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Abstract

Gene expression studies have been playing a critical role in cancer research. Despite tremendous 

effort, the analysis results are still often unsatisfactory, because of the weak signals and high data 

dimensionality. Analysis is often further challenged by the long-tailed distributions of the outcome 

variables. In recent multidimensional studies, data have been collected on gene expressions as well 

as their regulators (for example, copy number alterations, methylation, and microRNAs), which 

can provide additional information on the associations between gene expressions and cancer 

outcomes. In this study, we develop an ARMI (Assisted Robust Marker Identification) approach 

for analyzing cancer studies with measurements on gene expressions as well as regulators. The 

proposed approach borrows information from regulators and can be more effective than analyzing 

gene expression data alone. A robust objective function is adopted to accommodate long-tailed 

distributions. Marker identification is effectively realized using penalization. The proposed 

approach has an intuitive formulation and is computationally much affordable. Simulation shows 

its satisfactory performance under a variety of settings. TCGA (The Cancer Genome Atlas) data 

on melanoma and lung cancer are analyzed, which leads to biologically plausible marker 

identification and superior prediction.
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1 Introduction

For many cancer outcomes/phenotypes, profiling studies have been extensively conducted, 

searching for omics markers which may assist in diagnosis, treatment selection, and 

prediction of prognosis paths. Gene expression (GE) studies have been having a pivotal role 

in cancer research. Compared to some other types of omics measurements (for example, 

DNA methylation, mutations, and microRNAs), gene expressions are at the downstream and 
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“closer” to cancer outcomes. Measurements on proteins and metabolisms, which are at the 

downstream of GEs, are often insufficiently collected. For the outcomes and phenotypes of 

many cancer types, recent studies show that GEs have prediction performance superior to the 

other omics measurements (Zhao et al. 2015; Jiang et al. 2016). In addition, a large amount 

of cancer GE data are available at TCGA, GEO, and other databases, which facilitates 

testing new analysis methods, conducting secondary analysis, and making new discoveries 

cost-effectively.

Consider a study with n subjects, each with an outcome/phenotype and p GE measurements. 

Let y = (y1, …, yn)′ be the vector of outcome variable and X = (X1, …, Xp) be the n × p 
matrix of GEs. As a representative example, consider the popular case with a continuous 

outcome and linear modeling. Accommodating other types of outcomes will be discussed 

later. Consider

y = Xβ + ε, (1)

where β is the p-vector of unknown regression coefficients and ε = (ε1, …, εn)′ is the vector 

of random errors. With proper normalization, the intercept is omitted.

In a typical cancer GE study, the number of subjects is usually smaller (sometimes much 

smaller) than the number of GEs. Thus, regularization is usually needed in model 

estimation. In addition, out of a large number of GEs measured, only a small subset is 

expected to be cancer-associated. Marker identification, which facilitates interpretation, 

modeling, and practical utilization, is generally conducted along with estimation. A large 

number of techniques have been developed for regularized estimation and marker 

identification. Among them, penalization has been popular because of its satisfactory 

numerical and statistical properties (Ma and Huang 2008). Under the penalization 

framework, the estimate is defined as the minimizer of the following objective function:

1
n y − Xβ 2

2 + pen(β), (2)

where pen(·) is the penalty function. The most popular penalty is perhaps Lasso, with 

alternatives including SCAD, MCP, bridge, and others.

Quite a few cancer GE studies have been conducted under the penalized analysis framework, 

with various goodness-of-fit and penalty functions. Despite great successes, in practice, the 

analysis in (2) still often generates unsatisfactory results, which may be attributable to the 

following factors. Most GE signals are moderate to small, and most of the existing cancer 

omics studies have small sample sizes. As a result, there is not enough “information” to 

make reliable discoveries. In practice, long-tailed distributions of the outcome variables are 

not rare. This can be caused by multiple reasons. Some clinical outcomes have skewed 

distributions in nature. In addition, measurement error and human mistakes can happen, and 

data extracted from medical records are not always reliable (Fall et al. 2008; Bowman 2011). 

Such data contaminations can lead to long-tailed distributions. Most cancer GE studies 
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cannot afford conducting rigorous patient selection, and seemingly similar patients can have 

different cancer subtypes. In this case, data on the major subtypes can be viewed as 

“contaminated” by those on the smaller subtypes. For the datasets analyzed in this article, 

we plot the outcome variables in Figure 1, where we can clearly see the long tails. For a 

continuous outcome variable, the commonly adopted least squared estimation in (2) cannot 

effectively accommodate long-tailed distributions (or data contamination). One possible 

solution is to transform the outcome variable first (some more details in data analysis). 

