and D̃g(3) = f . Setting g = g(1) + g(2) − g(3) this already

completes the proof of the case j = 2. Applying Lemma 10 |D̃i−1g(3)| � |ℓ|−i−1.

Conclusion: Summarising the estimates for difference operators applied to

g(1), g(2), g̃(3) and choosing g̃ = g(1) + g(2) − g(3) we obtain both of the decay

estimates claimed in parts (a) and (b) ⊓⊔

Proof (Theorem 5, Case j > 1). By induction, suppose that

|D̃i ū(ℓ)| � |ℓ|−i−1 log |ℓ| for i = 1, . . . , j − 1. (99)

and consequently also

|D̃ j ū(ℓ)| � |ℓ|− j−2 logr |ℓ|,

with r = 1. However, suppose more generally that r ∈ {0, 1}.
In the following we assume again, without loss of generality, that ℓ1 < x̂1 (cf.

Remark 7 and proof of Lemma 17), and further that |ℓ| is sufficiently large.

Let u := ū, ρ ∈ R j and let v(k) := DρG(k − ℓ), then

Dρu(ℓ) = 〈Hu, v〉 = 〈H̃u, v〉 + 〈(H − H̃)u, v〉

= 〈g, D̃v〉 +
∑

ℓ∈UΓ

(

〈B Du, Dv〉 − 〈B D̃u, D̃v〉
)

=: T1 + T2. (100)

The term T2 can be estimated analogously as in the proof of the case j = 1

in Section 6.5, noting that by the same argument as used there, |D̃DρG(k − ℓ)| �
|k − ℓ|− j−1. Thus, one obtains

∣

∣T2

∣

∣ � |ℓ|− j−1 log |ℓ|.

The term T1: First, we split

〈g, D̃v〉 =
∑

|k−ℓ|≦|ℓ|/2

〈g(k), D̃v(k)〉 +
∑

|k−ℓ|>|ℓ|/2

〈g(k), D̃v(k)〉 =: S1 + S2.

The second term is readily estimated, using |D̃v(k)| � |ℓ − k|− j−1, by

|S2| �
∑

|k−ℓ|>|ℓ|/2

|k|−2|ℓ − k|− j−1 � |ℓ|− j−1 log |ℓ|.
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To estimate S1 we first notice that, provided that |ℓ| is chosen sufficiently large,

this sum only involves values of g, v away from Γ , that is, D̃ ≡ D and we can

write

S1 =
∑

|k−ℓ|≦|ℓ|/2

〈g(k), Dv(k)〉.

We are now in a position to mimic the argument of Lemma 15 almost verbatim, only

having to take care to take into account the slower decay of g. Namely, according to

the hypothesis stated at the beginning of the present proof, and employing Lemma

18 we have |Di g(k)| � |k|−i−2 logr |k|. This in turn yields an additional log-factor

in the estimate

|S1| � |ℓ|− j−1 logr+1 |ℓ|.
In summary, we have |T1| � |ℓ|− j−1 logr+1 |ℓ|.

Conclusion: Arguing initially with r = 1, we obtain from the preceding argu-

ments that |D j u(ℓ)| � |ℓ|− j−1 log2 |ℓ|. This initial estimate implies that, at the

beginning of the proof, we may in fact choose r = 0, and therefore, we even obtain

the improved bound |D j u(ℓ)| � |ℓ|− j−1 log |ℓ|. Recalling that we assumed (with-

out loss of generality) ℓ1 < x̂1, so that in fact we have |D̃ j u(ℓ)| � |ℓ|− j−1 log |ℓ|,
this completes the proof. ⊓⊔

Acknowledgments We thank Brian Van Koten who pointed out a substantial flaw in our
construction of the edge dislocation predictor in an earlier version of this work, and made
valuable comments that helped us resolve it.

Open Access This article is distributed under the terms of the Creative Commons Attribu-
tion 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided you give appropri-
ate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

A Continuum Elasticity

A.1 Cauchy–Born Model

Consider a Bravais lattice AZd with site potential V : (Rm)R → R ∪ {+∞}. Consider

the homogeneous continuous displacement field u : Rd → Rm , u(x) = Fx for some

F ∈ Rm×d . Then interpreting u as an atomistic configuration, the energy per unit undeformed
volume in the deformed configuration u is

W (F) := V (F · R)/ det A.

