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Abstract

Background: Analysis of heart rate variation (HRV) has become a popular noninvasive tool for

assessing the activities of the autonomic nervous system (ANS). HRV analysis is based on the

concept that fast fluctuations may specifically reflect changes of sympathetic and vagal activity. It

shows that the structure generating the signal is not simply linear, but also involves nonlinear

contributions. These signals are essentially non-stationary; may contain indicators of current

disease, or even warnings about impending diseases. The indicators may be present at all times or

may occur at random in the time scale. However, to study and pinpoint abnormalities in

voluminous data collected over several hours is strenuous and time consuming.

Methods: This paper presents the spatial filling index and time-frequency analysis of heart rate

variability signal for disease identification. Renyi's entropy is evaluated for the signal in the Wigner-

Ville and Continuous Wavelet Transformation (CWT) domain.

Results: This Renyi's entropy gives lower 'p' value for scalogram than Wigner-Ville distribution and

also, the contours of scalogram visually show the features of the diseases. And in the time-

frequency analysis, the Renyi's entropy gives better result for scalogram than the Wigner-Ville

distribution.

Conclusion: Spatial filling index and Renyi's entropy has distinct regions for various diseases with

an accuracy of more than 95%.

Background
Bio-signals are essentially non-stationary signals; they dis-
play a fractal like self-similarity. They may contain indica-
tors of current disease, or even warnings about impending
diseases. The indicators may be present at all times or may
occur at random – in the time scale. However, to (study
and) pinpoint anomalies in voluminous data collected
over several hours is strenuous and time consuming.
Therefore, computer based analytical tools for in-depth

study and classification of data over day long intervals can
be very useful in diagnostics.

Electrocardiography deals with the electrical activity of the
heart. Monitored by placing sensors at defined positions
on chest and limb extremities of the subject, electrocardi-
ogram (ECG) is a record of the origin and propagation of
the electric action potential through cardiac muscle. It is
considered a representative signal of cardiac physiology,
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useful in diagnosing cardiac disorders. The state of cardiac
health is generally reflected in the shape of ECG waveform
and heart rate. It may contain important pointers to the
nature of diseases afflicting the heart. However, bio-sig-
nals being non-stationary signals, this reflection may
occur at random in the time scale.

(That is, the disease symptoms may not show up all the
time, but would manifest at certain irregular intervals dur-
ing the day.) Therefore, for effective diagnostics, the study
of ECG pattern and heart rate variability signal (instanta-
neous heart rate against time axis) may have to be carried
out over several hours. HRV is a useful signal for under-
standing the status of the autonomic nervous system
(ANS).

The interest in the analysis of heart rate variability (HRV),
that is, the fluctuations of the heart beating in time, is not
new. And much progress was achieved in this field with
the advent of cheap and massive computational power,
which provoked many recent advances.

HRV is a non-invasive measurement of cardiovascular
autonomic regulation. Specifically, HRV is a measurement
of the interaction between sympathetic and parasympa-
thetic activity in autonomic functioning. There are two
main approaches for analysis: time domain analysis of
HRV [for standard deviation of normal to normal inter-
vals (SDNN)]; and frequency domain analysis [for power
spectrum density (PSD)]. The latter provides high fre-
quency (parasympathetic activity) and low frequency
(sympathetic and parasympathetic activity) and total
power (sympathetic/parasympathetic balance) values [1-
3]. Recent results on HRV signal analysis show that its
dynamic behavior involves non-linear components that
also contribute in the signal generation and control [4].
The autonomic nervous system (ANS) modulates the car-
diac pacemaker and provides beat-to-beat regulation of
the cardiovascular rhythm. Application of wavelet trans-
formation techniques to beat-to-beat heart rate variations
(HRV) provides an important non-invasive tool for mon-
itoring the autonomic nervous system functioning.

