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This paper aims at developing a mathematic model to characterize the mechanical properties of single-walled carbon nanotubes
(SWCNTs). The carbon-carbon (C−C) bonds between two adjacent atoms are modeled as Euler beams. According to the relation-
ship of Tersoff-Brenner force theory and potential energy acting on C−C bonds, material constants of beam element are determined
at the atomic scale. Based on the elastic deformation energy and mechanical equilibrium of a unit in graphite sheet, simply form
ED equations of calculating Young’s modulus of armchair and zigzag graphite sheets are derived. Following with the geometrical
relationship of SWCNTs in cylindrical coordinates and the structure mechanics approach, Young’s modulus and Poisson’s ratio
of armchair and zigzag SWCNTs are also investigated. The results show that the approach to research mechanical properties of
SWCNTs is a concise and valid method. We consider that it will be useful technique to progress on this type of investigation.

1. Introduction

Since the discovery by Iijima in 1991 [1], carbon nanotubes
(CNTs) have generated huge activities in most areas of
science and engineering due to their unprecedented mechan-
ical, electrical, and thermal properties [2–13]. Especially in
mechanical field, experimental measurements have deter-
mined that CNTs possess excellent mechanical properties
[14–21]. Therefore, an effective method to analyze the basic
characteristics of nanosized CNTs is essential.

In the past, researchers used experimental method to
measure mechanical properties of CNTs. Treacy et al. [14]
firstly measured the amplitude of intrinsic thermal vibrations
observed in transmission electron microscopy (TEM). The
average value of Young’s modulus of CNTs derived from this
experimental technique is 1.8 TPa by 11 tubes, in which the
lowest value and the highest value are 0.40 TPa and 4.15 TPa,
respectively. Later, Poncharal et al. [18] obtained Young’s
modulus of CNTs which is between 0.7 and 1.3 TPa by
electromechanical resonant vibrations. In addition, based on
an atomic force microscope (AFM), Wong et al. [20] in 1997
firstly directly measured the stiffness constant of armchair

MWCNTs pinned at one end, from which the value of
Young’s modulus of CNTs is 1.28 TPa. Salvetat et al. [21] used
the AFM for experiment of bending an armchair (multi-
walled carbon nanotubes) MWCNT pinned at each end over
a hole and obtained an average modulus value of CNTs
of 0.81 TPa. These experiments all promote the research
of mechanical properties of CNTs. However, in description
of nanoscale structures, the results are with experimental
errors.

Meanwhile, for researching mechanical properties of
CNTs, a number of researchers solved the difficulties in
nanosized experiments in terms of computer simulation. For
the analysis of nanostructural materials, atomic simulation
methods such as first-principle quantum-mechanical meth-
ods [22], molecular dynamics (MD) [23, 24], and Monte
Carlo [25] simulations have been routinely adopted. As early
as 1993, Overney et al. [26] calculated Young’s modulus of
rigid short SWCNTs which is 1.5 TPa, approximately equal
to that of graphite. This was followed by a range of papers
predicting that Young’s modulus of CNTs is close to 1 TPa
independent of type and diameter [27]. Yakobson et al. [28]
fitted these results by MD simulations of the continuum shell
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model. Unlike the previous work that assumed a thickness of
0.34 nm, both the thickness and Young’s modulus were taken
as the fitting parameters, yielding a thickness of 0.066 nm
and Young’s modulus of 5.5 TPa. The MD approach was also
used by Lu [27, 29] who reported that Young’s modulus
is 1 TPa and claimed that chirality and the number of
walls have little effect on the value of Young’s modulus. A
different potential model was used by Yao and Lordi [16] who
obtained Young’s modulus of CNTs as 1 TPa. Although MD
method has been widely used in simulating the properties of
nanostructural materials, it is complex and time consuming,
especially for large amount atomic systems. Therefore,
the continuum mechanics seems to be a better way to
investigate the properties of CNTs. However, for the case
of nanoreinforced adhesives, these models cannot accurately
describe the influence of the relationship between carbon
atoms upon the mechanical properties and their interactions
in the composite systems because they lack the appropriate
constitutive relations that govern material behavior at this
scale [30]. Another modeling approach is the atomic-based
continuum technique, which has the unique advantage of
describing atomic structured properties in a continuum
framework for reducing the computational demand while
employing the appropriated atomic constitutive relations.

