
Analysis of Caching and Replication Strategies
for Web Applications

Swaminathan Sivasubramanian1 Guillaume Pierre1

Maarten van Steen1 Gustavo Alonso2 ∗

Abstract

Replication and caching mechanisms are often employed to enhance the per-
formance of Web applications. In this article, we present a qualitative and quan-
titative analysis of state-of-the-art replication and caching techniques used to host
Web applications. Our analysis shows that the selection of best mechanism is heav-
ily dependant on the data workload and requires careful analysis of the application
characteristics. To this end, we propose a technique that may enable future Web
practitioners to compare the performance of different caching/replication mecha-
nisms.

There are many reasons why Web sites can be slow and an important one is dynamic
generation of Web documents. Modern Web sites such as Amazon.com and Slash-
dot.org do not simply deliver static pages but generate content on the fly each time a
request is received, so that the pages can be customized for each user. Clearly, generat-
ing a Web page in response to every request takes more time than simply fetching static
HTML pages from disk. The main cause is that generating a dynamic Web page typi-
cally requires to issue one or more queries to a database. Access times to the database
can easily get out of hand when the request load is high.

A number of techniques have been developed in industry and academia to over-
come this problem. The most straightforward one is Web page caching where (frag-
ments of) the HTML pages generated by the application are cached for serving future
requests [7]. For example, Content Delivery Networks (CDNs) like Akamai1 deploy
edge servers around the Internet, which locally cache Web pages and deliver them
to the clients. By delivering pages from edge servers that are usually located close
to the client, CDNs reduce the network latency for each request. Page caching tech-
niques work well if many requests to the Web site can be answered with the same
cached HTML page. These techniques have shown to be effective in hosting many
Web sites [3, 7]. However, with growing drive towards personalization of Web con-
tent, generated pages tend to be unique for every user, thereby reducing the benefits of
conventional page caching techniques.

∗Vrije Universiteit, Amsterdam1 and ETH Zurich, Switzerland2. Email:
{swami,gpierre,steen}@cs.vu.nl, alonso@inf.ethz.ch

1http://www.akamai.com

1

The limitations of page caching have triggered the CDN and database research
community into investigating new approaches for scalable hosting of Web applications.
These approaches can be broadly classified into four techniques: replicate application
code [10], cache database records [1, 4], cache query results [8] and replicate the entire
database [6, 9]. While numerous research efforts have been spent in developing each
of these approaches, very few works have analyzed their pros and cons and examined
their performance. The objective of this article is to present an overview of various
such scalability techniques and present a comparative analysis of their features and
performance. To do so, let us first consider well-known scaling techniques for Web
applications.

Techniques to scale Web applications

Instead of storing dynamic pages after they are generated by some central Web server,
various techniques aim at replicating themeansto generate the pages over multiple
edge servers. Despite their differences, these techniques often rely on the assumption
that the applications do not require strict transactional semantics for their data accesses
(as for example banking applications do). They typically provide “read-your-writes”
consistency which guarantees that when an application at an edge server performs an
update, any subsequent reads from the same edge server will return the effects of that
update (and possibly others). Scalable techniques that do provide transactional seman-
tics are beyond the scope of this article.

Edge computing

The simplest way to generate user-specific pages is to replicate the application code at
multiple edge servers, and keep the data centralized (see Figure 1(a)). This technique is,
for example, the heart of the Edge Computing product from Akamai and ACDN [10].
Edge computing (EC) allows each edge server to generate user-specific pages accord-
ing to context, sessions, and information stored in the database, thereby spreading the
computational load across multiple servers. However, the centralization of the data can
also pose a number of problems. First, if edge servers are located worldwide, then each
data access incurs wide-area network latency; second, the central database quickly be-
comes a performance bottleneck as it needs to serve all database requests from the
whole system. These properties restrict the use of EC to Web applications that require
relatively few database accesses to generate the content.

Data Replication

The solution to the database bottleneck problem of EC is obviously to place the data at
each edge server so that generating a page requires only local computation and data ac-
cess. Database replication (REPL) techniques can help here, by maintaining identical
copies of the database at multiple locations [2, 6, 9]. However, in Web environments,
the database replicas are typically located across a wide-area network, whereas most
database replication techniques assume the presence of a local-area network between