The cardiovascular system is a complex system that
includes heart and vessels. ECG and HRV are two methods
for study it. Hence, many attempts have been made to

analyze these signals and extract information about the
cardiovascular system. Most of the methods used are lin-
ear and it has been recognized that nonlinear methods
may be more suitable for analyzing signals that originate
from complex nonlinear living systems [5]. Recent devel-
opments in non-linear analysis have provided various
methods for the study of the complex cardiovascular sys-
tem [6]. It is now generally recognized that many proc-
esses generated by the biological system can be described
in an effective way by using the methods of nonlinear
dynamics. The nonlinear dynamical techniques are based
on the concept of chaos, which was first introduced with
applications to complicated dynamical systems in mete-
orology [7]. Since then, it has been applied to medicine
and biology [8,9]. A particularly active area for the appli-
cation of chaos theory has been cardiology [10,11], where
many aspects have been addressed including whether
chaos can be used to represent healthy or diseased state
[12].

A complex system like cardiovascular system can not be
linear in nature and by considering it as a nonlinear sys-
tem can lead to better understanding of the system
dynamics. Recent studies have also stressed the impor-
tance of nonlinear techniques to study HRV in both
health and disease. The progress made in the field using
measures of chaos has attracted scientific community
applying these tools in studying physiological systems,
and HRV is no exception. There have been several meth-
ods of estimating invariants from nonlinear dynamical
systems reported in the literature. Recently, Fell et al and
Radhakrishna et al have tried the nonlinear analysis of
ECG and HRV signals respectively [13,14]. Also, Addison
at al showed that coordinated mechanical activity in the
heart during ventricular fibrillation may be made visible
in the surface ECG using wavelet transform [15]. Rajendra
et al, [16] have classified the HRV signals using Artificial
Neural Networks (ANN) and Fuzzy equivalence relation.
Recently, Renyi's entropy is used for texture analysis by
Grigorescu et al [17]. Gokcay et al have applied Renyi's
entropy to clustering and analyze the resulting staircase
nature of the performance function that can be expected
during learning [18]. In this work, different heart rate sig-
nals are analyzed using spatial filling index and time fre-
quency techniques. Renyi's entropy is evaluated for the
different cardiac abnormalities.

Table 1: Number of subjects in various groups

Type Normal PVC CHB SSS CHF ISCDIL AF VF

Number of 
datasets

60 60 20 20 40 20 35 45
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Methods
ECG data for the analysis was obtained from MIT-BIH
arrhythmia database [19]. Prior to recording, the ECG sig-
nals were processed to remove noise due to power line
interference, respiration, muscle tremors, spikes etc. The R
peaks of ECG were detected using Tompkins's algorithm
[20]. The ECG data contains eight different classes repre-
senting eight different diseases. The number of datasets
chosen for each of the eight classes is given in Table 1. The
Normal class contains datasets from people where no car-
diac abnormality was diagnosed. The remaining classes
are named according to the diagnosed cardiac abnormal-
ity, premature ventricular contraction (PVC), Complete Heart
Block (CHB), Sick Sinus Syndrome (SSS), Congestive heart
failure (CHF), Ishemic/Dilated cardiomyoapathy (ISCDIL),
Atrial Fibrillation (AF), and ventricular fibrillation (VF).

Each dataset is taken consists of more than10,000 samples
and the sampling frequency of the data is 360 Hz. The
interval between two successive QRS complexes is defined
as the RR interval (tr-r seconds) and the heart rate (beats
per minute) is given as:

HR = 60/tr-r  (1)

Spatial Filling Index

Let the signal be represented by the coordinates of a point
X(k) in phase space. Then the dynamical behavior of the
signal is reconstructed by succession of these points X(k)
in the phase space. Phase space reconstructions are based
on the analysis of dynamic systems by delay maps. The
vectors X(k) in the multidimensional phase space are con-
structed by time delayed values of the time series, which
determine the coordinates of the phase space plot.