However, the transformation function needs to be properly selected, which is not a simple 

task. In addition, the transformed outcome may be not as interpretable as the original one. 

Similar problems exist for other types of outcome variables. In this article, we will directly 

address the aforementioned problems which are commonly encountered in cancer gene 

expression studies.

The levels of GEs are regulated by multiple types of regulators including for example copy 

number alteration (CNA), methylation, and microRNA. With the regulation relationship, the 

regulators contain information on the relevancy of GEs. To more intuitively demonstrate the 

idea, consider the simplified scenario where each GE is only regulated by one CNA, and the 

regulation relationship is strong. Consider two (GE, CNA) pairs. The first pair has (GE, 

CNA) effects on a cancer outcome equal to (1, 0.01), and the second pair has effects (0.7, 

0.6). If we only look at the GE data, then the first GE will be identified as having a stronger 

association with the outcome. However, considering the regulation, the first GE is possibly a 

false positive, as the finding is not supported by its regulator, while the second GE is more 

likely to be truly associated. In this study, our goal is to take advantage of information in 
regulators so as to more accurately identify GE signals. The proposed analysis is made 

possible by the recent multidimensional studies such as TCGA (The Cancer Genome Atlas) 

which collect data on GEs as well as regulators on the same subjects. A few recent studies 

have collectively analyzed data on GEs and their regulators. For example, Shi et al. (2015) 

studies the regulations of GEs by regulators. Zhao et al. (2014) develops an additive strategy 

and integrates GE and regulator data in model building. Wang et al. (2013) and Zhu et al. 

(2016) decompose GEs using regulator information and allow different GE components to 

behave differently in cancer models. The analysis paradigm in this study is fundamentally 

different from that of the aforementioned studies. Specifically, it differs from Shi et al. 

(2015) and some others by developing a model for a cancer outcome/phenotype. The main 

goal is to identify GE markers, not multiple types of omics markers as in Zhao et al. (2014). 

Different from the decomposition in Wang et al. (2013) and Zhu et al. (2016), GEs are 

considered as a whole, which facilitates interpretation. In the literature, the most relevant 

study is perhaps Gross and Tibshirani (2015), which develops the collaborative regression 

method and encourages two types of omics measurements to explain similar variations in 

outcome. However, the collaborative regression method does not explicitly account for the 

regulation relationship, which, as shown in our numerical study, may lead to inferior results. 

In addition, it is noted that in all these aforementioned studies, “standard” estimation, which 

cannot accommodate long-tailed distributions (or contamination), is adopted.

To accommodate long-tailed outcome distributions (or data contamination), we adopt robust 

estimation. In GE studies, robust estimation has been adopted but is still rather limited (Wu 

and Ma 2015). To the best of our knowledge, it has not been used in contexts similar to the 
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present analysis. For some long-tailed distributions, transformations such as logarithm may 

be sufficient from a statistical perspective but may complicate interpretation, since the 

models are not on the original scale. For other distributions, simple and satisfactory 

transformations may not exist. In contrast, robust estimation can provide a more broadly 

applicable solution.

In this article, we develop an ARMI (Assisted Robust Marker Identification) approach for 

analyzing cancer GE studies. With the assistance of GE regulators, the proposed approach 

can more accurately identify GE markers than those that analyze GE data alone. Unlike the 

collaborative regression and others, it explicitly accounts for the regulation relationship 

between GEs and regulators and can have superior numerical performance. With robustness, 

it can accommodate data distributions that are not appropriate for simple models and/or 

estimations. Overall, this study provides a practically more effective way for analyzing 

cancer GE data.

2 Methods

2.1 Data and model settings

Consider the data settings described in the previous section and model (1). For 

comparability, we normalize the data matrix such that X j 2
2 = n for j = 1, …, p. With the 

least squared estimation in (2), it needs to be assumed that εj has mean zero and a finite 

variance. To accommodate long-tailed distributions, we adopt robust estimation and only 

assume that εj has median zero, but no variance assumption is made. This weaker error 

assumption makes the proposed approach more broadly applicable. More details are 

presented in Appendix.

For each subject, assume that measurements are also available on q regulators of GEs. The 

regulators can be CNAs, methylation, mutations, microRNAs, and others. When there are 

multiple types of regulators, for example q1 CNAs and q2 methylation, we stack the 

measurements together and create the q = q1 + q2-vector of regulator measurements. This 

approach, although may be a little crude, has been shown to be effective (Zhu et al. 2016). 