2

Query
result

<xml>

</xml>

Query
result
<xml>

</xml>

Database
queries

HTTP
response

HTTP
request

HTTP
request

HTTP
response

Web browser Web browser

Database

Edge serverEdge server

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �Appl. code Appl. code

(a) Edge Computing

Web browser

Replica server

Cached

Replica server

records
database

Web browser

Database

Appl. code
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

Appl. codehitcontainment
Query

invalidations
Database queries/

Query
hitcontainment

(b) Content-aware Caching

<xml>

</xml>

Query
result

Query
result
<xml>

</xml>

Database
queries

Cached
database

query
results

Database

Web browser Web browser

Replica server Replica server

<xml>

</xml>

<xml>

</xml>
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �Appl. code

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �Appl. code

(c) Content-blind Caching

Database

Web browser

database
Replicated

records

Web browser

Replica server Replica server

updates
Database record

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �Appl. code

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �Appl. code

(d) Data Replication

Figure 1: Variety of solutions that address problem of scalable Web hosting

3

replicas. This can be a problem if many database updates are generated by a Web ap-
plication. In this case, each update needs to be propagated to all the other replicas to
maintain the consistency of the replicated data, potentially introducing a huge network
traffic and performance overhead. In our study, we designed a simple replication mid-
dleware solution where all updates are serialized at an origin server and propagated to
the edges in a lazy fashion. Each read query is answered locally at the edges.

Content-aware data caching

Instead of maintaining full copies of the database at each edge server, content-aware
caching systems (CAC) simply cache the result of database queries as they are issued
by the application code. In this case, each edge server maintains a partial copy of
the database. Each time a query is issued, the edge-server database needs to check if
it contains enough data locally to answer the query correctly. This process is called
query containment check. If the containment check result is positive, then the query
can be executed locally. Otherwise, it must be sent to the central database. In the latter
case, the result is inserted in the edge-server database so that future identical requests
can be served locally. The process of inserting cached tuples into the edge database
is done by creating insert/update queries on the fly and requires a good understanding
of the application’s data schema. Examples of CAC systems include DBCache [4] and
DBProxy [1].

CAC allows to store query results in a storage-efficient way. For example, the
queries “select * from items where price < 50” (Q1) and “select * from items
where price < 20” (Q2) have overlapping results. By inserting both results into
the same database, the overlapping records are stored only once. Another interest-
ing feature of CAC is that once the result of Q1 has been stored, Q2 can be executed
locally, even though that particular query has never been issued before. In this case,
the query containment procedure would recognize that the results of Q2 are contained
in the results from Q1. CAC systems are beneficial when application’s query workload
has range queries or queries with multiple predicates (e.g., find items which satisfy
<clause1 > OR<clause2 >).

Typically, a query containment check is highly computationally expensive, as we
need to check the new query withall previously cached queries. To reduce this cost,
CAC systems utilize the fact that Web applications often consist of a fixed set of read
and write query templates. A query template is a parameterized SQL query whose
parameter values are passed to the system at runtime. Use of query templates can
vastly reduce the search space of query containment as each incoming query needs to
be checked only with a relatively small set of query templates. Using a template-based
check, in the above example Q1 and Q2 might be checked only with other cached
instances of the template QT1: “select * from items where price<?” and not with
instances of, for example, QT2: “select * from items where subject=?”. However,
this method can also reduce the cache hit rate. These systems use template-based
mechanisms to ensure cache consistency. In CAC systems, the update queries are
always executed at the origin server (the central database server). When an edge server
caches a query, it subscribes to receive invalidations of conflicting query templates.

4

For instance, in the above example an update to change the price of an item table will
conflict with QT1.

Content-blind data caching

An alternative to CAC is content-blind query caching (CBC). In this case, the edge
servers do not need to run a database at all. Instead, they store the results of remote
database queries independently [8, 12]. CBC uses a method akin to template-based
invalidation to maintain the consistency of its cached results [12]. In CBC, since the
query results are not merged together, caching the answers to the queries Q1 and Q2
defined above would lead to storing redundant information. Also, the cache will have a
hit only if exactly the same query is issued multiple times at the same edge server. This
can potentially lead to suboptimal usage of storage resources and lower cache hit rates.
On the other hand, it has some advantages. First, in CBC, the process of checking if
a query result is cached or not is trivial and incurs very little computational load. In
contrast, query containment procedures in CAC is relatively expensive as they require
examination of at least a subset of cached queries. Second, by caching query results
as result sets (by means of JDBC or PHP drivers) instead of database records, CBC
system can return results immediately in case of a cache hit. In contrast, CAC pays
the price of database query execution and can increase the load on edge servers. Third,
inserting a new element into the cache does not require a query rewrite and involves
merely storing objects.