Therefore, there is a demand of developing a modeling
technique that could analyze the mechanical properties of
CNTs at the atomic scale. Considering CNTs as a rolled
cylindrical graphite sheet, we step from Young’s modulus
of the C−C bonds counted as Euler beam at atomic scale
and extend the theory of classical structural mechanics into
the modeling of carbon graphite sheet. The effects of tube
curvature on the mechanical properties of SWCNTs are con-
sidered in closed-form solutions. The mechanical properties
of SWCNTs, including Young’s modulus, Poisson’s ratio, the
length of C−C bonds and the angle between the adjacent C−C
bonds are discussed as functions of nanosized structure.

2. The Structure of CNTs

CNTs can be considered as graphite sheets rolled into
cylindrical shape. The one-atom-thick graphite sheet looks
like chicken wire which is made of a single-carbon-atom
thickness. The structure of CNTs as shown in Figure 1 is
conveniently explained in terms of the chiral vector integers
(n, m) and the chiral angle θ [31]:

θ = tan−1

( √
3n

2m + n

)

. (1)

CNTs are classified into three categories named as zigzag
(n, 0): θz = 0◦; armchair (n, n): θa = 30◦; and chiral (n,
m): (m /=n /= 0). The relationship between radius rcnt and
integers (n, m) is expressed as

rcnt =

√
3LCC

2π

√

n2+m2 + mn, (2)

where LCC is the length of C−C bonds, 0.142 nm, for
SWCNTs.

m

Armchair

n
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θ

Figure 1: Schematic diagram of hexagonal graphite sheet.

3. Mechanics Model of Graphite Sheet

From the viewpoint of molecular mechanics, CNTs are
treated as a large array of molecules consisting of carbon
atoms. According to the Tersoff-Brenner force field theory
[3, 32], the total molecular potential energy of the force field
for nanostructured material can be defined as the sum of
bonding and nonbonding energies:

V =
∑

Vr +
∑

Vθ +
∑

Vϕ +
∑

Vω +
∑

Vvdw +
∑

Vel,

(3)

where Vr is the energy induced by bond stretch interaction,
Vθ is the energy by the bond angle bending, Vϕ is the
energy by the dihedral angle torsion, Vω is the energy by
improper torsion, Vvdw is the energy by the nonbonding
van der Waals (vdW) interaction, and Vel is the energy by
the electrostatic interaction. As the axial loading, improper
torsion and nonbonding interactions subjected to CNTs are
very small [33], for covalent systems, the main contributions
to the total molecular potential energy come from the first
four terms of (3). Simplified system potential energy of CNTs
with C−C bonds is given as

Vr =
1

2
kr(r − r0)2 =

1

2
kr(∆r)2,

Vθ =
1

2
kθ(θ − θ0)2 =

1

2
kθ(∆θ)2,

Vτ = Vϕ + Vω =
1

2
kτ
(

∆φ
)2

,

(4)

where kr , kθ , and kτ are the bond stretching, bond bending,
and torsional resistance constants, respectively, while ∆r,
∆θ, and ∆φ represent the bond stretching increment, the
bond angle change, and the angle change of bond twisting,
respectively.

According to classical structural mechanics, the strain
energy of a uniform beam in graphite sheet is expressed as

Ul =
EA

2LCC
(∆l)2,

Uθ =
EI

2LCC
(∆θ)2,

Uθ =
GJ

2LCC

(

∆φ
)2

,

(5)
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Figure 2: Force analysis of armchair graphite sheet unit subjected to axial tension loading.

where EA is the tensile resistance of beam (C−C bonds),
EI is the flexural rigidity, GJ is the torsional stiffness, and
∆l, ∆θ, and ∆φ are the axial stretching deformation, the
rotational angle at the end of the beam, and the relative
rotation between the ends of the beam, respectively.

Based on energy conservation law, a linkage between the
force constants in molecular mechanics and the sectional
stiffness parameters in structural mechanics is established.
Equations (4) and (5) are equal to each others in one-to-one
corresponding directions. The direct relationship between
the structural mechanics parameters and the molecular
mechanics parameters is deduced as follows:

EA = LCCkr , EI = LCCkθ , GJ = LCCkτ . (6)

As long as the force constants kr , kθ , and kτ are known,
the sectional stiffness parameters EA, EI , and GJ can be
determined, then the deformation and elastic behavior of
CNTs at atomic scale can be modeled. By further analysis of
(4) and (5), three more constants of C−C bonds D (diameter
of C−C bonds), E, and G depend on kr , kθ , and kτ :