Further discussions are also provided in our simulation study. Denote Z = (Z1, …, Zq) as the 

n × q data matrix of regulators. With normalization, Zk has mean zero and Zk 2
2 = n for k = 

1, …, q. For modeling the relationship between GEs and regulators, following Shi et al. 

(2015) and others, we consider

X = Zη + W , (3)

where η is the q × p matrix of unknown regression coefficients and represents the 

“transition” from regulators to GEs. Denote the true value of η as η0. W = (W1, …, Wp) is 

an n × p matrix and accommodates both “random errors” as well as regulation mechanisms 

not measured. The expression level of a specific gene is only affected by a small number of 

regulators (that is, η0 is sparse). However, the set of regulators and strengths of their effects 

are unknown, posing a variable selection and regularized estimation problem.
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Remarks—Linear models have been assumed. For datasets analyzed in this article, we 

graphically examine the relationships between outcomes and GEs and between GEs and 

CNAs. Representative plots are provided in Figure 1 (Appendix), which suggest that linear 

modeling is reasonable. For continuous outcomes and GEs, linear modeling has been 

extensively adopted in the literature. Examples include Wang et al. (2013), Gross and 

Tibshirani (2014), Park et al. (2007), and others. For GEs and their regulators, examples of 

linear modeling include Kim et al. (2009), Peng et al. (2010), Wang et al. (2014), Shi et al. 

(2015) and many others. Extending the proposed approach to other models is in principle 

possible but expected to be challenging. We postpone such pursuit to future research.

2.2 ARMI

With models (1) and (3), we have

y = Xβ + ε = Zηβ + e = Zγ + e, (4)

where e = Wβ + ε. An interpretation of this model is that there are important regulators that 

are associated with the cancer outcome. Motivated by similar considerations, studies have 

been conducted, directly linking CNAs, methylation, microRNAs, and others with cancer 

outcomes.

Another interpretation/utilization of (4) is that important (cancer-associated) regulators 

regulate important GEs, which then contribute to the cancer outcome. Motivated by this 

consideration, we proposed borrowing information from important regulators to assist in 

identifying important GEs so as to improve accuracy. Specifically, we propose the ARMI 

estimate as

(β̂, γ̂) = argmin
β, γ

1
n y − Xβ 1 + 1

n y − Zγ 1 + λ1 β 1 + λ2 γ 1 + λ3 η0β − γ 1 . (5)

λ1, λ2, and λ3 are tuning parameters. GEs corresponding to the nonzero components of β̂
are identified as associated with the cancer outcome.

The ARMI approach has been motivated by the following considerations. In (5), when λ3 = 

0, it reduces to two separate penalized regressions for the outcome variable, with one on GEs 

and the other on regulators. With the sparsity of both β and η, γ is also expected to be 

sparse. Thus, a penalized estimation and selection is sensible. The robust LAD (least 

absolute deviation) loss function, which is a special case of the popular quantile regression, 

is adopted to accommodate long-tailed distributions (and/or contamination). Interestingly, it 

has been suggested that for high-dimensional data, even without long-tailed distributions, the 

ℓ1 distance may provide a better measure than the commonly adopted ℓ2 (Aggarwal et al. 

2001). For regularized estimation and marker identification, we adopt the popular Lasso 

penalty. We note that many other penalties, for example SCAD and MCP, are also applicable 

here. Lasso is adopted for its outstanding numerical properties. Another consideration is that 

“consistently” adopting the ℓ1 norm considerably simplies computation. The most significant 
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advancement is the introduction of penalty λ3‖η0β – γ‖1. GEs and their regulators are 

connected by (3). The new penalty promotes the similarity of η0β and γ. The intuition is 

that the estimation of β and hence marker identification can be improved by borrowing 

information from γ.

Shrinking the differences between regression coefficients and promoting their similarity 

have been considered in the literature. Popular examples include the fused penalization and 

Laplacian penalization (Shi et al. 2015). For a specific coefficient, the fused penalization 

penalizes its differences with two adjacent ones. It demands a spatial adjacency structure, 

which is not present in our analysis. The Laplacian penalization approach imposes ℓ2 

penalties and is usually built on correlations. The most significant difference of the present 

analysis is that β and γ correspond to different types of omics measurements. They can have 

different dimensions, are not directly comparable, and demand the involvement of the 

transition matrix η0. It is insensible to directly take the difference of β and γ or compute the 

pairwise correlations between GEs and regulators.