If u, u0 : Rd → Rm are both “smooth” (that is, |∇2u(x)|, |∇2u0(x)| ≪ 1), then
∫

Rd

(

W (∇u) − W (∇u0)
)

dx

is a good approximation to the atomistic energy-difference
∑

ℓ∈AZd V (Du(ℓ))−V (Du0(ℓ)).

The potential W : Rm×d → R ∪ {+∞} is called the Cauchy–Born strain energy function.
Detailed analyses of the Cauchy–Born model are presented in [6,15,34]. In these references it
is shown that both the Cauchy–Born energy and its first variation are second-order consistent
with atomistic model, and resulting error estimates are derived.

http://creativecommons.org/licenses/by/4.0/


Analysis of Crystal Defect Atomistic Simulations 1265

A.2 Linearised Elasticity

A continuum linear elasticity model that is consistent with the atomistic description can be
obtained by expanding the Cauchy–Born strain energy function W to second order:

W (G) ∼ W (0) + ∂Fiα
W (0)Giα + 1

2 ∂FiαF jβ
W (0)GiαG jβ ,

where we employed summation convention.

Let C
jβ
iα

:= ∂FiαF jβ
W (0), then employing cancellation of the linear terms, we obtain the

linearised energy-difference functional

1

2 det A

∫

Rd

∑

ρ,ς∈R

V,ρς (0) : ∇ρu ⊗ ∇ς u dx = 1

2

∫

Rd
C

jβ
iα

∂xα ui ∂xβ u j dx,

and the associated equilibrium equation is

1

det A

∑

ρ,ς∈R

V,ρς (0)∇ρ∇ς u = C
jβ
iα

∂2ui

∂xα∂xβ
= 0 for i = 1, . . . , m.

(This equation becomes non-trivial when supplied with boundary conditions or an external
potential, either or both arising from the presence of a defect.)

If the lattice AZd is stable in the sense that, for some γ > 0,
∑

ℓ∈AZd

〈

δ2V (0)Dv(ℓ), Dv(ℓ)
〉

≧ γ ‖∇v‖2
L2

(cf. (9), (70)) then the tensor C satisfies the Legendre–Hadamard condition and hence the
linear elasticity equations are well-posed in a suitable function space setting [19,44].
Finally, we remark that, the linear elasticity model can also be obtained by first deriving
a quadratic expansion of the atomistic energy and then taking the long-wavelength limit
(continuum limit). This yields the relationship between the continuum Green’s function and
the lattice Green’s function exploited in the proof of Lemma 12.

B List of Symbols

– AZd : homogeneous reference lattice; Λ: defective reference lattice (point defects) or

Λ = AZd (dislocations); p. 6
– ℓ, k: lattice sites; ρ, ς, τ : lattice directions
– Rdef : defect core radius (point defects); p. 6
– TΛ: auxiliary triangulation of reference domain Λ; p. 6

– Ẇ c, Ẇ 1,2: discrete function spaces; p. 6
– Rℓ, R: interaction ranges; rcut: interaction radius; p. 7
– V, Vℓ: site energy potential; p. 7
– E : energy-difference functional; p. 7 for point defects and p. 19 for dislocations
– W : Cauchy–Born strain energy potential; p. 50
– b: Burgers vector; b12 = (b1, b2): in-plane component; p. 15
– x̂, r̂ : position and radius of dislocation core; Γ : branch-cut, or slip-half-plane; p. 15;

ΩΓ : right half-space; p. 17
– S0: slip operators for total displacements; S: slip operator for relative displacements;

– ulin: linear elasticity solution for a dislocation; u0: predictor displacement for a dislo-
cation; p. 17

– A : admissible set for dislocation problem; p. 18
– ΓS, ES : “reflected” dislocation geometry and energy difference functional; p. 7.

– e: elastic strain of predictor u0; D̃: elastic gradient operator; p. 20.
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