X(k) = {x (k), x((k + τ), ...,x (k + (E-1)τ)} for k = 1,2,...,N -
(E - 1)τ  (1)

where X(k) is one point of the trajectory in the phase space
at time k, x(k + τ) are the coordinates in the phase space
corresponding to the time delayed values of the time
series, τ is the time delay between the points of the time
series considered and E is the embedding dimension,
which is the number of coordinates of the phase space
plot. The attributes of the reconstructed phase space plot
depend on the choice of value of τ. One way to choose τ
is to take it as the time it takes the autocorrelation func-
tion of the data to decay to 1/e [21]. Another method is to
take the first minimum in the graph of average mutual
information [22], which appears to be better since it con-
siders the nonlinear structure in the signal. It has been
established using this method that the value of 7 for τ is
the best choice for ECG signals and 5 for HRV signals [23].

From the given signal x (1), x(2), ..., x (N), a matrix AE is
obtained as

where E is the number of dimensions and M is related to
N by the equation:

M = N - (E -1)τ  (3)

By plotting column 2 of matrix A against column 1 (for
the case E = 2), the phase space plot for two dimensions is
obtained.

Similarly, the first three columns of matrix A3 represent a
phase space plot in three dimensions. Now, a normalized
matrix BE is obtained by dividing each element of AE by
xmax where

xmax = max |x(k)| 1 ≤ k ≤ N  (5)

The matrix B2 (in two dimensions) is hence represented as

In two dimensions, the phase space plot corresponding to
the normalized matrix spans from -1 to +1 on either axis.
The phase space area is now divided into small square
areas of size {R × R |R ∈ Real, 2/R ∈ Integer}. Then the
number of grids in the normalized phase space is n = 2/R.
A matrix C is now obtained with its elements c(i,j) equal
to the number of phase space points falling in a grid g(i,j).
The matrix C is called the phase space matrix and its ele-
ments are divided by m, where

This division yields P(i,j), the probability of a phase space
point falling in a grid g(i,j). A matrix Q is now formed by
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squaring each element of P to get q(i,j) as the elements of
Q. The sum of elements of matrix Q is calculated as

The spatial filling index η is defined as:

η = s / n2  (9)

Now the value of η is used to quantify the degree of vari-
ability in the test signals.

Time-Frequency analysis

There are three common approaches to generating the
time-frequency (TF) plots. These are the short Time Fou-
rier Transform; the Wigner-Ville based bilinear distribu-
tions and the Continuous Wavelet Transform. In this
investigation the latter two were used.

Wigner-Ville analysis

The Wigner-Ville distribution (WVD) is defined as:

where z(t) is the analytic signal and h(τ) is a window func-
tion. The results where obtained using a Hamming win-
dow. This window attenuates the interferences oscillating
perpendicularly to the frequency axis. The WVD satisfies a
large number of desirable mathematical properties. In
particular, the WVD is always real-valued; it preserves time
and frequency shifts and satisfies the marginal properties.
Moreover, the WVD conserves the Energy of the signal. We
obtain the Energy (Ex) by integrating the WVD of z all over
the time frequency plane:

With the Energy conservation property the WVD can be
interpreted in terms of probability density: expression
(10) is the Fourier transform of an acceptable form of
characteristic function for the distribution of energy.
Therefore, the WVD can be used to obtain the information
content of a signal; this thought is further extended in Sec-
tion 4.3.

Continuous Time Wavelet Transform (CWT) analysis

A 'wavelet' implies a small wave of finite duration and
finite energy, which is correlated with the signal to obtain
the wavelet coefficients [24]. The reference wavelet is
known as the mother wavelet, and the coefficients are eval-

uated for the entire range of dilation and translation fac-
tors [25]. Initially the mother wavelet is shifted
(translated) continually along the time scale for evaluat-
ing the set of coefficients at all instants of time. In the next
phase, the wavelet is dilated for a different width – also
normalized to contain the same amount of energy as the
mother wavelet – and the process is repeated for the entire
signal. The wavelet coefficients are real numbers usually
shown by the intensity of a chosen color, against a two
dimensional plane with y-axis representing the dilation
(scaling factor) of the wavelet, and the x-axis, its transla-
tion (shift along the time axis). Thus the wavelet trans-
form plot (scalogram) can be seen as a color pattern
against a two dimensional plane. In the CWT the wavelet
coefficients are evaluated for infinitesimally small shifts of
translation as well as scale factors. That is, the color inten-
sity of each pixel in the scalogram is separately evaluated,
and the resulting pattern contains information about the
size and location of the 'event' occurring in the time
domain [26,27]. Since the dilated wavelet is normalized
to contain the same amount of energy as the mother
wavelet; the scalogram representation of even high fre-
quency, low energy 'events' occurring in the time scale are
more conspicuous than in the Fourier Transform. Thus
the color patterns in the scalogram can be useful in high-
lighting the abnormalities specific to different types of dis-
ease. MATLAB version 6.1 is used to plot the various
scalogram plots.