In practice, η0 is unknown. In (5), we replace it with its estimate which is defined as

η̂ = argmin
η

1
n X − Zη F

2 + λ4 ∑
j = 1

p
∑

k = 1

q
η jk , (6)

where ‖·‖F is the Frobenius norm, and ηjk is the (j, k)th element of η. In (6), the ℓ2 loss is 

adopted as no obvious long-tailed distributions (or contamination) are spotted in X. It can be 

replaced by other loss functions if necessary. The Lasso penalty is imposed again for 

regularized estimation and selection.

Compared to the “benchmark” approach which corresponds to λ2 = λ3 = 0 in (5) and others, 

the ARMI approach involves more parameters. However, it is still expected that if the 

regulators contain information on GEs, which is most likely to be the case given extensive 

biological evidences, GE marker identification can benefit from borrowing information. On 

the other hand, if GEs and regulators are actually not related, then η0 = 0, and η̂ ≈ 0. When 

η0 = 0, λ3‖η0β – γ‖1 reduces to another Lasso penalty for γ. Data-dependently adjusting λ2 

and λ3 can ensure no “double penalization” for γ.

In Appendix, we rigorously establish that the ARMI estimate enjoys the much desired 

consistency properties under high-dimensional settings, which provides it a solid statistical 

ground and may make it preferred over alternative approaches that do not have a strong 

statistical support.

2.3 Computation

Estimation in (6) is standard Lasso and can be efficiently realized using the existing 

algorithms and software packages (such as glmnet and ncvreg in R). Although a large 

number of Lasso estimates need to be computed, as computation can be carried out in a 

highly parallel manner, the cost is very affordable.
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With all norms being ℓ1, optimization in (5) can be effectively realized using linear 

programming. Define α = (y − Xβ)/n, π = (y − Zγ)/n, and τ = η̂β − γ. Let α±, β±, γ±, π±, 

and τ± be the positive/negative parts of α, β, γ, π, and τ, respectively. For two vectors a and 

b with the same length, if ai = bi for all index i, we denote this element-wise equivalency as a 
=e b. Similarly, if ai ≥ bi for all i, denote the element-wise greater than or equal to 

relationship as a ≥e b. Minimizing the objective function in (5) is equivalent to minimizing

α+ + α− + π+ + π− + λ1β+ + λ1β− + λ2γ+ + λ2γ− + λ3τ+ + λ3τ−, (7)

subject to the constraints

α+ − α− =e [y − X(β+ − β−)]/n,
π+ − π− =e [y − Z(γ+ − γ−)]/n,
τ+ − τ− =e η̂(β+ − β−) − (γ+ − γ−),
α±, β±, γ±, π±, τ± ≥e 0.

This linear programming optimization is very fast. For example, for a simulated dataset with 

n = 200 and p = q = 500 (more details below) and fixed η̂, we compute the solutions under 

50(λ1) × 50(λ2) × 10(λ3) tuning parameter values. Computation is accomplished within 6 

seconds using a laptop with standard configurations.

The ARMI approach involves two steps. In both steps, the tuning parameters can be selected 

using many approaches. In numerical study, we adopt cross validation (CV). As the 

computational cost is really low, it is feasible to search for the optimal values of multiple 

tunings simultaneously. To facilitate applications beyond this study, we have developed R 

code which is available at https://github.com/shuanggema. The code can be easily modified 

for other analysis.

3 Simulation

Simulation is conducted to assess the performance of ARMI. In addition, as a reference, we 

also consider the following alternatives.

Alt.1: Consider the estimate

β̂
LassoX

= argmin 1
n y − Xβ 2

2 + λ β 1 . (8)

This is the benchmark Lasso approach, involves X only, and adopts the popular least 

squared loss.

Alt.2: Consider the estimate
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β̂
LassoXZ

= argmin 1
n y − Xβ − Zγ 2

2 + λ( β 1 + γ 1) . (9)

This approach models the outcome directly as a function of X and Z and adopts the 

least squared loss and Lasso penalized estimation.

Alt.3: The ARMI approach, Alt.1, and Alt.2 all conduct the joint analysis of multiple 

GEs. A popular family of approaches conducts marginal analysis. Specifically, for j = 

1, …, p, consider the estimate

β̂ j
marg

= argmin 1
n y − X jβ j 2

2 . (10)

Note that this is a one-dimensional estimation problem and does not require 

penalization. A p-value is obtained for each β̂ j
marg

. GEs with the smallest p-values are 

identified as important.