D = 4

√

kθ
kr

, E =
k2
r LCC

4πkθ
, G =

k2
r kτLCC

8πk2
θ

. (7)

3.1. Young’s Modulus for Armchair Graphite Sheet. Knowl-
edge of Young’s modulus (E) is the first step towards
the material using as a structural element for various
applications. SWCNTs can be regarded as a two-dimensional
continuum shell which is composed of discrete molecular
structures linked by C−C bonds. The unrolled graphite sheet
of armchair SWCNTs is shown in Figure 2. Figure 2(b) plots
the smallest unit of armchair graphite sheet, in which the
force Pa and momentMa0 are displayed. The unit of armchair
graphite sheet can be analyzed based on solid mechanics, and
the unit along BD bond is symmetry of both structure and

force. Therefore, in terms of the elastic deformation energy,
the energy of an armchair unit is written as

Wa =
(Pa sin θa)2 × la

2EA
+

∫ la

0

(Pax cos θa −Ma0)2

2EI
dx, (8)

where E is Young’s modulus of beam and la is the C−C bonds
of armchair graphite sheet. When the relationship between
force Pa and moment Ma0 is determined, the strain of the
unit can be resolved by using energy Wa.

According to Castigliano’s Law, the rotation angel on
point C is zero due to symmetry of structure and force that
is shown in

θac =
∂Wa

∂Ma0
= 0. (9)

Substituting (8) into (9), the relationship between force
Pa and moment Ma0 is obtained:

Ma0 =
Pala

2
cos θa. (10)

Meanwhile, the elastic deformation energy Wa is rewritten as
follows:

Wa =
P2
a la sin2θa

2EA
+
P2
a l

3
acos2θa
24EI

. (11)

Based on Castigliano’s law, the displacement of the unit is
defined by the elastic deformation energy differential

δa =
∂Wa

∂Pa
=

Pala sin2θa
EA

+
Pal3acos2θa

12EI
, (12)

and the strain of armchair graphite sheet is defined as
follows:

εa =
δa

la sin θa
. (13)
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Figure 3: Force analysis of zigzag graphite sheet unit subjected to axial tension loading.

For an armchair graphite sheet being subjected to the
tension stress σa, the equation of static equilibrium of the
unit is expressed as

σatla(1 + cos θa) = Pa. (14)

Based on Hooke’s law, the relationship of the tension
stress and the strain is

σa = Eaεa. (15)

When θa = 600, Young’s modulus of armchair graphite sheet
Ea yields

Ea =

√
3E

t

(

9la
4A

+
l3a

16I

)−1

, (16)

where t is the thickness of the graphite sheet.

3.2. Young’s Modulus for the Zigzag Graphite Sheet. For a
zigzag graphite sheet, the analytical approach is similar to
that of the armchair graphite sheet. The unit of a zigzag
graphite sheet is drawn in Figure 3, and the energy of the unit
is drawn in

Wz =
P2
z lz
EA

(

sin2θz + 2
)

+
P2
z l

3
z cos

2
θz

12EI
, (17)

where la is the C−C bonds of the zigzag graphite sheet. The
displacement of the zigzag unit is defined as

δz =
Pzlz
EA

(

sin2θz + 2
)

+
Pzl3zcos2θz

12EI
. (18)

Then the strain of per unit length is obtained as follows:

εz =
δz

lz(sin θz + 1)
. (19)

For a zigzag graphite sheet being subjected to the tension
stress σz, the force acting on the unit can be written as

σztd cos θz = Pz. (20)

When θz = 300, we can obtain Young’s modulus Ez of
zigzag graphite sheet:

Ez =

√
3E

t

(

9lz
4A

+
l3z

16I

)−1

. (21)

4. Molecular Mechanics Model of SWCNTs

SWCNTs can be ideally constructed starting from a graphite
sheet. According to the chiral vector, there are three kinds of
structure, as shown in Figure 4. After the two-dimensional
sheets are rolled into a three-dimensional tube, intrinsic
properties of the structure will be changed, such as mechan-
ical and physical characteristics.

4.1. Angle Measurement for SWCNTs. Figure 4(a) shows an
armchair SWCNT. According to (2) the radius of armchair
SWCNTs is racnt = 3n · LCC/2π. Meanwhile, by geometric
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Figure 4: Classification of SWCNTs by chiral vector and chiral angle (a) armchair SWCNT, (b) zigzag SWCNT, and (c) chiral SWCNT.

relationships in cylindrical coordinates shown in Figure 4(a),
we obtain the coordinates of carbon atoms:

A = (racnt, 0, 0),

B =
(

racnt cos
2π

3n
, racnt sin

2π

3n
, 0

)

,

C =

(

racnt cos
π

n
, racnt sin

π

n
,−

√
3

2
LCC

)

,

D =

(

racnt cos
π

n
, racnt sin

π

n
,

√
3

2
LCC

)

.