For a given wavelet Ψa,b(t), the coefficients are evaluated
using Eq. (12):

The wavelet, defined as ,...small wave of finite duration

and finite energy...' has also zero mean value,  is

energy normalizing coefficient, and Ψa,b(t) is the mother

wavelet; a → scale factor ; b → translation factor.

Just like the WVD, the CWT representation preserves also
the energy of the signal. The total energy (Ex) is obtained
by integrating over all scale and translation factors:

The scalogram patterns thus obtained also depend on the
wavelet chosen for analysis. Bio-signals usually exhibit
self similarity patterns in their distribution, and a wavelet
which is akin to its fractal shape would yield the best
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results in terms of clarity and distinction of patterns. In
the present work, the analysis is based on the Morlet
wavelet. This wavelet gives good result compared to all the
other wavelets.

The Morlet wavelet function is given by:

Renyi's Entropy (RE)

The previous sections detailed WVD and CWT as two
methods to represent a signal in the time-frequency
domain. This section is concerned with the interpretation
of the time-frequency representation. The signals repre-
sent measurements taken from patients being either nor-
mal or suffering from different vascular diseases. The goal
is to find a measure which allows classifying the different
signals according to the medical conditions.

One interesting information that one may obtain from
the time-frequency representation is the number of ele-
mentary signals present in the current observation. This
leads to the following question: How much separation
between two elementary signals must one achieve in order
to be able to conclude that there are two signals present
rather then one?

A solution to this problem is given by applying an infor-
mation measure to a time-frequency distribution of a sig-
nal. This can be done, because CWT and WVD preserve
the energy of the signal.

Unfortunately, the well known Shannon information can
not be applied to the time-frequency representation of a
signal, because it contains negative values. One informa-
tion measure, which allows negative values in the distri-
bution, is Renyi's entropy. This information measure was
used to analyze the time-frequency representation of the
measurement data.

Renyi's entropy definition is derived from his proposed
theory of means [28]

where φ(.)- is a continuous and strictly monotonic func-
tion subclass of Kolmogorov-Nagumo functions. To sat-
isfy the constraints of an information measure

I(pk)- any information measure

Simplifying the above relation, we have

The third order Renyi's entropy (α = 3) is calculated from
the WVD time-frequency representations as follows:

similarly, the third order Renyi's entropy is calculated
form the CWT as follows:

The result produced by this measure (  and )

is expressed in bits: If one elementary signal yields zero bit

of information (20), then two well separated elementary

singles will yield one bit of information (21), four well
speared elementary singles will yield two bits of informa-

tion (22), and so on. It shows that for different cardiac sig-
nals the Renyi's entropy in the time-frequency domain is
different.

One-Way Analysis of Variance (ANOVA)

The purpose of one-way ANOVA is to find out whether
data from several groups have a common mean. That is,
to determine whether the groups are actually different in
the measured characteristic.

One-way ANOVA is a simple special case of the linear
model. The one-way ANOVA form of the model is where:

yij = α.j + εij

• yij is a matrix of observations in which each column rep-
resents a different group.

• α.j is a matrix whose columns are the group means. (The
"dot j" notation means that applies to all rows of the jth
column. That is, the value αij is the same for all i.)

• εij is a matrix of random disturbances.