Alt.4: Consider the collaborative regression approach developed in Gross and 

Tibshirani (2015). This approach also analyzes both GEs and regulators. It 

encourages the two components to explain similar variations in the outcome variable. 

Different from ARMI, there is no explicit account for the regulation relationship (and 

hence no involvement of η).

A special case of ARMI with λ3 = 0. This approach conducts the “LAD loss + Lasso 

penalization” analysis of GE data.

The ARMI and alternative approaches all involve tuning parameters. For Alt.3, the p-value 

cutoff for significance can be viewed as a tuning. Focusing on specific tuning parameter 

values may not generate a comprehensive picture. To tackle this problem, we adopt the ROC 

(Receiver Operating Characteristic) approach, which considers a set of tuning parameter 

values, evaluates identification at each value, and uses the ROC-based measures for 

evaluation. This evaluation approach has been extensively adopted in the literature. In our 

simulation, the AUC (area under the ROC curve) is adopted as the overall identification 

accuracy measure. ARMI has the additional tuning λ3, which is directly relevant to the 

estimation of β. To make it more comparable to the alternatives, for each λ1 value, we select 

λ3 using CV. We have also examined this ROC-based evaluation for a grid of (λ1, λ2, λ3) 

values and obtained similar results.

Three simulation settings are considered, with multiple scenarios under each setting. Under 

Setting I and II, there is one type of regulator. Under Setting III, there are two types of 

regulators. Specifically, under Setting I, data are generated under the models assumed above, 

and so the effects of regulators on outcome are completely captured by GEs, and GEs do not 

have “unregulated effects”. Under Setting II, GEs and regulators have overlapping effects as 

well as independent effects. Note that under this setting, the proposed models and approach 

are mis-specified. Thus this setting can serve as a test of sensitivity. It has been motivated by 
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the following considerations. First in some studies, there may be regulators of GEs not 

measured (that is, the measurements are “incomplete”). Thus some GE signals cannot be 

explained by the measured regulators. Second, methylation and possibly other regulators 

may directly affect proteins and hence cancer outcomes not through GEs. Under Setting III, 

there are two types of regulators, and one type of regulator is regulated by the other. Other 

setup is similar to under Setting I. This setting is designed to accommodate possible 

complex interconnections among regulators as well as different data characteristics of 

different types of regulators. In analysis, we stack the two types of regulator measurements 

together and create a longer vector of regulators.

Setting I

Data are generated as follows. (a) Zn×q is generated from MVN(0, Σq(ρ1)) – a multivariate 

normal distribution with mean zero and covariance ∑q(ρ1)
i, j

= ρ1
i − j  if ρ1 ≠ 0, and Σq(ρ1) = 

I if ρ1 = 0 – and then kept fixed. W has distribution MVN(0, Σp(ρ2)). Consider different 

levels of correlation with (ρ1, ρ2) = {(0, 0), (0.8, 0), (0.8, 0.8)}. (b) For matrix η, consider 

three structures. (b.1) A block diagonal structure with block size three and the blocks equal 

to J and −J alternatively. J is the 3 × 3 matrix with all elements equal to 1. (b.2) A diagonal 

structure with all diagonal elements equal to 1. (b.3) A “milky-way” structure. The diagonal 

elements are all equal to 1. A small portion (8%) of the off-diagonal elements are randomly 

generated from Unif(−0.4, 0.4). Their positions are randomly simulated. (c) Consider the 

outcome generating model y = Xβ + σε∼. Consider two noise levels with σ = 2 and 5. For ε∼, 

consider three scenarios with (E1) N(0, 1), (E2) t(3), and (E3) a mixture of standard normal 

(70%) and Cauchy (30%). Among them, E2 has long tails, while E3 is a representative of 

contamination. (d) For β0, the first six elements are equal to 0.5, the next six are equal to 

−0.5, and the rest are equal to 0. The value of γ0 is computed from β0 and η0. (e) Set n = 

200 and (p, q) = (500, 500). Here we note that, although bigger than n, the value of p may 

not seem “dramatic”. Whole-genome studies may have a much higher dimensionality. 

However to improve analysis reliability, it is a common practice to focus on a smaller set of 

genes, which can be selected biologically or statistically. It is noted that even with moderate 

p and q, the number of parameters involved is still much larger than n.