Cache replacement is an important issue in any caching system as it determines
which query results to cache and which ones to evict from the cache. An ideal cache
replacement policy must take into account several metrics such as temporal locality,
cost of the query, and update patterns of the database. Note that cache replacement in
CBC is simple as each result is stored independently and many popular replacement al-
gorithms can be applied here [12]. However, since CAC merges multiple query results,
its replacement policy should ensure that removal of a query result does not remove the
affect the results of other cached queries.

Performance Analysis

To make a quantitative comparison of these four techniques, we evaluate their perfor-
mance for two different applications: RUBBoS, a bulletin board benchmark application
that modelsslashdot.org , and TPC-W, an industry standard e-commerce bench-
mark that models an online bookstore likewww.amazon.com .

RUBBoS application’s database consists of five tables, storing information regard-
ing users, stories, comments, submissions and moderator activities. We filled the data-
base with information of500,000users and200,000comments. The TPC-W bench-
marks consists of seven database tables. Its database is filled with information on
100,000items and288,000customers. For our experiments, we chose the open source
PHP implementation of these benchmarks2. These two applications have very different

2http://jmob.objectweb.org/rubbos.html , http://pgfoundry.org/projects/
tpc-w-php/

5

Clients

CBC

Cache

CAC & REPL

DB

Edge server

DB

Origin Server

WAN

Edge server

DB

Origin Server

WAN

Edge Computing

Edge server

DB

Origin Server

WAN

� � � �� � �

� � � �� � � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � � �	 	 	

� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � � �
� � � �

� � �
� � �

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Figure 2: Architectures of evaluated systems

data access characteristics. In a typical bulletin board, users are usually interested in
the latest news and so the workload can exhibit high locality. On the other hand, in
a bookstore application the shopping interests of customers may vary, thereby leading
to lower query locality. This allows us to study the behavior of different systems for
different data access patterns. However, it must be noted that benchmarks by no means
are true representative of actual workload.

The client workload for both benchmarks is generated by Emulated Browsers (EBs)
and conforms to the TPC-W specification for clients [13]. The average think time (i.e.,
the amount of time an EB waits between receiving a response and issuing the next re-
quest) is set to5 seconds. The user workload for RUBBoS contains more than15%
interactions that lead to updates. For TPC-W, we study the performance for two kinds
of workloads: browsing (95% browsing and5% shopping interactions) and ordering
workload (equal fraction of browsing and shopping interactions). For TPC-W, we
modified the client workload behavior such that the book popularity follows a Zipf
distribution (withα = 1), which was found in a study that observed data characteristics
of a major online bookstore [5].

Experiment Setup

For our tests, we used two servers with dual-processor Pentium III 900 Mhz CPU
and1 GB memory. We use the Apache2.0.49 Web server with PHP4.3.6 in our edge
server, PostgreSQL 7.3.4 for our DBMS and PgPool for pooling database connections3.
We emulated a wide-area network between the edge server and the origin server, by
directing all network traffic to an intermediate router that runs the NIST Net network
emulator4. This router delays packets sent between the different servers to simulate
a realistic wide-area network. In the remaining discussion, we refer to links via NIST
Net with a50Mbps bandwidth and a100ms latency as WAN links, and100Mbps and

3http://pgfoundry.org/projects/pgpool/
4http://snad.ncsl.nist.gov/itg/nistnet/

6

zero latency as LAN links. Note that these values are considerably optimistic, as the
Internet bandwidth usually varies a lot and is affected by network congestion. These
values are chosen to model the best network conditions for a CDN built on an Internet
backbone and are theleast favorableconditions to show the best performance of any
data caching or replication system. The experimental setup of the evaluated systems
are described in Figure 2. Note that we do not emulate wide-area latency between
clients and edge server, as this is a constant which would equally apply for all systems.

All experiments are started with a cold cache. The system is warmed up for20
minutes, after which measurements are taken for a period of90 minutes. As we did
not want the effect of cache replacement algorithms to affect the performance of CAC
and CBC, we did not constrain the storage capacity of the edge server, i.e., the size of
the cache repository was not restricted. At the outset, this might look advantageous
for caching systems, however in our experiments we observed that the amount of disk
space required for cache repository was at most only20% of the size of the entire
database. In all experiments, we vary the request load (expressed in terms of number
of active client sessions) and measure the end-to-endclient latency, which is the sum
of thenetwork latency(the time spent by the request traversing the WAN) andinternal
latency(the time spent by the request in generating the query responses and composing
the subsequent HTML pages).