The model posits that the columns of y are a constant plus
a random disturbance. You want to know if the constants
are all the same.
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Results
The result section compares the three different analyzing
methods. Each of these methods results in a single param-
eter for each of the datasets. For Phase Space the parame-
ter used for comparison is the spatial filling index (η)
defined in Equation (9). For WVD the parameter is the

third order Renyi's entropy ( ) defined in Equation

(14). For CWT the parameter is also the third order Renyi's

entropy ( ) defined in Equation (15). For each dataset

these three parameters ( ,  and η) where cal-

culated. Table 2 shows the mean and the variance (nor-
malized by N-1 where N is the sequence length) of these
parameters for each of the data classes. The p-value, also
shown in Table 2, results form the ANOVA test for each of
the parameters.

The proposed technique was applied to a number of dif-
ferent signals, both normal and abnormal. Some of the
normal and abnormal signals used in the analysis, along
with their two dimensional plots are shown in the Figures
1,2,3,4,5,6,7,8.

For the time frequency plots the normalized frequency is
shown over the hart rate values. It is not useful to state an
absolute frequency, because such a value is not relevant
for the cardiac system under observation. Moreover, the
relative frequency representation allows comparing the
time frequency analysis results form varying observation
intervals. As example, the observation interval for the VF
data is significantly shorter as for the rest of the data, but
still the results can be compared.

Table 2: Results for various cardiac abnormalities

Type SSS PVC CHB NORMAL CHF AF ISCDIL VF p-value

η Phase 
Space

1.56 ± 0.08 3.77 ± 11.82 7.07 ± 0.57 6.76 ± 1.61 7.71 ± 0.20 2.26 ± 0.05 7.44 ± 1.24 3.77 ± 8.78 0.00005

 
Wigner-

Wille

3.38 ± 2.74 4.79 ± 1.46 5.65 ± 0.61 4.00 ± 1.52 2.10 ± 0.61 3.31 ± 2.45 4.07 ± 2.78 4.44 ± 0.96 0.021

 
Scalogram

2.84 ± 1.89 2.25 ± 1.06 3.01 ± 0.29 1.67 ± 0.84 1.78 ± 0.82 2.04 ± 1.37 2.15 ± 0.57 3.29 ± 0.33 0.001

HWVD3

HW3

HWVD3

HW3

HWVD3
HW3

Heart rate in representative subject with SSSFigure 1
Heart rate in representative subject with SSS; (a) Phase space plot (b) Scalogram (c) Wigner-Ville distribution
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Discussion
The resulting phase space plots for various types of disease
are shown in Figure
1(a),2(a),3(a),4(a),5(a),6(a),7(a),8(a). In SSS – III (Sick
Sinus Syndrome – III, Bradycardia-Tachycardia) there is a
continuous variation of heart rate between Bradycardia
and Tachycardia. The phase space plot spreads over a
larger area (Figure 1(a)). In the Ectopic beat abnormality;
there would be a sudden impulsive jump in the heart rate.
This may be due to a Premature-Ventricular beat in the
ECG signal. This is indicated as a sudden spike in the
phase space plot (Figure 2(a)). In Complete Heart Block
(CHB) cases, as the atrio-ventricular node fails to send

electrical signals rhythmically to the ventricles, the heart
rate remains low. The phase space plot reduces almost to
a point, indicating very little change with time (Figure
3(a)). For Normal cases, the phase space plot looks like a
cluster of points (Figure 4(a)). In the Congestive heart fail-
ure (CHF), the heart rate variation is lower and hence the
phase space plot spread in a very small area (Figure 5(a)).
In the Atrial Fibrillation (AF), heart rate signal records
highly erratic variability; this is depicted as scattering of
points in the phase space plot (Figure 6(a)). In the case of
Ischemic/Dilated cardiomyopathy, the ventricles are una-
ble to pump out blood to the normal degree. Here the
heart rate variation is very small. And hence the phase

Heart rate in representative subject with PVCFigure 2
Heart rate in representative subject with PVC; (a) Phase space plot (b) Scalogram (c) Wigner-Ville distribution

Heart rate in representative subject with CHBFigure 3
Heart rate in representative subject with CHB; (a) Phase space plot (b) Scalogram (c) Wigner-Ville distribution
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space plot will be almost a point (Figure 7(a)). And its
phase space plot resembles that of Normal class. Finally,
in VF, the heart rate variation is high and hence the phase
space plot is randomly distributed (Figure 8(a)).