AUCs are computed based on 200 replicates. Results under the block-diagonal η are shown 

in Table 1, and those under the diagonal and milky-way structures are shown in Tables 4 and 

5 (Appendix). It is observed that ARMI has competitive performance across the whole 

spectrum of simulation. For some simple cases, all approaches have satisfactory 

performance. For example in the first row of Table 1, all approaches can precisely identify 

the true signals. For more difficult cases, the advantage of ARMI gets prominent. For 

example in the last row of Table 1, with tunings selected using CV, ARMI has AUC 0.855. 

For the special case of ARMI with λ3 = 0, the AUC value is 0.78. The four other alternatives 

have the largest AUC 0.629. It is interesting to note that although Alt.2 and the collaborative 

regression also jointly analyze GEs and regulators and borrow information, without 

explicitly accounting for the regulation relationship, they have inferior performance.
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Setting II

The setups are largely similar to those under Setting I. The differences are as follows. (a) We 

first generate the η matrix in the same way as under Setting I. Then we set the last ten rows 

equal to 0. Correspondingly, the last ten GEs are not regulated. (b) The outcome generating 

model (4) is revised as

y = X1, …, 490β1, …, 490 + X491, …, 500β491, …, 500 + Z491, …, 500γ491, …, 500 + ε,

where, with a slight abuse of notation, the subscripts are the components’ indexes. In this 

model, the first term is the same as under Setting I and represents the overlapping signals. 

The second term X491,…,500β491,…,500 represents the contributions of GEs (to the outcome) 

that are not regulated. The third term Z491,…,500γ491,…,500 reflects the contributions of 

regulators (to the outcome) that are not captured by GEs. The first 490 components of β and 

γ are the same as under Setting I. For the last ten components, β491,…,500 = (.4, 0, 0, 0, 0, 0, 

– .5, 0, 0, 0)′, and γ491,…,500 = (.5, 0, 0, 0, 0 – .5, 0, 0, 0, 0)′. That is, out of a total of 

sixteen signals, four are “misspecified” in that they do not fit the proposed models.

The AUC results are summarized in Tables 6, 7, and 8 (Appendix). As can be expected, with 

mis-specification, ARMI does not perform as good as under Setting I. However, it still 

performs similar to or better than the alternatives. For example, in the last row of Table 6 

(Appendix), ARMI has AUC 0.752 when the tunings are selected using CV. The special case 

of ARMI with λ3 = 0 has AUC 0.723. The four other alternatives have the best AUC 0.613. 

This set of simulation suggests that with a moderate model mis-specification, the ARMI 

approach still has satisfactory performance.

Setting III

Data are generated as follows. (a) There are two types of GE regulators, Z1 and Z2, with 

dimensions q1 and q2, respectively. We first generate Z1 in a similar way as for Z under 

Setting I. (b) Z2 is then generated from Z2 = ξZ1 + W∼, where ξ and W∼ are generated similarly 

to η and W under Setting I. To differentiate Z2 from Z1, W∼ is generated such that conditional 

on Z1, Z2 has a t-distribution with degree of freedom 4. (c) Z is then generated by stacking 

Z1 and Z2 together. It is noted that the two components of Z are interconnected and have 

different distributions. (d) X and the outcome variable are generated similarly as under 

Setting I. (e) Set n = 200, p = 300, and q1 = q2 = 300.

The results are summarized in Tables 9, 10, and 11 (Appendix). The observed patterns as 

similar to those under the previous settings. The ARMI approach has competitive or superior 

performance under a variety of scenarios with different regulations between Z1 and Z2, 

between Z and X, and between X and the outcome variable.
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4 Data analysis

4.1 Analysis of SKCM data

We analyze the TCGA data on SKCM (skin cutaneous melanoma). Data are downloaded 

from the TCGA website and contain records on 295 SKCM patients. In this analysis, we 

search for gene expressions in the cell cycle pathway that are associated with Breslow 

thickness. Breslow thickness is a clinically important variable and has been extensively 

examined in etiology and prognosis studies. Its measure is available for 221 (74.9%) out of 

295 subjects. Research has been conducted, looking for the omics determinants of Breslow 

thickness. For example, studies have detected and validated the positive correlation between 

the expression of gene NRP2 and Breslow thickness. In principle, it is possible to conduct a 

whole-genome analysis. Here to improve analysis reliability, we conduct a more focused 

analysis on the cell cycle pathway, which plays a critical role in melanoma.