Performance Results

The results of our experiment are shown in Figure 3. For RUBBoS, CBC performs
the best in terms of client latency (except under low loads) while edge computing per-
forms the worst. The reason for CBC’s superior performance with RUBBoS is twofold.
First, RUBBoS’s workload exhibits high temporal locality (yielding a cache hit ratio
of up to almost80%) thereby avoiding WAN latency. Second, the query execution
latency incurred in generating a query response, for CBC, is much lower than that of
REPL (or CAC) as the caching system avoids database query planning and execution
latency. This allows CBC to sustain higher load than REPL and CAC. EC performs
worse than the other architectures as each data access incurs a WAN latency and all re-
quests are served by a single origin server. However, during low loads, REPL performs
marginally better than CBC as each query is answered locally thereby avoiding any
wide-area network latency. Moreover, during low loads, the internal latency incurred
in generating a query response is lower than the network latency incurred in answering
a query.

In our experiments, CBC and CAC have almost the same hit ratio, despite the
fact that CAC’s merged storage allows more hits than CBC. The reason is that CAC’s
merged storage is most beneficial for workloads with many range queries and queries
with multiple predicates. However, in RUBBoS, most of the queries are exact lookup
queries, which do not benefit from the flexibility offered by query containment tests.
The increase in latency for CAC can also be attributed to the increased overhead of
query containment, cache management (inserting and invalidating caches), query plan-
ning, and execution.

For TPC-W, EC performs the worst while REPL performs the best (see Figures 3(b)
and (c)). In this case, CBC and CAC perform relatively poor because the TPC-W

7

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100 120 140 160 180

A
v
e
ra

g
e
 C

lie
n
t
L
a
te

n
c
y
 (

m
s
)

Number of active client sessions

Edge Computing

Content-aware

Full Replication

Content-blind

(a) RUBBoS benchmark

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 15 20 25 30 35 40 45 50

A
v
e

ra
g

e
 C

lie
n

t
L

a
te

n
c
y
 (

m
s
)

Number of active client sessions

Edge Computing

Content-blind

Content-aware

Full Replication

(b) TPC-W Browsing

 0

 500

 1000

 1500

 2000

 10 15 20 25 30 35 40 45 50

A
v
e

ra
g

e
 C

lie
n

t
L

a
te

n
c
y
 (

m
s
)

Number of active client sessions

Edge Computing

Content-blind

Content-aware

Full Replication

(c) TPC-W Ordering

Figure 3: Performance of different architectures for RUBBoS and TPC-W application

8

benchmark workload exhibits poor temporal locality which yields a hit ratio of at most
35%in our experiments. REPL performs better as each query can be answered locally.
CBC performs better than CAC as the former’s cache hit ratio is only marginally less
compared to the latter. Again, this is again due the fact that TPC-W does not fully
exploit CAC’s query containment features. Due to space constraints we do not present
detailed discussions of our results. For extensive discussions and more results on the
performance of these systems for multiple edge servers and using weak consistency
mechanisms, we refer interested readers to [12].

Discussion

From the experiments, we can see that there is no clear winner. For applications whose
query workload exhibits high locality (e.g., RUBBoS), CBC performs the best. CAC
does not perform as well as expected mostly because the tested query workloads do
not fully exploit the query containment features of CAC. For applications that have a
predominant load of such queries, we believe CAC will outperform CBC systems. For
applications that exhibit poor locality (such as TPC-W benchmark), data replication
schemes perform better than content-blind caching. We conclude that there exists no
single solution that performs the best for all Web applications and workloads.

Choosing the right strategy for your web application

Since different techniques are optimal for different applications, Web designers should
choose them by carefully analyzing the characteristics of the Web application. The
question ishow to choose the correct strategy?. In general, the best strategy is the
one that reduces the end-to-end client latency of the application. The end-to-end client
latency is affected by various parameters such as hit ratio of caches (page cache, CAC
or CBC), application server execution time, and database query execution time5. To
estimate the end-to-end latency of a Web application, we need to estimate these para-
meters. While parameters such as execution time of application servers and databases
can be measured by server instrumentation and log analysis, measuring the cache hit
ratio for different caching strategies such as CBC and CAC is harder. This is because it
is not always feasible to deploy multiple caching systems just for measuring their cache
hit ratio. Ideally, we would like to measure the possible hit ratio of different caching
strategies without having to run each of them. To this end, we propose the content of
virtual caches.

Virtual Cache

A virtual cache (VC) behaves like a real cache except that it stores only the metadata
such as the list of objects in the cache, their sizes, invalidation parameters. Objects
themselves are not stored. By applying the same operations as a real cache, VCs can
estimate the hit rate that would be offered by a real cache with same configuration.