(22)

Because of the effect of curvature, the lengths of the
bonds between carbon atoms in vector space are shorter
than those in plane and characterized in different numerical

values, which are displayed in Figure 4(a) and given as
follows:

a =
∣

∣

∣

∣

⇀

BA

∣

∣

∣

∣

=
3n

2π

√

2− 2 cos
2π

3n
LCC,

b =
∣

∣

∣

∣

⇀

BD

∣

∣

∣

∣

=
∣

∣

∣

∣

⇀

BC

∣

∣

∣

∣

=
3n

2π

√

2− 2 cos
π

3n
+

π2

3n2
LCC.

(23)

In cylindrical coordinates, on account of the curvature,
the included angles between the adjacent bonds in a carbon
cycle of SWCNTs are different from those of graphite sheets.
In accordance with geometrical relationships, the included
angle between the adjacent bonds for an arbitrary unit
of armchair SWCNTs plotted in Figure 4(a) relates with
coordinate figures of carbon atoms in the unit:

cosα =

⇀

BD ·
⇀

BC
∣

∣

∣

∣

⇀

BD

∣

∣

∣

∣

∣

∣

∣

∣

⇀

BC

∣

∣

∣

∣

. (24)
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Substituting (23) into (24), we obtain the included angle
of armchair SWCNTs

α = cos−1

(

6n2(1− cosπ/3n)− π2

6n2(1− cosπ/3n) + π2

)

. (25)

Figure 4(b) shows a zigzag SWCNT. According to (2) the
radius of zigzag SWCNTs is rzcnt =

√
3n · LCC/2π. Consid-

ering geometric relationships in cylindrical coordinates, the
coordinate figures are described as

A = (rzcnt, 0, 0),

B =
(

rzcnt cos
π

n
, rzcnt sin

π

n
,

1

2
LCC

)

,

C =
(

rzcnt cos
2π

n
, rzcnt sin

2π

n
, 0

)

,

D =
(

rzcnt cos
π

n
, rzcnt sin

π

n
,

3

2
LCC

)

.

(26)

The distances of the bonds in vector space are as follows:

c =
∣

∣

∣

∣

⇀

BD

∣

∣

∣

∣

= LCC,

d =
∣

∣

∣

∣

⇀

BA

∣

∣

∣

∣

=
∣

∣

∣

∣

⇀

BC

∣

∣

∣

∣

=

√
3n

2π

√

2− 2 cos
π

n
+

π2

3n2
LCC.

(27)

For zigzag SWCNTs, the analysis method resembles
armchair SWCNTs; we calculate the included angle for zigzag
SWCNTs as follows:

β = cos−1

(

−π
√

6n2(1− cosπ/n) + π2

)

. (28)

4.2. Elastic Properties for SWCNTs. Considering space curva-
ture, Young’s modulus of SWCNTs in cylindrical coordinates
depends on bond length and included angle between two
bonds. The method for calculating Young’s modulus of
armchair SWCNTs in three-dimensions resembles that in
two dimensions. Affecting factors in three dimensional
coordinates of Young’s modulus of armchair SWCNTs are
mentioned in (23) and (25); Young’s modulus of armchair
SWCNTs is expressed in

Eacnt = ξλa

(

ka1
1

A
+ ka2

1

12I

)−1

, (29)

where ξ = (E/t), λa = sin(α/2)/a + b cos(α/2), ka1 = sin2α/2,

and ka2 = b2 cos
2
α/2.

We obtain Young’s modulus of zigzag SWCNTs given in
the following in the same way

Ezcnt = ξλz

(

kz1
1

A
+ kz2

1

12I

)−1

, (30)

where λz = (d sin(β − (π/2)) + c)/(d cos(β − (π/2))), kz1 =
d sin2(β − (π/2)) + 2c, and kz2 = cos2(β − (π/2))d3.