Measurements are available on GEs and multiple types of regulators. In this analysis, we 

focus on CNAs. Compared to other types of regulators (for example microRNAs), the 

regulations between GEs and CNAs are more clearly defined. With the assistance of GO 

(Gene Ontology) and the annotation package in GSEA (www.broadinstitute.org/gsea), we 

identify 177 GEs and 177 CNAs belonging to the cell cycle pathway. We conduct a light 

processing and remove subjects with a high rate of missing measurements as well as highly 

correlated GE (CNA) measurements. The data used for downstream analysis contain 176 GE 

and 137 CNA measurements on 208 subjects. We examine the distribution of Brewslow 

thickness (Figure 1), where we can clearly see a long right tail. We also conduct exploratory 

analysis and graphically examine the associations between the outcome and GEs and 

between GEs and CNAs. Plots in Figure 2 (Appendix) suggest that linear modeling is 

reasonable (more plots have been examined and omitted here).

We analyze data using the ARMI and alternative approaches. Beyond the four alternatives 

considered in simulation, we also apply Alt.5, which first conducts the logarithm 

transformation of the outcome variable and then applies Lasso for selection and estimation. 

The logarithm transformation is perhaps the simplest among all transformations and can 

accommodate the long right tail to a great extent. In Figure 3 (Appendix), we show the 

correlations between GEs and CNAs, which clearly show that they are interconnected. In 

addition, we also plot the estimated η matrix. The final analysis results using different 

approaches are shown in Table 2. With ARMI, the strongest signals (largest coefficients) are 

identified as genes EREG and GAS1. Epiregulin (EREG) has been found to be 

overexpressed in melanoma cells and has a delayed impact on tumor progression and the 

onset of apoptosis. Growth arrest-specific 1 (GAS1) has been identified as a novel 

melanoma metastasis suppressor gene. These two genes also rank in the top with the 

alternatives, suggesting the reliability of findings. Using ARMI, other biologically plausible 

findings include the tumor suppressor gene RUNX3, tissue-specific regulation gene CDK2, 

XPC which enhances melanoma photocarcinogenesis, and MAPK12 which has been found 

as playing a critical role in a variety of cancers. The alternatives are also able to make some 

interesting findings. But they miss some important ones for example gene CDK2, whose 
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copy number and gene expression have been used to identify deregulation of melanoma cells 

at the transcriptional level.

The differences in findings of different approaches are summarized in Table 12 (Appendix). 

To better comprehend their difference/similarity, we compute the RV-coefficients between 

the identified GEs of any two approaches. The RV-coefficient (Smilde et al. 2009) measures 

the common information of two matrices (data matrices of GEs identified by two different 

approaches in our analysis), with a larger value indicating higher similarity. It is observed 

that findings of different approaches have moderate overlaps. To complement the 

identification analysis and also to provide an indirect support, we conduct a cross-validation 

based prediction analysis. Note that with Alt.3, after the top markers are identified, a second-

step fitting is needed to generate a prediction model. With Alt.5, the results need to be 

transformed back to the original scale. The predicted median absolute error (PMAE), 

defined as median( | yi − ŷi | ) where ŷi is the predicted value for the ith subject, is used for 

prediction evaluation. The PMAEs are 1.904 (Alt.1), 1.912 (Alt.2), 2.006 (Alt.3), 1.902 (Alt.

4), 1.713 (Alt.5), and 1.228 (ARMI), respectively, with ARMI having a significant 

advantage in prediction. We also compute the prediction mean squared errors (PMSE), 

which takes values 16.138 (Alt.1), 14.607 (Alt.2), 21.781 (Alt.3), 17.528 (Alt.4), 26.524 

(Alt.5), and 10.093 (ARMI), respectively.

4.2 Analysis of LUAD data

We analyze TCGA data on lung adenocarcinoma (LUAD). The analysis strategy and 

procedure are similar to those for the SKCM data. The outcome variable of interest is FEV1 

(forced expiratory volume in one second), which quantifies reduced lung function and has 

been extensively utilized in lung cancer research and clinics. In analysis, we are specifically 

interested in the apoptosis pathway, which has been functionally related to lung function 

reduction. With the same processing as in the previous section, the analyzed data contain 