5For a detailed description of the model to estimate end-to-end latency of a multi-tiered Web application,
we refer interested readers to our earlier work [11].

9

Since a VC stores only the metadata, it requires less memory. For example, to measure
the hit ratio of a cache that can hold millions of data items, the size of a virtual cache
required will be in the order of only a few megabytes. A system may for example
use 2 such VCs to determine the effective hit ratio (HR) of CAC and CBC.6 A Web
administrator can thus determine the HRs that different caching techniques would offer.

By definition, the hit ratio of a VC should be same as a real cache as both perform
the same operations. Our experiments with virtual GlobeCBC, fragment caches and
CAC also confirm this. Moreover, compared to static trace-driven analysis, VC is more
effective due to its ability to perform instant and on-line measurement of cache HRs.
Once we obtain the HRs of different techniques and the execution times of servers
at different tiers, we can estimate the end-to-end latency of the application if it was
deployed with different techniques [11]. Subsequently, we can choose the technique
that offers the least end-to-end latency to apply for hosting the application.

Note that this process of selection can be done during the initial phases of appli-
cation deployment and revised periodically, if necessary. In such cases, different VCs
must be run (with the application) only during the decision making periods. However,
if the application experiences frequent change in workload then one can envisage run-
ning these VCs continuously and performing adaptations more frequently, as described
in [11].

Conclusions

Various caching and replication techniques are available for improving the performance
of Web applications. Our analysis shows that there is no single best replication/caching
solution for Web applications. Consequently, application designers/administrators need
to study their application’s query workload to decide on the best-suited solution. To
this end, we propose an online technique based on virtual caches that can be used
to compare the relative performance of different caching techniques. We believe this
technique (in combination with the analytical model described in [11]) will aid future
administrators in choosing the best caching/replication technique for their applications.

References

[1] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan. DBProxy: A dynamic data
cache for web applications. InProceedings of Internation Conference on Data
Engineering, pages 821–831, 2003.

[2] C. Amza, A. Cox, and W. Zwaenepoel. Conflict-aware scheduling for dynamic
content applications. InProceedings of the Fifth USENIX Symposium on Internet
Technologies and Systems, 2003.

6Note that for implementing a virtual CAC, one has to implement the query containment checker into the
VC in addition to simple put, get, and invalidation operations.

10

[3] M. Arlitt, D. Krishnamurthy, and J. Rolia. Characterizing the scalability of a
large web-based shopping system.ACM Transactions on Internet Technology,
1(1):44–69, 2001.

[4] C. Bornhvd, M. Altinel, C. Mohan, H. Pirahesh, and B. Reinwald. Adaptive
database caching with DBCache.Data Engineering, 27(2):11–18, June 2004.

[5] E. Brynjolfsson, Y. J. Hu, and M. D. Smith. Consumer surplus in the digital
economy: Estimating the value of increased product variety at online booksellers.
Manage. Sci., 49(11):1580–1596, 2003.

[6] E. Cecchet. C-JDBC: a middleware framework for database clustering.Data
Engineering, 27(2):19–26, June 2004.

[7] J. Challenger, P. Dantzig, and K. Witting. A fragment-based approach for effi-
ciently creating dynamic web content.ACM Transactions on Internet Technology,
4(4), Nov 2004.

[8] C. Olston, A. Manjhi, C. Garrod, A. Ailamaki, B. M. Maggs, and T. C. Mowry. A
scalability service for dynamic web applications. InProceedings of CIDR, pages
56–69, 2005.

[9] C. Plattner and G. Alonso. Ganymed: Scalable replication for transactional
web applications. InProceedings of the International Middleware Conference,
Toronto, Canada, Oct. 2004.

[10] M. Rabinovich, Z. Xiao, and A. Agarwal. Computing on the edge: A platform
for replicating internet applications. InProceedings of the Eighth International
Workshop on Web Content Caching and Distribution, pages 57–77, Hawthorne,
NY, USA, Sept. 2003.

[11] S. Sivasubramanian, G. Pierre, and M. van Steen. Towards autonomic hosting
of multi-tier internet applications. InProceedings of the USENIX/IEEE HotAC-I
Workshop, June 2006.

[12] S. Sivasubramanian, G. Pierre, M. van Steen, and G. Alonso. GlobeCBC:
Content-blind result caching for dynamic web applications. Technical Report
IR-CS-022, Vrije Universiteit, Amsterdam, The Netherlands, 2006.

[13] W. Smith. TPC-W: Benchmarking an e-commerce solution.
http://www.tpc.org/tpcw/tpcwex.asp.

11