4.3. Poisson’s Ratio for SWCNTs. For armchair SWCNTs, the
stretch deformations of the bonds caused by concentrated
force and bending moment are schematically signed in
Figure 5(a) to analyze Poisson’s ratio. The equilibrium of
force Pa and bending moment Ma can be computed from
Figure 5(a)

2Ma = Pab sin
α

2
. (31)

According to geometric properties and elastic theory,
taking the included angle between two bonds in three
dimensions into consideration, we obtain the equilibrium
equations about extension variation of the C−C bonds

δP1
a =

Pa sinα/2

EA
,

δP2
a =

Pab3 cosα/2

3EI
,

δMa = −
Mab2 cosα/2

2EI
,

(32)

where EA and EI are the tensile resistance and the flexural
rigidity of beam, and δP1

a , δP2
a , and δMa are the deformations

of beam caused by force Pa and bending moment Ma, respec-
tively. The strains in axial direction and circumferential
direction are defined as follows, respectively:

εa1 =
δP1
a cos(α/2)−

(

δP2
a + δMa

)

sinα/2

a + b cosα/2
,

εa2 =
δP1
a sin(α/2) +

(

δP2
a + δMa

)

cosα/2

b sinα/2
.

(33)

Poisson’s ratio of armchair SWCNTs can be defined as
the ratio between circumferential strain, and axial strain,
substituting (31) and (32) into (33) we can get Poisson’s ratio
of armchair SWCNTs

νa =
εa1

εa2
= −

(

12I − Ab3
)

sin2(α/2) cos(α/2)
(

12Isin2(α/2) + Ab3cos2α/2
)

((a/b) + cosα/2)
.

(34)

For zigzag SWCNTs, the analysis step is similar to
that for armchair SWCNTs. To analyze Poisson’s ratio of
zigzag SWCNTs, Figure 5(b) schematically signs the stretch
deformations of the bonds caused by force Pz and bending
moment Mz; the relationship of force and bending moment
is given in

2Mz = Pzb sin
α

2
. (35)
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Figure 5: Analysis of axial deformation and angular displacement of armchair and zigzag SWCNTs.

The equilibrium equations about extension variation of
the bond are described as

δP1
z =

Pz sin
(

β − (π/2)
)

EA
,

δP2
z =

Pzd3 cos
(

β − (π/2)
)

3EI
,

δP3
z =

2Pz sin
(

β − (π/2)
)

EA
,

δMz = −
Mzd2 cos

(

β − (π/2)
)

2EI
.

(36)

The strains in axial direction and circumferential direc-
tion are defined as follows, respectively:

εz1 =
δP1
z cos

(

β − (π/2)
)

−
(

δP2
z + δMz

)

sin
(

β − (π/2)
)

d cos
(

π − β
) ,

εz2 =
δP1
z sin

(

β − (π/2)
)

+
(

δP2
z + δMz

)

cos
(

β − (π/2)
)

+ δP3
z

c + d sin
(

π − β
) .

(37)

Poisson’s ratio of armchair SWCNTs can be defined as the
ratio between circumferential strain and axial strain; then we
obtain

νz =
εz1

εz2

=

(

12I − Ab3
)(

(c/d) + sin
(

β − (π/2)
))

sin
(

β − (π/2)
)

(

12Isin2(β − (π/2)
)

+ Ad3cos2
(

β − (π/2)
)

+ 24A
) .

(38)

5. Results and Discussions

The atomic-based continuum mechanic approach described
in the previous section was implemented for studying the
effective elastic properties of graphite sheets and SWCNTs. In
this section, the mechanical characteristics of graphite sheet
and SWCNTs are examined.

5.1. Mechanics Model of Graphite Sheet. In the present
simulation, kr/2 = 46 900 kcal/mole/nm2, kθ/2 = 63 kcal/
mole/rad2 and kτ/2 = 20 kcal/mole/rad2, are taken [34].
LCC and t are 0.142 nm and 0.34 nm, respectively. According
to (6) and (7), the constants of beam are obtained and
summarized in Table 1. Comparing the evaluated elastic
moduli of graphite sheets with the literature results, Tserpes
[8] and Kalamkarov [9] reported E = 5.49 TPa and
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Table 1: Geometrical and material properties of C−C bonds.

Beam element Abbreviation Value Unit

Diameter D 0.146 nm

Cross-section area A 1.678 × 10−2 nm2

Moment of inertia I 2.241 × 10−5 nm4

Young’s modulus E 5.530 TPa

Shear elastic modulus G 0.871 TPa

G = 0.871 TPa, E = 5.488 TPa and G = 0.8711 TPa of C−C
bonds, respectively.