231 LUAD patients with 337 GE and 246 CNA measurements.

The distribution of outcome (Figure 1), graphical exploratory analysis (Figure 2, Appendix), 

and correlation analysis (Figure 3, Appendix) lead to similar observations as for the SKCM 

data. The GEs identified by different approaches are shown in Table 3. ARMI generates 

biologically plausible findings by identifying a handful of genes that have been established 

as strongly associated with LUAD. For example, it detects a strong negative association 

between FEV1 and gene NOTCH2, which is associated with the progression of early-stage 

LUAD and a more aggressive phenotype at advanced stages. Other notable findings include 

genes VCP (Valosin-containing protein), BCL2L10 and BCL2L2 (which encode the 

antiapoptotic BCL-2 proteins), PRKCA (protein kinase C alpha), and HDAC3 (histone 

deacetylases). Among them, genes VCP and BCL2L10 are identified only by ARMI, which 

also identifies important tumor suppressors including genes BECN1 (Beclinl protein) and 

MOAP-1 (Modulator of apoptosis 1). The summary in Table 12 (Appendix) suggests that the 

findings of different approaches have moderate overlap. Prediction evaluation is conducted. 

The PMAEs are 12.553 (Alt.1), 12.134 (Alt.2), 13.881 (Alt.3), 15.387 (Alt.4), 16.965 (Alt.

5), and 10.232 (ARMI), respectively. The PMSEs are 535.279 (Alt.1), 603.148 (Alt.2), 
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525.273 (Alt.3), 567.523 (Alt.4), 691.905 (Alt.5), and 481.051 (ARMI), respectively. Again 

it is observed that the ARMI approach has superior prediction.

5 Discussion

Identifying GEs important for outcomes and constructing cancer models is an important 

task. Taking advantage of recent cancer studies that collect data on both GEs and their 

regulators, in this article, we have developed an assisted analysis method, which uses 

regulator information to assist penalized analysis of GE data. The analysis strategy differs 

significantly from that of the existing GE and multidimensional omics data analysis. 

Specifically, this study is the first to explicitly incorporate the regulation relationship in 

estimation. Another advancement is the adoption of LAD loss to accommodate long-tailed 

outcome distributions and contamination. The proposed approach has an intuitive 

formulation, belongs to the popular penalization framework, and can be effectively realized. 

The development of R code facilitates future applications. We have established that, under 

mild conditions, the ARMI approach has the well desired consistency properties under high-

dimensional settings, which provides a strong support and may make it preferred over the 

alternatives. In simulation, when the assumed models are satisfied, ARMI clearly 

outperforms the alternatives. It is comforting to observe that it still has competitive 

performance when the models are moderately violated. In addition, simulation suggests that 

the improved identification accuracy results from both information borrowing and robust 

estimation. In the analysis of TCGA data on melanoma and lung cancer, biologically 

plausible findings are made. The improved prediction provides an indirect support to the 

marker identification results.

This study can be potentially extended in multiple aspects. We have conducted gene-based 

analysis. In future studies, it may be of interest to extend and conduct for example pathway-

based analysis. We have considered continuous outcome data and linear modeling, which 

match data analyzed in this article. For other types of data and models (for example, survival 

data and an exponential model), it is also possible to construct robust loss functions. 

Carefully examining the ARMI approach suggests that the penalized estimation and 

selection is relatively “independent” of the loss function. Thus the proposed analysis strategy 

can be potentially applied to other outcome data and models. GEs are regulated by multiple 

types of regulators. In our methodological development, we have focused on a single vector 

of Z. When there are two or more types of regulators, we have proposed stacking them 

together – this strategy has been proposed and applied in the literature. Our simulation 

Setting III suggests that ARMI has satisfactory performance with this strategy. We do realize 

that this strategy can be overly simplified. It is still being explored how to more effectively 

model GEs and interconnected regulators. The proposed approach will be extended once 

such modeling becomes available. Our main interest is on GEs, and the regulators serve as a 

“tool” to improve GE analysis. However, to be prudent, we have also briefly examined γ̂ and 

observed satisfactory numerical properties (details omitted). In simulation, we have 

compared against the most relevant alternatives. The analysis of data with multidimensional 

omics measurements is a fast moving field. It can be of interest to expand the comparison in 

the near future. Data analysis serves as a proof of concept and demonstrates the satisfactory 

performance of ARMI. We study the two pathways because of their significant roles in the 
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two cancers. In principle, ARMI can be applied to conduct whole-genome analysis. 

However, as with other joint analysis approaches, there is a concern on the stability of 

findings, and hence such an analysis is not pursued.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Histograms of the outcome variables for the SKCM (left) and LUAD (right) data.
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