The contour plots of scalogram and Wigner-Ville distribu-
tion plot for the different abnormalities are shown in fig-
ures
1(b),1(c),2(b),2(c),3(b),3(c),4(b),4(c),5(b),5(c),6(b),6(
c),7(b),7(c),8(b),8(c) respectively. In the contour plot of
scalogram (Figure 1(b)), for SSS, there is clear indication
of variation of high frequency and low frequency in the
form of irregular circles at these frequencies. In PVC (Fig-

ure 2(b)), a irregular circle is shown at high frequency
indicating the spike of the signal. These irregular circles or
contours are at low frequencies for CHB (Figure 3(b)),
indicating smaller R-R variation. In normal case (Figure
4(b)) these contours are in the middle frequency due to
variation in the R-R interval. In CHF (Figure 5(b)) and
Ischemic/Dialted cardiomyopathy (Figure 7(b)), the R-R
variation is extremely low. Hence the contours are aligned
at the low frequency. In AF (Figure 6(b)), due to very high
R-R variation are shown as irregular contours at high fre-
quency. For VF, this R-R variation is slightly low and as
result the contours are aligned at the middle of the con-
tour plot (Figure 8(b)).

Heart rate in representative subject with NormalFigure 4
Heart rate in representative subject with Normal; (a) Phase space plot (b) Scalogram (c) Wigner-Ville distribution

Heart rate in representative subject with CHFFigure 5
Heart rate in representative subject with CHF; (a) Phase space plot (b) Scalogram (c) Wigner-Ville distribution
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The contour plots of the Wigner-Ville distribution does
not indicate as clearly as contour plot of scalogram for var-
ious cardiac diseases.

The spatial filling index decreases or increases from the
normal class for the abnormal subjects in different ranges
(Table 2) depending on the R-R variation. This value
decreases for the abnormalities of high R-R variation and
increases for CHB, CHF and Ishemic/Dilated
cardiomyoapathy, which has low R-R variation. This
parameter has excellent 'p' value for various classes
(0.00005). The Renyi's entropy has high value for cardiac

abnormalities like Ischemic/Dilated cardiomyopathy,
CHB, VF and it decreases for Normal, PVC, AF, SSS and
CHF. This RE gives lower 'p' value for scalogram than
Wigner-Ville distribution and also, the contours of scalo-
gram visually show the features of the diseases. Hence, in
the time-frequency analysis, the Renyi's entropy gives bet-
ter result for scalogram than the Wigner-Ville distribution.

Conclusion
Considering heart as a nonlinear complex system and
processing various cardiovascular signals (HRV) seems to
provide very useful information for detection of abnor-

Heart rate in representative subject with AFFigure 6
Heart rate in representative subject with AF; (a) Phase space plot (b) Scalogram (c) Wigner-Ville distribution

Heart rate in representative subject with Ishemic/Dilated CardiomyopathyFigure 7
Heart rate in representative subject with Ishemic/Dilated Cardiomyopathy; (a) Phase space plot (b) Scalogram (c) Wigner-Ville 
distribution
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malities in the condition of the heart that is not available
by conventional means. In this paper, a phase space and
the time-frequency analysis of these cardiac signals using
spatial filling index and Renyi's entropy has been pro-
posed for detecting cardiac dysfunction. The ANOVA test
was used to compare the different analyzing methods. The
Renyi's entropy gives better result for the scalogram than
the Wigner-Ville distribution. The evaluation of the
proposed technique on a larger data set will improve the
efficacy of the technique. It is left as future work to com-
pare the different methods with more sophisticated statis-
tical methods, such as post hoc comparisons. It is hoped
that the graphical representation along with its corre-
sponding analytical index and Renyi's entropy proposed
here will find potential applications in computer analysis
of cardiac patients' status in intensive care units.
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Heart rate in representative subject with VFFigure 8
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