Comparing (16) to (21), Young’s moduli of the armchair
graphite sheet and the zigzag graphite sheet have the same
expression form except for la and lz. Because the carbon cycle
is a regular hexagon, graphite sheets have la = lz = LCC . We
obtain Young’s moduli of both armchair and zigzag graphite
sheets as 1.0424 TPa, which is close to the value of 1.033 TPa
calculated by Li and Chou [31] and the value of 1.04 TPa
computed by Shokrieh and Rafiee [11]. It can be seen that
the predicted values obtained from the model at the atomic
scale agree well with those reported in the literatures.

5.2. Molecular Mechanics Model of SWCNTs. Since SWCNTs
are defined as rolled graphite sheets, the lengths of bonds in
vector space are changed owing to the effect of curvature.
For armchair SWCNTs rolled by armchair graphite sheets,
all of the lengths of C−C bonds become shorter because of
the connection with curvature in circumferential direction,
while, for zigzag SWCNTs rolled by zigzag graphite sheet,
the length c is only in vertical direction equal to the C−C
bonds length of graphite sheets. According to (23) and (27),
the variation of C−C bonds lengths with radius are shown
in Figure 6. With increasing radius of SWCNTs, the bond
lengths a, b, and d approach to the length c = 0.142 nm
which is the bond length of graphite itself, owing to the
curvature approaching to zero in infinite radius.

When graphite sheets are rolled into SWCNTs, the
lengths and spatial relations of C−C bonds change obviously.
Figure 7 shows the variation of included angles of two
adjacent C−C bonds with radius according to (25) and
(28). It expresses that the included angles are quite sensitive
to SWCNTs in small radius. The included angle of zigzag
SWCNTs is a little larger than that of armchair SWCNTs
in the same radius. As being larger than 1.1 nm, the radius
makes less influence on the included angles of both armchair
and zigzag SWCNTs, and the two lines show a tendency to
be 120 degree which is close to that of graphite sheets, due to
the SWCNTs being regarded as graphite sheet when radius is
infinite.

Comparing (29) to (30), Young’s moduli of armchair and
zigzag SWCNTs have the same expression form except for
coefficients λa, ka1, ka2 and λz, kz1, kz2. As the two Young’s
moduli shown in Figure 8, Young’s moduli predicted by the
present theory decrease monotonically with the increase of
radius. Young’s modulus of armchair SWCNTs is slightly
higher than that of zigzag SWCNTs with the same smaller
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Figure 6: C−C bonds lengths of armchair SWCNTs and zigzag
SWCNTs.
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Figure 7: Included angles of adjacent C−C bonds in armchair
SWCNTs and zigzag SWCNTs.

radius. When the radius is larger, the two declining curves
gradually develop into horizontal lines, which tend to be
a constant of 1.0424 TPa. The value is Young’s modulus of
graphite sheet.
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Figure 9: Poisson’s ratio of armchair SWCNTs and zigzag SWCNTs.

Considering the variations of length and included angles
of two adjacent C−C bonds, from graphite sheets into
SWCNTs, Figure 9 shows the variations of Poisson’s ratio of
the armchair and zigzag SWCNTs as a function of nanotube
radius. It is found that, in general, Poisson’s ratio of armchair
SWCNTs is slightly higher than that of zigzag SWCNTs.
Poisson’s ratios of armchair and zigzag SWCNTs show a
smoothly monotonic decreasing versus increasing radius.
When the radius of SWCNTs is larger, the two curves tend to
be a straight line which means that Poisson’s ratios approach
to be a steady value of 0.26, which makes a great agreement
with those reported in the literatures [6, 33].

6. Conclusions

The mechanical properties of both armchair and zigzag
SWCNTs are characterized by using continuum mechanics

in the atomic scale. In terms of the conjunction of Tersoff-
Brenner force field method and energy conservation law,
the graphite sheet is of isotropic property and Young’s
modulus of graphite sheet is obtained to be 1.04 TPa.
Furthermore, considering the variations of the length and
the included angle of two adjacent C−C bonds rolled from
graphite sheets into SWCNTs, Young’s modulus and Pois-
son’s ratio of SWNCTs with armchair and zigzag structures
are investigated as a function of SWCNT radius. We predict
that Young’s modulus and Poisson’s ratio of SWNCTs are
influenced obviously by relatively smaller radius while being
little affected by larger radius. We are confident that this
model provides a useful method to analyze mechanical
properties of CNTs and other nanosized structures at the
atomic scale.
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